Package ‘reprex’

May 16, 2019

Title Prepare Reproducible Example Code via the Clipboard
Version 0.3.0

Description Convenience wrapper that uses the 'markdown' package to render

small snippets of code to target formats that include both code and output.
The goal is to encourage the sharing of small, reproducible, and runnable
examples on code-oriented websites, such as <https://stackoverflow.com> and
<https://github.com>, or in email. The user's clipboard is the default source

of input code and the default target for rendered output. reprex’ also
extracts clean, runnable R code from various common formats, such as
copy/paste from an R session.

License MIT + file LICENSE

URL https://reprex.tidyverse.org,
https://github.com/tidyverse/reprex#readme

BugReports https://github.com/tidyverse/reprex/issues
Depends R (>=3.1)

Imports callr (>=2.0.0), clipr (>= 0.4.0), fs, rlang, rmarkdown,
utils, whisker, withr

Suggests covr, devtools, fortunes, knitr, miniUI, rprojroot,
rstudioapi, shiny, styler (>= 1.0.2), testthat (>= 2.0.0)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

SystemRequirements pandoc (>= 1.12.3) - http://pandoc.org
NeedsCompilation no

Author Jennifer Bryan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>),
Jim Hester [aut] (<https://orcid.org/0000-0002-2739-7082>),
David Robinson [aut],
Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
RStudio [cph, fnd]

https://reprex.tidyverse.org
https://github.com/tidyverse/reprex#readme
https://github.com/tidyverse/reprex/issues

2 opt

Maintainer Jennifer Bryan <jenny@rstudio.com>
Repository CRAN
Date/Publication 2019-05-16 16:20:05 UTC

R topics documented:

OPL « o o e e e 2
TEPTEX « « v v e 3
reprex_addin oL 7
UNFTEPIEX + v v v v v e 8
Index 12
opt Consult an option, then default
Description

Arguments that appear like so in the usage:
f(..., arg = opt(DEFAULT), ...)
get their value according to this logic:

user-specified value or, if not given,
getOption("reprex.arg”) or if does not exist,
DEFAULT

It’s shorthand for:
f(..., arg = getOption("reprex.arg"”, DEFAULT), ...)

This is not an exported function and should not be called directly.

Details

Many of the arguments of reprex() use opt (). If you don’t like the official defaults, override them
in your .Rprofile. Here’s an example for someone who dislikes the "Created by ..." string, always
wants session info, prefers to restyle their code, uses a winky face comment string, and likes the
tidyverse startup message.

options(
reprex.advertise = FALSE,
reprex.si = TRUE,
reprex.style = TRUE,
reprex.comment = "#;-)",
reprex.tidyverse_quiet = FALSE

reprex 3

reprex Render a reprex

Description

Run a bit of R code using rmarkdown: : render () and write the rendered result to user’s clipboard.
The goal is to make it easy to share a small reproducible example ("reprex"), e.g., in a GitHub issue.
Reprex source can be

* read from clipboard
* read from current selection or active document in RStudio (with reprex_addin())
 provided directly as expression, character vector, or string

* read from file

reprex can also be used for syntax highlighting (with or without rendering); see below for more.

Usage

reprex(x = NULL, input = NULL, outfile = NULL, venue = c("gh",
"so", "ds", "r", "rtf", "html"), render = TRUE, advertise = NULL,
si = opt(FALSE), style = opt(FALSE), show = opt(TRUE),
comment = opt("#>"), tidyverse_quiet = opt(TRUE),
std_out_err = opt(FALSE))

Arguments

X An expression. If not given, reprex() looks for code in input or on the clip-
board, in that order.

input Character. If has length one and lacks a terminating newline, interpreted as the
path to a file containing reprex code. Otherwise, assumed to hold reprex code as
character vector.

outfile Optional basename for output files. When NULL (default), reprex writes to temp
files below the session temp directory. If outfile = "foo", expect output
files in current working directory, like foo_reprex.R, foo_reprex.md, and,
if venue = "r", foo_rendered.R. If outfile = NA, expect output files in
a location and with basename derived from input, if sensible, or in current
working directory with basename derived from tempfile() otherwise.

venue Character. Must be one of the following (case insensitive):

 "gh" for GitHub-Flavored Markdown, the default
¢ "s0" for Stack Overflow Markdown

e "ds" for Discourse, e.g., community.rstudio.com. Note: this is currently
just an alias for "gh"!

