This R package provides an infrastructure to test and develop recommender algorithms. The package supports rating (e.g., 1-5 stars) and unary (0-1) data sets. Supported algorithms are:
For evaluation, the framework supports given-n and all-but-x protocols with
Evaluation measures are:
Stable CRAN version: install from within R with
Current development version: Download package from AppVeyor or install from GitHub (needs devtools).
Load the package and prepare a dataset (included in the package).
library("recommenderlab")
data("MovieLense")
### use only users with more than 100 ratings
MovieLense100 <- MovieLense[rowCounts(MovieLense) >100,]
MovieLense100
358 x 1664 rating matrix of class ‘realRatingMatrix’ with 73610 ratings.
Train a user-based collaborative filtering recommender using a small training set.
Recommender of type ‘UBCF’ for ‘realRatingMatrix’
learned using 50 users.
Create top-N recommendations for new users (users 101 and 102)
Recommendations as ‘topNList’ with n = 10 for 2 users.
$`291`
[1] "Alien (1979)" "Titanic (1997)"
[3] "Contact (1997)" "Aliens (1986)"
[5] "Amadeus (1984)" "Godfather, The (1972)"
[7] "Henry V (1989)" "Sting, The (1973)"
[9] "Dead Poets Society (1989)" "Schindler's List (1993)"
$`292`
[1] "Usual Suspects, The (1995)" "Amadeus (1984)"
[3] "Raising Arizona (1987)" "Citizen Kane (1941)"
[5] "Titanic (1997)" "Brazil (1985)"
[7] "Stand by Me (1986)" "M*A*S*H (1970)"
[9] "Babe (1995)" "GoodFellas (1990)"
A simple Shiny App running recommenderlab can be found at https://mhahsler-apps.shinyapps.io/Jester/ (source code).