The repurrrsive package provides recursive lists that are handy when teaching or exampling functions such as purrr::map()
and the unnest_*()
functions in the tidyr package. Datasets are stored as R list, JSON, and XML to provide the full non-rectangular data experience. Enjoy!
Package also includes the main data frame from the gapminder package in 3 different forms: simple data frame (no list-columns), data frame nested by country, and split into a named list of data frames.
Resources that use repurrrsive, where you can much more list wrangling:
You can install repurrrsive from CRAN like so:
or from GitHub with:
got_chars
is a list with information on the 30 point-of-view characters from the first five books in the Song of Ice and Fire series by George R. R. Martin. Retrieved from An API Of Ice And Fire.
library(repurrrsive)
library(purrr)
(nms <- map_chr(got_chars, "name"))
#> [1] "Theon Greyjoy" "Tyrion Lannister" "Victarion Greyjoy"
#> [4] "Will" "Areo Hotah" "Chett"
#> [7] "Cressen" "Arianne Martell" "Daenerys Targaryen"
#> [10] "Davos Seaworth" "Arya Stark" "Arys Oakheart"
#> [13] "Asha Greyjoy" "Barristan Selmy" "Varamyr"
#> [16] "Brandon Stark" "Brienne of Tarth" "Catelyn Stark"
#> [19] "Cersei Lannister" "Eddard Stark" "Jaime Lannister"
#> [22] "Jon Connington" "Jon Snow" "Aeron Greyjoy"
#> [25] "Kevan Lannister" "Melisandre" "Merrett Frey"
#> [28] "Quentyn Martell" "Samwell Tarly" "Sansa Stark"
map_dfr(got_chars, `[`, c("name", "gender", "culture", "born"))
#> # A tibble: 30 x 4
#> name gender culture born
#> <chr> <chr> <chr> <chr>
#> 1 Theon Greyjoy Male Ironborn In 278 AC or 279 AC, at Pyke
#> 2 Tyrion Lannister Male "" In 273 AC, at Casterly Rock
#> 3 Victarion Greyjoy Male Ironborn In 268 AC or before, at Pyke
#> 4 Will Male "" ""
#> 5 Areo Hotah Male Norvoshi In 257 AC or before, at Norvos
#> 6 Chett Male "" At Hag's Mire
#> 7 Cressen Male "" In 219 AC or 220 AC
#> 8 Arianne Martell Female Dornish In 276 AC, at Sunspear
#> 9 Daenerys Targaryen Female Valyrian In 284 AC, at Dragonstone
#> 10 Davos Seaworth Male Westeros In 260 AC or before, at King's Landi…
#> # … with 20 more rows
The same got_chars
data is also present as JSON and XML files. Accessor functions provide the local file path.
got_chars_json()
#> [1] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/got_chars.json"
got_chars_xml()
#> [1] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/got_chars.xml"
Practice bringing data from JSON into an R list.
library(jsonlite)
json <- fromJSON(got_chars_json(), simplifyDataFrame = FALSE)
json[[1]][c("name", "titles", "playedBy")]
#> $name
#> [1] "Theon Greyjoy"
#>
#> $titles
#> [1] "Prince of Winterfell"
#> [2] "Captain of Sea Bitch"
#> [3] "Lord of the Iron Islands (by law of the green lands)"
#>
#> $playedBy
#> [1] "Alfie Allen"
identical(got_chars, json)
#> [1] TRUE
Practice bringing data into R from XML. You can get it into an R list with xml2::as_list()
, but to get a list as nice as those above? That requires a bit more work. Such is XML life.
library(xml2)
xml <- read_xml(got_chars_xml())
xml_child(xml)
#> {xml_node}
#> <elem>
#> [1] <url>https://www.anapioficeandfire.com/api/characters/1022</url>
#> [2] <id>1022</id>
#> [3] <name>Theon Greyjoy</name>
#> [4] <gender>Male</gender>
#> [5] <culture>Ironborn</culture>
#> [6] <born>In 278 AC or 279 AC, at Pyke</born>
#> [7] <died/>
#> [8] <alive>TRUE</alive>
#> [9] <titles>\n <elem>Prince of Winterfell</elem>\n <elem>Captain of S ...
#> [10] <aliases>\n <elem>Prince of Fools</elem>\n <elem>Theon Turncloak< ...
#> [11] <father/>
#> [12] <mother/>
#> [13] <spouse/>
#> [14] <allegiances>House Greyjoy of Pyke</allegiances>
#> [15] <books>\n <elem>A Game of Thrones</elem>\n <elem>A Storm of Sword ...
