
Package ‘recipes’
June 23, 2020

Title Preprocessing Tools to Create Design Matrices

Version 0.1.13

Description An extensible framework to create and preprocess
design matrices. Recipes consist of one or more data manipulation
and analysis ``steps''. Statistical parameters for the steps can
be estimated from an initial data set and then applied to
other data sets. The resulting design matrices can then be used
as inputs into statistical or machine learning models.

URL https://github.com/tidymodels/recipes,

https://recipes.tidymodels.org

BugReports https://github.com/tidymodels/recipes/issues

Depends R (>= 3.1), dplyr

Imports generics, glue, gower, ipred, lifecycle, lubridate, magrittr,
Matrix, purrr (>= 0.2.3), rlang (>= 0.4.0), stats, tibble,
tidyr (>= 1.0.0), tidyselect (>= 0.2.5), timeDate, utils, withr

Suggests covr, ddalpha, dimRed (>= 0.2.2), fastICA, ggplot2, igraph,
kernlab, knitr, modeldata, RANN, RcppRoll, rmarkdown, rpart,
rsample, RSpectra, testthat (>= 2.1.0), xml2

License GPL-2

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0.9000

RdMacros lifecycle

NeedsCompilation no

Author Max Kuhn [aut, cre],
Hadley Wickham [aut],
RStudio [cph]

Maintainer Max Kuhn <max@rstudio.com>

Repository CRAN

Date/Publication 2020-06-23 10:30:03 UTC

1

https://github.com/tidymodels/recipes
https://recipes.tidymodels.org
https://github.com/tidymodels/recipes/issues

2 R topics documented:

R topics documented:
add_step . 4
bake . 4
check_class . 5
check_cols . 8
check_missing . 9
check_new_values . 11
check_range . 12
detect_step . 15
discretize . 15
formula.recipe . 17
fully_trained . 18
has_role . 19
juice . 20
names0 . 21
prep . 22
prepper . 23
print.recipe . 24
recipe . 25
recipes . 27
roles . 28
selections . 30
step_arrange . 32
step_bagimpute . 33
step_bin2factor . 36
step_BoxCox . 38
step_bs . 40
step_center . 42
step_classdist . 43
step_corr . 45
step_count . 48
step_cut . 49
step_date . 51
step_depth . 53
step_discretize . 55
step_downsample . 57
step_dummy . 59
step_factor2string . 61
step_filter . 63
step_geodist . 65
step_holiday . 67
step_hyperbolic . 68
step_ica . 70
step_integer . 72
step_interact . 74
step_intercept . 76
step_inverse . 78

R topics documented: 3

step_invlogit . 79
step_isomap . 81
step_knnimpute . 83
step_kpca . 86
step_kpca_poly . 88
step_kpca_rbf . 91
step_lag . 93
step_lincomb . 95
step_log . 97
step_logit . 99
step_lowerimpute . 100
step_meanimpute . 102
step_medianimpute . 104
step_modeimpute . 105
step_mutate . 107
step_mutate_at . 109
step_naomit . 111
step_nnmf . 112
step_normalize . 114
step_novel . 116
step_ns . 118
step_num2factor . 120
step_nzv . 122
step_ordinalscore . 124
step_other . 126
step_pca . 128
step_pls . 131
step_poly . 134
step_profile . 136
step_range . 138
step_ratio . 140
step_regex . 142
step_relevel . 144
step_relu . 145
step_rename . 147
step_rename_at . 149
step_rm . 150
step_rollimpute . 152
step_sample . 154
step_scale . 155
step_shuffle . 157
step_slice . 158
step_spatialsign . 160
step_sqrt . 162
step_string2factor . 164
step_unknown . 165
step_unorder . 167
step_upsample . 169

4 bake

step_window . 171
step_YeoJohnson . 173
step_zv . 176
summary.recipe . 177
terms_select . 178
tidy.recipe . 179
update.step . 180

Index 182

add_step Add a New Operation to the Current Recipe

Description

add_step adds a step to the last location in the recipe. add_check does the same for checks.

Usage

add_step(rec, object)

add_check(rec, object)

Arguments

rec A recipe().

object A step or check object.

Value

A updated recipe() with the new operation in the last slot.

bake Apply a Trained Data Recipe

Description

For a recipe with at least one preprocessing operations that has been trained by prep.recipe(),
apply the computations to new data.

Usage

bake(object, ...)

S3 method for class 'recipe'
bake(object, new_data = NULL, ..., composition = "tibble")

check_class 5

Arguments

object A trained object such as a recipe() with at least one preprocessing operation.