 "r" for a runnable R script, with commented output interleaved
 "rtf" for Rich Text Format (not supported for un-reprexing)

https://github.github.com/gfm/
https://stackoverflow.com/editing-help
https://community.rstudio.com
https://en.wikipedia.org/wiki/Rich_Text_Format

4 reprex

* "html" for an HTML fragment suitable for inclusion in a larger HTML doc-
ument (not supported for un-reprexing)

render Logical. Whether to call rmarkdown: : render () on the templated reprex, i.e.
whether to actually run the code. Defaults to TRUE. Exists primarily for the sake
of internal testing.

advertise Logical. Whether to include a footer that describes when and how the reprex
was created. If unspecified, the option reprex.advertise is consulted and, if
that is not defined, default is TRUE for venues "gh", "so”, "ds"”, "html"” and
FALSE for "r" and "rtf".

si Logical. Whether to include devtools: :session_info(), if available, or sessionInfo()
at the end of the reprex. When venue is "gh" or "ds", the session info is wrapped
in a collapsible details tag. Read more about opt ().

style Logical. Whether to style code with styler: :style_text(). Read more about
opt ().
show Logical. Whether to show rendered output in a viewer (RStudio or browser).

Read more about opt ().

comment Character. Prefix with which to comment out output, defaults to "#>". Read
more about opt ().

tidyverse_quiet
Logical. Sets the option tidyverse.quiet, which suppresses (TRUE, the de-
fault) or includes (FALSE) the startup message for the tidyverse package. Read
more about opt ().

std_out_err Logical. Whether to append a section for output sent to stdout and stderr by the
reprex rendering process. This can be necessary to reveal output if the reprex
spawns child processes or system() calls. Note this cannot be properly inter-
leaved with output from the main R process, nor is there any guarantee that the
lines from standard output and standard error are in correct chronological order.
See callr::r_safe() for more. Read more about opt ().

Value

Character vector of rendered reprex, invisibly.

Details

The usual "code + commented output"” is returned invisibly, put on the clipboard, and written to
file. An HTML preview displays in RStudio’s Viewer pane, if available, or in the default browser,
otherwise. Leading "> " prompts, are stripped from the input code. Read more at https://
reprex.tidyverse.org/.

reprex sets specific knitr options:

* Chunk options default to collapse = TRUE, comment = "#>", error = TRUE. Note that
error = TRUE, because a common use case is bug reporting.

* reprex also sets knitr’s upload. fun. It defaults to knitr::imgur_upload() so figures pro-
duced by the reprex appear properly on GitHub, Stack Overflow, or Discourse. Note that this
function requires the packages httr & xml2 or RCurl & XML, depending on your knitr ver-
sion. When venue = "r", upload.fun is set to identity, so that figures remain local. In

https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
http://yihui.name/knitr/options/

reprex 5

that case, you may also want to set outfile. You can supplement or override these options
with special comments in your code (see examples).

Syntax highlighting

A secondary use case for reprex is to produce syntax highlighted code snippets, with or without
rendering, to paste into presentation software, such as Keynote or PowerPoint. Use venue = "rtf".

This feature is experimental and currently rather limited. It probably only works on macOS and
requires the installation of the highlight command line tool, which can be installed via homebrew.
This venue is discussed in an article

Examples

Not run:

put some code like this on the clipboard
(y <= 1:4)

mean(y)

reprex()

provide code as an expression
reprex(rbinom(3, size = 10, prob = 0.5))
reprex({y <- 1:4; mean(y)})

reprex({y <- 1:4; mean(y)}, style = TRUE)

note that you can include newlines in those brackets
in fact, that is often a good idea
reprex({

X <- 1:4

y <- 2:5

X +y

b

provide code via character vector
reprex(input = c("x <= 1:4", "y <= 2:5", "x +y"))

if just one line, terminate with '\n'
reprex(input = "rnorm(3)\n")

customize the output comment prefix
reprex(rbinom(3, size = 10, prob = 0.5), comment = "#;-)")

override a default chunk option
reprex({
#+ setup, include = FALSE
knitr::opts_chunk$set(collapse = FALSE)

#+ actual-reprex-code
(y <- 1:4)
median(y)