#> [16] <povBooks>\n <elem>A Clash of Kings</elem>\n <elem>A Dance with D ...
#> [17] <tvSeries>\n <elem>Season 1</elem>\n <elem>Season 2</elem>\n <el ...
#> [18] <playedBy>Alfie Allen</playedBy>
sw_people
, sw_films
, sw_species
, sw_planets
, sw_starships
and sw_vehicles
are interrelated lists about entities in the Star Wars Universe retrieved from the Star Wars API using the package rwars
.
library(repurrrsive)
library(purrr)
map_chr(sw_films, "title")
#> [1] "A New Hope" "Attack of the Clones"
#> [3] "The Phantom Menace" "Revenge of the Sith"
#> [5] "Return of the Jedi" "The Empire Strikes Back"
#> [7] "The Force Awakens"
Elements that contain URLs provide a way to link the lists together. For example, the films
element of each person contains URLs for the films they have appeared in. For example, Luke Skywalker has been in five films.
luke <- sw_people[[1]]
names(luke)
#> [1] "name" "height" "mass" "hair_color" "skin_color"
#> [6] "eye_color" "birth_year" "gender" "homeworld" "films"
#> [11] "species" "vehicles" "starships" "created" "edited"
#> [16] "url"
luke[["films"]]
#> [1] "http://swapi.co/api/films/6/" "http://swapi.co/api/films/3/"
#> [3] "http://swapi.co/api/films/2/" "http://swapi.co/api/films/1/"
#> [5] "http://swapi.co/api/films/7/"
These URLs can be looked up in the the sw_films
list to find the titles of the films.
# Create a mapping between titles and urls
film_lookup <- map_chr(sw_films, "title") %>%
set_names(map_chr(sw_films, "url"))
# The films Luke is in
film_lookup[luke[["films"]]] %>% unname()
#> [1] "Revenge of the Sith" "Return of the Jedi"
#> [3] "The Empire Strikes Back" "A New Hope"
#> [5] "The Force Awakens"
gh_users
and gh_repos
are lists with information for 6 GitHub users and up to 30 of each user’s repositories.
GitHub users.
library(repurrrsive)
library(purrr)
map_chr(gh_users, "login")
#> [1] "gaborcsardi" "jennybc" "jtleek" "juliasilge" "leeper"
#> [6] "masalmon"
map_chr(gh_users, 18)
#> [1] "Gábor Csárdi" "Jennifer (Jenny) Bryan"
#> [3] "Jeff L." "Julia Silge"
#> [5] "Thomas J. Leeper" "Maëlle Salmon"
map_dfr(gh_users, `[`, c("login", "name", "id", "location"))
#> # A tibble: 6 x 4
#> login name id location
#> <chr> <chr> <int> <chr>
#> 1 gaborcsardi Gábor Csárdi 660288 Chippenham, UK
#> 2 jennybc Jennifer (Jenny) Bryan 599454 Vancouver, BC, Canada
#> 3 jtleek Jeff L. 1571674 Baltimore,MD
#> 4 juliasilge Julia Silge 12505835 Salt Lake City, UT
#> 5 leeper Thomas J. Leeper 3505428 London, United Kingdom
#> 6 masalmon Maëlle Salmon 8360597 Barcelona, Spain
First ~30 repos of these users. Peek at some info from first repo for the first user. Get full name of each user’s 11th repo.
str(gh_repos[[1]][[1]][c("full_name", "html_url", "description")])
#> List of 3
#> $ full_name : chr "gaborcsardi/after"
#> $ html_url : chr "https://github.com/gaborcsardi/after"
#> $ description: chr "Run Code in the Background"
map_chr(gh_repos, list(11, "full_name"))
#> [1] "gaborcsardi/debugme"
#> [2] "jennybc/access-r-source"
#> [3] "jtleek/datawomenontwitter"
#> [4] "juliasilge/juliasilge.github.io"
#> [5] "leeper/congressional-district-boundaries"
#> [6] "masalmon/geoparsing_tweets"
Want to parse it yourself? Paths to local JSON and XML files.
c(gh_users_json(), gh_repos_json(), gh_users_xml(), gh_repos_xml())
#> [1] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/gh_users.json"
#> [2] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/gh_repos.json"
#> [3] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/gh_users.xml"
#> [4] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/gh_repos.xml"
Redo this: Get full name of each user’s 11th repo. But using only the XML.