... One or more selector functions to choose which variables will be returned by
the function. See selections() for more details. If no selectors are given, the
default is to use everything().

new_data A data frame or tibble for whom the preprocessing will be applied.

composition Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).

Details

bake() takes a trained recipe and applies the operations to a data set to create a design matrix.

If the original data used to train the data are to be processed, time can be saved by using the retain
= TRUE option of prep() to avoid duplicating the same operations. With this option set, juice()
can be used instead of bake with new_data equal to the training set.

Also, any steps with skip = TRUE will not be applied to the data when bake is invoked. juice()
will always have all of the steps applied.

Value

A tibble, matrix, or sparse matrix that may have different columns than the original columns in
new_data.

Author(s)

Max Kuhn

See Also

recipe(), juice(), prep()

check_class Check Variable Class

Description

check_class creates a specification of a recipe check that will check if a variable is of a designated
class.

6 check_class

Usage

check_class(
recipe,
...,
role = NA,
trained = FALSE,
class_nm = NULL,
allow_additional = FALSE,
skip = FALSE,
class_list = NULL,
id = rand_id("class")

)

S3 method for class 'check_class'
tidy(x, ...)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
check. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this check since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

class_nm A character vector that will be used in inherits to check the class. If NULL the
classes will be learned in prep. Can contain more than one class.

allow_additional

If TRUE a variable is allowed to have additional classes to the one(s) that are
checked.

skip A logical. Should the check be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

class_list A named list of column classes. This is NULL until computed by prep.recipe().

id A character string that is unique to this step to identify it.

x A check_class object.

Details

This function can check the classes of the variables in two ways. When the class argument is
provided it will check if all the variables specified are of the given class. If this argument is NULL,
the check will learn the classes of each of the specified variables in prep. Both ways will break
bake if the variables are not of the requested class. If a variable has multiple classes in prep, all the
classes are checked. Please note that in prep the argument strings_as_factors defaults to TRUE.

check_class 7

If the train set contains character variables the check will be break bake when strings_as_factors
is TRUE.

Value

An updated version of recipe with the new check added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the type).

See Also

recipe() prep.recipe() bake.recipe()

Examples

library(dplyr)
library(modeldata)
data(okc)

Learn the classes on the train set
train <- okc[1:1000,]
test <- okc[1001:2000,]
recipe(train, age ~ .) %>%

check_class(everything()) %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)

Manual specification
recipe(train, age ~ .) %>%

check_class(age, class_nm = "integer") %>%
check_class(diet, location, class_nm = "character") %>%
check_class(date, class_nm = "Date") %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)

By default only the classes that are specified
are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time %>% class()
Not run:
recipe(x_df) %>%

check_class(time, class_nm = "POSIXt") %>%
prep(x_df) %>%
bake_(x_df)

End(Not run)

Use allow_additional = TRUE if you are fine with it
recipe(x_df) %>%

check_class(time, class_nm = "POSIXt", allow_additional = TRUE) %>%
prep(x_df) %>%
bake(x_df)

8 check_cols

check_cols Check if all Columns are Present

Description

check_cols creates a specification of a recipe step that will check if all the columns of the training
frame are present in the new data.

Usage

check_cols(
recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("cols")

)

S3 method for class 'check_cols'
tidy(x, ...)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are checked in the
check See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

skip A logical. Should the check be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A check_cols object.

Details

This check will break the bake function if any of the specified columns is not present in the data. If
the check passes, nothing is changed to the data.

check_missing 9

Examples

library(modeldata)
data(biomass)

biomass_rec <- recipe(HHV ~ ., data = biomass) %>%
step_rm(sample, dataset) %>%
check_cols(contains("gen")) %>%
step_center(all_predictors())

Not run:
bake(biomass_rec, biomass[, c("carbon", "HHV")])

End(Not run)

check_missing Check for Missing Values

Description

check_missing creates a a specification of a recipe operation that will check if variables contain
missing values.

Usage

check_missing(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("missing")

)

S3 method for class 'check_missing'
tidy(x, ...)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are checked in the
check See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

10 check_missing

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the check be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A check_missing object.

Details

This check will break the bake function if any of the checked columns does contain NA values. If
the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of existing operations (if
any). For the tidy method, a tibble with columns terms (the selectors or variables selected).