1)

add prose, use general markdown formatting

http://www.andre-simon.de/doku/highlight/en/highlight.php
https://formulae.brew.sh/formula/highlight
https://reprex.tidyverse.org/articles/articles/rtf.html

reprex

reprex({
#' # A Big Heading
#

#' Look at my cute example. I love the
#' [reprex](https://github.com/tidyverse/reprex#readme) package!
y <- 1:4
mean(y)
}, advertise = FALSE)

read reprex from file

tmp <- file.path(tempdir(), "foofy.R")
writeLines(c("x <- 1:4", "mean(x)"), tmp)
reprex(input = tmp)

read from file and write to similarly-named outfiles
reprex(input = tmp, outfile = NA)
list.files(dirname(tmp), pattern = "foofy")

clean up
file.remove(list.files(dirname(tmp), pattern = "foofy"”, full.names = TRUE))

write rendered reprex to file
tmp <- file.path(tempdir(), "foofy")
reprex({
X <- 1:4
y <- 2:5
X +y
}, outfile = tmp)
list.files(dirname(tmp), pattern = "foofy")

clean up
file.remove(list.files(dirname(tmp), pattern = "foofy"”, full.names = TRUE))

write reprex to file AND keep figure local too, i.e. don't post to imgur
tmp <- file.path(tempdir(), "foofy")
reprex({

#+ setup, include = FALSE

knitr::opts_knit$set(upload.fun = identity)

#+ actual-reprex-code

#' Some prose

regular comment

(x <= 1:4)

median(x)

plot(x)

}, outfile = tmp)
list.files(dirname(tmp), pattern = "foofy")

clean up

unlink(
list.files(dirname(tmp), pattern = "foofy”, full.names = TRUE),
recursive = TRUE

reprex_addin 7

target venue = Stack Overflow
https://stackoverflow.com/editing-help
ret <- reprex({
x <- 1:4
y <- 2:5
X +y
}, venue = "so")
ret

target venue = R, also good for email or Slack snippets
ret <- reprex({
X <- 1:4
y <- 2:5
Xty
}, venue = "R")
ret

target venue = html
ret <- reprex({
X <- 1:4
y <- 2:5
X +y
}, venue = "html")
ret

include prompt and don't comment the output
use this when you want to make your code hard to execute :)
reprex({

#+ setup, include = FALSE

knitr::opts_chunk$set(comment = NA, prompt = TRUE)

#+ actual-reprex-code

x <- 1:4
y <- 2:5
X +y

B

leading prompts are stripped from source
reprex(input = c("> x <= 1:3", "> median(x)"))

End(Not run)

reprex_addin Render a reprex

Description

reprex_addin() opens an RStudio gadget and addin that allows you to say where the reprex source

https://shiny.rstudio.com/articles/gadgets.html
http://rstudio.github.io/rstudioaddins/

8 un-reprex

is (clipboard? current selection? active file? other file?) and to control a few other arguments.
Appears as "Render reprex" in the RStudio Addins menu.

reprex_selection() is an addin that reprexes the current selection, optionally customised by
options. Appears as "Reprex selection” in the RStudio Addins menu. Heavy users might want to
create a keyboard shortcut.

Usage

reprex_addin()

reprex_selection(venue = getOption("reprex.venue”, "gh"))
Arguments
venue Character. Must be one of the following (case insensitive):

 "gh" for GitHub-Flavored Markdown, the default
e "so" for Stack Overflow Markdown

* "ds" for Discourse, e.g., community.rstudio.com. Note: this is currently
just an alias for "gh"!

 "r" for a runnable R script, with commented output interleaved
» "rtf" for Rich Text Format (not supported for un-reprexing)

e "html" for an HTML fragment suitable for inclusion in a larger HTML doc-
ument (not supported for un-reprexing)

un-reprex Un-render a reprex

Description

Recover clean, runnable code from a reprex captured in the wild and write it to user’s clipboard.
The code is also returned invisibly and optionally written to file. Three different functions address
various forms of wild-caught reprex.

Usage

n

reprex_invert(input = NULL, outfile = NULL, venue = c("gh", "so",
"ds", "r"), comment = opt("#>"))

reprex_clean(input = NULL, outfile = NULL, comment = opt("#>"))

reprex_rescue(input = NULL, outfile = NULL,
prompt = getOption("prompt”), continue = getOption("continue"))

http://rstudio.github.io/rstudioaddins/
https://support.rstudio.com/hc/en-us/articles/206382178-Customizing-Keyboard-Shortcuts
https://github.github.com/gfm/
https://stackoverflow.com/editing-help
https://community.rstudio.com
https://en.wikipedia.org/wiki/Rich_Text_Format

un-reprex 9

Arguments

input Character. If has length one and lacks a terminating newline, interpreted as the
path to a file containing reprex code. Otherwise, assumed to hold reprex code as
character vector. If not provided, the clipboard is consulted for input.