library(xml2)
repo_xml <- read_xml(gh_repos_xml())
repo_names <- map_chr(xml_find_all(repo_xml, "//full_name"), xml_text)
elevenses <-
11 + cumsum(c(0, head(table(gsub("(.*)/.*", "\\1", repo_names)), -1)))
repo_names[elevenses]
#> [1] "gaborcsardi/debugme"
#> [2] "jennybc/access-r-source"
#> [3] "jtleek/datawomenontwitter"
#> [4] "juliasilge/juliasilge.github.io"
#> [5] "leeper/congressional-district-boundaries"
#> [6] "masalmon/geoparsing_tweets"
discog
holds a list of 155 items, representing a music collection stored in the Discogs database and retrieved via their API. It’s useful for demonstrating capabilities of purrr and tidyr.
library(repurrrsive)
library(purrr)
library(tidyr) # version >= 0.8.3.9000
library(tibble)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
Here we get just the album names:
discog %>%
map_chr(c("basic_information", "title")) %>%
head()
#> [1] "Demo" "Observant Com El Mon Es Destrueix"
#> [3] "I" "Oído Absoluto"
#> [5] "A Cat's Cause, No Dogs Problem" "Tashme"
Put the discog
list into a list-column and use tidyr::hoist()
to dig some info out of it.
tibble(disc = discog) %>%
hoist(disc, info = "basic_information") %>%
hoist(info,
title = "title",
year = "year",
label = list("labels", 1, "name"),
artist = list("artists", 1, "name")
) %>%
select(-disc, -info)
#> # A tibble: 155 x 4
#> title year label artist
#> <chr> <int> <chr> <chr>
#> 1 Demo 2015 Tobi Records (2) Mollot
#> 2 Observant Com El Mon … 2013 La Vida Es Un Mus Una Bèstia Inco…
#> 3 I 2017 La Vida Es Un Mus S.H.I.T. (3)
#> 4 Oído Absoluto 2017 La Vida Es Un Mus Rata Negra
#> 5 A Cat's Cause, No Dog… 2015 Katorga Works Ivy (18)
#> 6 Tashme 2019 High Fashion Industries Tashme
#> 7 Demo 2014 Mind Control Records (6) Desgraciados
#> 8 Let The Miracles Begin 2015 Not On Label (Phantom Hea… Phantom Head
#> 9 Sub Space 2017 Not On Label (Sub Space (… Sub Space (2)
#> 10 Demo 2017 Prescience Tapes Small Man (2)
#> # … with 145 more rows
wesanderson
is the simplest list, containing color palettes, from the wesanderson package. Here’s a glimpse: one component per palette, each containing a character vector of hex colors. Screenshot is of RStudio’s Object Explorer, i.e. from calling View(wesanderson)
.
library(repurrrsive)
library(purrr)
wesanderson[1:3]
#> $GrandBudapest
#> [1] "#F1BB7B" "#FD6467" "#5B1A18" "#D67236"
#>
#> $Moonrise1
#> [1] "#F3DF6C" "#CEAB07" "#D5D5D3" "#24281A"
#>
#> $Royal1
#> [1] "#899DA4" "#C93312" "#FAEFD1" "#DC863B"
Use wesanderson
to demonstrate mapping functions over a list.
map_chr(wesanderson, 1)
#> GrandBudapest Moonrise1 Royal1 Moonrise2 Cavalcanti
#> "#F1BB7B" "#F3DF6C" "#899DA4" "#798E87" "#D8B70A"
#> Royal2 GrandBudapest2 Moonrise3 Chevalier Zissou
#> "#9A8822" "#E6A0C4" "#85D4E3" "#446455" "#3B9AB2"
#> FantasticFox Darjeeling Rushmore BottleRocket Darjeeling2
#> "#DD8D29" "#FF0000" "#E1BD6D" "#A42820" "#ECCBAE"
map_int(wesanderson, length)
#> GrandBudapest Moonrise1 Royal1 Moonrise2 Cavalcanti
#> 4 4 4 4 5
#> Royal2 GrandBudapest2 Moonrise3 Chevalier Zissou
#> 5 4 5 4 5
#> FantasticFox Darjeeling Rushmore BottleRocket Darjeeling2
#> 5 5 5 7 5
map_chr(wesanderson[7:9], paste, collapse = ", ")
#> GrandBudapest2
#> "#E6A0C4, #C6CDF7, #D8A499, #7294D4"
#> Moonrise3
#> "#85D4E3, #F4B5BD, #9C964A, #CDC08C, #FAD77B"
#> Chevalier
#> "#446455, #FDD262, #D3DDDC, #C7B19C"
The same wesanderson
data is also present as JSON and XML files. Accessor functions provide the local file path.