Examples

library(modeldata)
data(credit_data)
is.na(credit_data) %>% colSums()

If the test passes, `new_data` is returned unaltered
recipe(credit_data) %>%

check_missing(Age, Expenses) %>%
prep() %>%
bake(credit_data)

If your training set doesn't pass, prep() will stop with an error

Not run:
recipe(credit_data) %>%

check_missing(Income) %>%
prep()

End(Not run)

If `new_data` contain missing values, the check will stop bake()

train_data <- credit_data %>% dplyr::filter(Income > 150)
test_data <- credit_data %>% dplyr::filter(Income <= 150 | is.na(Income))

rp <- recipe(train_data) %>%
check_missing(Income) %>%
prep()

bake(rp, train_data)

check_new_values 11

Not run:
bake(rp, test_data)

End(Not run)

check_new_values Check for New Values

Description

check_new_values creates a a specification of a recipe operation that will check if variables contain
new values.

Usage

check_new_values(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
ignore_NA = TRUE,
values = NULL,
skip = FALSE,
id = rand_id("new_values")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are checked in the
check. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this check since no new variables are created.
trained A logical for whether the selectors in ... have been resolved by prep().
columns A character string of variable names that will be populated (eventually) by the

terms argument.
ignore_NA A logical that indicates if we should consider missing values as value or not.

Defaults to TRUE.
values A named list with the allowed values. This is NULL until computed by prep.recipe().
skip A logical. Should the check be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

12 check_range

Details

This check will break the bake function if any of the checked columns does contain values it did
not contain when prep was called on the recipe. If the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of existing operations (if
any). For the tidy method, a tibble with columns terms (the selectors or variables selected).

Examples

library(modeldata)
data(credit_data)

If the test passes, `new_data` is returned unaltered
recipe(credit_data) %>%

check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)

If `new_data` contains values not in `x` at the `prep()` function,
the `bake()` function will break.
Not run:
recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%

check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)

End(Not run)

By default missing values are ignored, so this passes.
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%

check_new_values(Home) %>%
prep() %>%
bake(credit_data)

Use `ignore_NA = FALSE` if you consider missing values as a value,
that should not occur when not observed in the train set.
Not run:
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%

check_new_values(Home, ignore_NA = FALSE) %>%
prep() %>%
bake(credit_data)

End(Not run)

check_range Check Range Consistency

check_range 13

Description

check_range creates a specification of a recipe check that will check if the range of a numeric
variable changed in the new data.

Usage

check_range(
recipe,
...,
role = NA,
skip = FALSE,
trained = FALSE,
slack_prop = 0.05,
warn = FALSE,
lower = NULL,
upper = NULL,
id = rand_id("range_check_")

)

S3 method for class 'check_range'
tidy(x, ...)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
check. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this check since no new variables are created.

skip A logical. Should the check be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

trained A logical to indicate if the quantities for preprocessing have been estimated.

slack_prop The allowed slack as a proportion of the range of the variable in the train set.

warn If TRUE the check will throw a warning instead of an error when failing.

lower A named numeric vector of minimum values in the train set. This is NULL until
computed by prep.recipe().

upper A named numeric vector of maximum values in the train set. This is NULL until
computed by prep.recipe().

id A character string that is unique to this step to identify it.

x A check_range object.

14 check_range

Details

The amount of slack that is allowed is determined by the slack_prop. This is a numeric of length
one or two. If of length one, the same proportion will be used at both ends of the train set range.
If of length two, its first value is used to compute the allowed slack at the lower end, the second to
compute the allowed slack at the upper end.

Value

An updated version of recipe with the new check added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the means).

See Also

recipe() prep.recipe() bake.recipe()

Examples

slack_df <- data_frame(x = 0:100)
slack_new_data <- data_frame(x = -10:110)

this will fail the check both ends
Not run:

recipe(slack_df) %>%
check_range(x) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

this will fail the check only at the upper end
Not run:

recipe(slack_df) %>%
check_range(x, slack_prop = c(0.1, 0.05)) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

give a warning instead of an error
Not run:

recipe(slack_df) %>%
check_range(x, warn = TRUE) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

detect_step 15

detect_step Detect if a particular step or check is used in a recipe

Description

Detect if a particular step or check is used in a recipe

Usage

detect_step(recipe, name)

Arguments

recipe A recipe to check.

name Character name of a step or check, omitted the prefix. That is, to check if
step_intercept is present, use name = intercept.

Value

Logical indicating if recipes contains given step.

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_intercept()

detect_step(rec, "step_intercept")

discretize Discretize Numeric Variables

Description

discretize converts a numeric vector into a factor with bins having approximately the same num-
ber of data points (based on a training set).

Usage

discretize(x, ...)