outfile Optional basename for output file. When NULL, no file is left behind. If outfile = "foo",
expect an output file in current working directory named foo_clean.R.If outfile = NA,
expect on output file in a location and with basename derived from input, if a
path, or in current working directory with basename derived from tempfile()
otherwise.

venue Character. Must be one of the following (case insensitive):

 "gh" for GitHub-Flavored Markdown, the default
* "so" for Stack Overflow Markdown
* "ds" for Discourse, e.g., community.rstudio.com. Note: this is currently
just an alias for "gh"!
 "r" for a runnable R script, with commented output interleaved
 "rtf" for Rich Text Format (not supported for un-reprexing)
e "html" for an HTML fragment suitable for inclusion in a larger HTML doc-
ument (not supported for un-reprexing)
comment regular expression that matches commented output lines
prompt character, the prompt at the start of R commands

continue character, the prompt for continuation lines

Value

Character vector holding just the clean R code, invisibly

Functions

* reprex_invert: Attempts to reverse the effect of reprex(). When venue = "r", this just
becomes a wrapper around reprex_clean().

* reprex_clean: Assumes R code is top-level, possibly interleaved with commented output,
e.g., adisplayed reprex copied from GitHub or the direct output of reprex(..., venue = "R").
This function removes commented output.

* reprex_rescue: Assumes R code lines start with a prompt and that printed output is top-
level, e.g., what you’d get from copy/paste from the R Console. Removes lines of output and
strips prompts from lines holding R commands.

Examples

Not run:
a rendered reprex can be inverted, at least approximately
tmp_in <- file.path(tempdir(), "roundtrip-input")
x <- reprex({
#' Some text
#+ chunk-label-and-options-cannot-be-recovered, message = TRUE
(x <= 1:4)

https://github.github.com/gfm/
https://stackoverflow.com/editing-help
https://community.rstudio.com
https://en.wikipedia.org/wiki/Rich_Text_Format

10

#' More text
y <- 2:5
Xty
}, show = FALSE, advertise = FALSE, outfile = tmp_in)
tmp_out <- file.path(tempdir(), "roundtrip-output”)
x <- reprex_invert(x, outfile = tmp_out)
X

clean up
file.remove(
list.files(dirname(tmp_in), pattern = "roundtrip”, full.names =

)

End(Not run)

Not run:

a displayed reprex can be cleaned of commented output
tmp <- file.path(tempdir(), "commented-code")

x <= ¢(
"## a regular comment, which is retained”,
"(x <= 1:4)",
"#> [11 1 2 3 4",
"median(x)",
"#> [1] 2.5"
)
out <- reprex_clean(x, outfile = tmp)
out
clean up
file.remove(
list.files(dirname(tmp), pattern = "commented-code"”, full.names
)
round trip with reprex(..., venue = "R")
code_in <- c("x <- rnorm(2)", "min(x)")
res <- reprex(input = code_in, venue = "R", advertise = FALSE)
res

(code_out <- reprex_clean(res))
identical(code_in, code_out)

End(Not run)
Not run:
rescue a reprex that was copied from a live R session
tmp <- file.path(tempdir(), "live-transcript”)
x <= c(
"> ## a regular comment, which is retained”,
"> (x <= 1:4)",
"[111 2 3 4",
"> median(x)",
"[1]1 2.5"
)
out <- reprex_rescue(x, outfile = tmp)
out

TRUE)

TRUE)

un-reprex

un-reprex

clean up
file.remove(
list.files(dirname(tmp),pattern = "live-transcript”, full.names = TRUE)

)

End(Not run)

Index

callr::r_safe(), 4
devtools::session_info(), 4
knitr::imgur_upload(), 4

opt, 2
opt(),4

reprex, 3

reprex(), 2, 9
reprex_addin, 7
reprex_addin(), 3
reprex_clean (un-reprex), 8
reprex_invert (un-reprex), 8
reprex_rescue (un-reprex), 8

reprex_selection (reprex_addin), 7

rmarkdown: :render (), 3, 4

sessionInfo(), 4
styler::style_text(), 4

tempfile(), 3,9

un-reprex, 8

12

	opt
	reprex
	reprex_addin
	un-reprex
	Index