wesanderson_json()
#> [1] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/wesanderson.json"
wesanderson_xml()
#> [1] "/Users/jenny/resources/R/library_3.6/repurrrsive/extdata/wesanderson.xml"
Practice bringing data from JSON into an R list.
library(jsonlite)
json <- fromJSON(wesanderson_json())
json$wesanderson[1:3]
#> $GrandBudapest
#> [1] "#F1BB7B" "#FD6467" "#5B1A18" "#D67236"
#>
#> $Moonrise1
#> [1] "#F3DF6C" "#CEAB07" "#D5D5D3" "#24281A"
#>
#> $Royal1
#> [1] "#899DA4" "#C93312" "#FAEFD1" "#DC863B"
identical(wesanderson, json$wesanderson)
#> [1] TRUE
Practice bringing data into R from XML. You can get it into an R list with xml2::as_list()
, but to get a list as nice as those above? That requires a bit more work. Such is XML life.
library(xml2)
xml <- read_xml(wesanderson_xml())
xml_child(xml)
#> {xml_node}
#> <palette name="GrandBudapest">
#> [1] <hex>#F1BB7B</hex>
#> [2] <hex>#FD6467</hex>
#> [3] <hex>#5B1A18</hex>
#> [4] <hex>#D67236</hex>
as_list(xml_child(xml))
#> $hex
#> $hex[[1]]
#> [1] "#F1BB7B"
#>
#>
#> $hex
#> $hex[[1]]
#> [1] "#FD6467"
#>
#>
#> $hex
#> $hex[[1]]
#> [1] "#5B1A18"
#>
#>
#> $hex
#> $hex[[1]]
#> [1] "#D67236"
#>
#>
#> attr(,"name")
#> [1] "GrandBudapest"
Use the Gapminder data in various forms to practice different styles of grouped computation.
library(dplyr)
library(purrr)
library(tibble)
## group_by() + summarize()
gap_simple %>%
group_by(country) %>%
summarize(cor = cor(lifeExp, year))
#> # A tibble: 142 x 2
#> country cor
#> <fct> <dbl>
#> 1 Afghanistan 0.974
#> 2 Albania 0.954
#> 3 Algeria 0.993
#> 4 Angola 0.942
#> 5 Argentina 0.998
#> 6 Australia 0.990
#> 7 Austria 0.996
#> 8 Bahrain 0.983
#> 9 Bangladesh 0.995
#> 10 Belgium 0.997
#> # … with 132 more rows
## nest() + map_*() inside mutate()
gap_nested %>%
mutate(cor = data %>% map_dbl(~ cor(.x$lifeExp, .x$year)))
#> # A tibble: 142 x 4
#> country continent data cor
#> <fct> <fct> <list> <dbl>
#> 1 Afghanistan Asia <tibble [12 × 4]> 0.974
#> 2 Albania Europe <tibble [12 × 4]> 0.954
#> 3 Algeria Africa <tibble [12 × 4]> 0.993
#> 4 Angola Africa <tibble [12 × 4]> 0.942
#> 5 Argentina Americas <tibble [12 × 4]> 0.998
#> 6 Australia Oceania <tibble [12 × 4]> 0.990
#> 7 Austria Europe <tibble [12 × 4]> 0.996
#> 8 Bahrain Asia <tibble [12 × 4]> 0.983
#> 9 Bangladesh Asia <tibble [12 × 4]> 0.995
#> 10 Belgium Europe <tibble [12 × 4]> 0.997
#> # … with 132 more rows
## split + map_*()
gap_split %>%
map_dbl(~ cor(.x$lifeExp, .x$year)) %>%
head()
#> Afghanistan Albania Algeria Angola Argentina Australia
#> 0.9735051 0.9542420 0.9925307 0.9422392 0.9977816 0.9897716
## split + map_*() + tibble::enframe()
gap_split %>%
map_dbl(~ cor(.x$lifeExp, .x$year)) %>%
enframe()
#> # A tibble: 142 x 2
#> name value
#> <chr> <dbl>
#> 1 Afghanistan 0.974
#> 2 Albania 0.954
#> 3 Algeria 0.993
#> 4 Angola 0.942
#> 5 Argentina 0.998
#> 6 Australia 0.990
#> 7 Austria 0.996
#> 8 Bahrain 0.983
#> 9 Bangladesh 0.995
#> 10 Belgium 0.997
#> # … with 132 more rows