Default S3 method:
discretize(x, ...)

S3 method for class 'numeric'
discretize(
x,

16 discretize

cuts = 4,
labels = NULL,
prefix = "bin",
keep_na = TRUE,
infs = TRUE,
min_unique = 10,
...

)

S3 method for class 'discretize'
predict(object, new_data, ...)

Arguments

x A numeric vector

... Options to pass to stats::quantile() that should not include x or probs.

cuts An integer defining how many cuts to make of the data.

labels A character vector defining the factor levels that will be in the new factor (from
smallest to largest). This should have length cuts+1 and should not include a
level for missing (see keep_na below).

prefix A single parameter value to be used as a prefix for the factor levels (e.g. bin1,
bin2, ...). If the string is not a valid R name, it is coerced to one.

keep_na A logical for whether a factor level should be created to identify missing values
in x.

infs A logical indicating whether the smallest and largest cut point should be infinite.

min_unique An integer defining a sample size line of dignity for the binning. If (the num-
ber of unique values)/(cuts+1) is less than min_unique, no discretization takes
place.

object An object of class discretize.

new_data A new numeric object to be binned.

Details

discretize estimates the cut points from x using percentiles. For example, if cuts = 3, the function
estimates the quartiles of x and uses these as the cut points. If cuts = 2, the bins are defined as being
above or below the median of x.

The predict method can then be used to turn numeric vectors into factor vectors.

If keep_na = TRUE, a suffix of "_missing" is used as a factor level (see the examples below).

If infs = FALSE and a new value is greater than the largest value of x, a missing value will result.

Value

discretize returns an object of class discretize and predict.discretize returns a factor vec-
tor.

formula.recipe 17

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

median(biomass_tr$carbon)
discretize(biomass_tr$carbon, cuts = 2)
discretize(biomass_tr$carbon, cuts = 2, infs = FALSE)
discretize(biomass_tr$carbon, cuts = 2, infs = FALSE, keep_na = FALSE)
discretize(biomass_tr$carbon, cuts = 2, prefix = "maybe a bad idea to bin")

carbon_binned <- discretize(biomass_tr$carbon)
table(predict(carbon_binned, biomass_tr$carbon))

carbon_no_infs <- discretize(biomass_tr$carbon, infs = FALSE)
predict(carbon_no_infs, c(50, 100))

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

rec <- rec %>% step_discretize(carbon, hydrogen)
rec <- prep(rec, biomass_tr)
binned_te <- bake(rec, biomass_te)
table(binned_te$carbon)

formula.recipe Create a Formula from a Prepared Recipe

Description

In case a model formula is required, the formula method can be used on a recipe to show what
predictors and outcome(s) could be used.

Usage

S3 method for class 'recipe'
formula(x, ...)

Arguments

x A recipe object where all steps have been prepared.

... Note currently used.

Value

A formula.

18 fully_trained

Examples

formula(recipe(Species + Sepal.Length ~ ., data = iris))

iris_rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric()) %>%
prep(training = iris)

formula(iris_rec)

fully_trained Check to see if a recipe is trained/prepared

Description

Check to see if a recipe is trained/prepared

Usage

fully_trained(x)

Arguments

x A recipe

Value

A logical which is true if all of the recipe steps have been run through prep. If no steps have been
added to the recipe, TRUE is returned.

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric())

rec %>% fully_trained

rec %>% prep(training = iris) %>% fully_trained

has_role 19

has_role Role Selection

Description

has_role(), all_predictors(), and all_outcomes() can be used to select variables in a formula
that have certain roles. Similarly, has_type(), all_numeric(), and all_nominal() are used to
select columns based on their data type.

See ?selections for more details.

current_info() is an internal function.

All of these functions have have limited utility outside of column selection in step functions.

Usage

has_role(match = "predictor")

all_predictors()

all_outcomes()

has_type(match = "numeric")

all_numeric()

all_nominal()

current_info()

Arguments

match A single character string for the query. Exact matching is used (i.e. regular
expressions won’t work).

Value

Selector functions return an integer vector.

current_info() returns an environment with objects vars and data.

Examples

library(modeldata)
data(biomass)

rec <- recipe(biomass) %>%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"

20 juice

) %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")

recipe_info <- summary(rec)
recipe_info

Centering on all predictors except carbon
rec %>%

step_center(all_predictors(), -carbon) %>%
prep(training = biomass) %>%
juice()

juice Extract Finalized Training Set

Description

As steps are estimated by prep, these operations are applied to the training set. Rather than running
bake to duplicate this processing, this function will return variables from the processed training set.

Usage

juice(object, ..., composition = "tibble")

Arguments

object A recipe object that has been prepared with the option retain = TRUE.
... One or more selector functions to choose which variables will be returned by

the function. See selections() for more details. If no selectors are given, the
default is to use everything().

composition Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).

Details

When preparing a recipe, if the training data set is retained using retain = TRUE, there is no need
to bake the recipe to get the preprocessed training set.

juice will return the results of a recipes where all steps have been applied to the data, irrespective
of the value of the step’s skip argument.

See Also

recipe() prep.recipe() bake.recipe()

names0 21

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

sp_signed <- rec %>%
step_normalize(all_predictors()) %>%
step_spatialsign(all_predictors())

sp_signed_trained <- prep(sp_signed, training = biomass_tr)

tr_values <- bake(sp_signed_trained, new_data = biomass_tr, all_predictors())
og_values <- juice(sp_signed_trained, all_predictors())

all.equal(tr_values, og_values)

names0 Naming Tools

Description

names0 creates a series of num names with a common prefix. The names are numbered with leading
zeros (e.g. prefix01-prefix10 instead of prefix1-prefix10). dummy_names can be used for
renaming unordered and ordered dummy variables (in step_dummy()).

Usage

names0(num, prefix = "x")

dummy_names(var, lvl, ordinal = FALSE, sep = "_")

Arguments

num A single integer for how many elements are created.

prefix A character string that will start each name.

var A single string for the original factor name.

lvl A character vectors of the factor levels (in order). When used with step_dummy(),
lvl would be the suffixes that result after model.matrix is called (see the ex-
ample below).

ordinal A logical; was the original factor ordered?

sep A single character value for the separator between the names and levels.

22 prep

Value

names0 returns a character string of length num and dummy_names generates a character vector the
same length as lvl,

Examples

names0(9, "x")
names0(10, "x")

example <- data.frame(y = ordered(letters[1:5]),
z = factor(LETTERS[1:5]))

dummy_names("z", levels(example$z)[-1])

after_mm <- colnames(model.matrix(~y, data = example))[-1]
after_mm
levels(example$y)

dummy_names("y", substring(after_mm, 2), ordinal = TRUE)

prep Train a Data Recipe

Description

For a recipe with at least one preprocessing operation, estimate the required parameters from a
training set that can be later applied to other data sets.

Usage

prep(x, ...)

S3 method for class 'recipe'
prep(
x,
training = NULL,
fresh = FALSE,
verbose = FALSE,
retain = TRUE,
strings_as_factors = TRUE,
...

)

Arguments

x an object

... further arguments passed to or from other methods (not currently used).

prepper 23

training A data frame or tibble that will be used to estimate parameters for preprocessing.

fresh A logical indicating whether already trained operation should be re-trained. If
TRUE, you should pass in a data set to the argument training.

verbose A logical that controls whether progress is reported as operations are executed.

retain A logical: should the preprocessed training set be saved into the template slot
of the recipe after training? This is a good idea if you want to add more steps
later but want to avoid re-training the existing steps. Also, it is advisable to
use retain = TRUE if any steps use the option skip = FALSE. Note that this can
make the final recipe size large. When verbose = TRUE, a message is written
with the approximate object size in memory but may be an underestimate since
it does not take environments into account.

strings_as_factors

A logical: should character columns be converted to factors? This affects the
preprocessed training set (when retain = TRUE) as well as the results of bake.recipe.

Details

Given a data set, this function estimates the required quantities and statistics required by any oper-
ations.

prep() returns an updated recipe with the estimates.

Note that missing data handling is handled in the steps; there is no global na.rm option at the
recipe-level or in prep().

Also, if a recipe has been trained using prep() and then steps are added, prep() will only update
the new operations. If fresh = TRUE, all of the operations will be (re)estimated.

As the steps are executed, the training set is updated. For example, if the first step is to center the
data and the second is to scale the data, the step for scaling is given the centered data.

Value

A recipe whose step objects have been updated with the required quantities (e.g. parameter esti-
mates, model objects, etc). Also, the term_info object is likely to be modified as the operations
are executed.

Author(s)

Max Kuhn

prepper Wrapper function for preparing recipes within resampling

Description

When working with the rsample package, a simple recipe must be prepared using the prep function
first. When using recipes with rsample it is helpful to have a function that can prepare a recipe
across a series of split objects that are produced in this package. prepper is a wrapper function
around prep that can be used to do this. See the vignette on "Recipes and rsample" for an example.

24 print.recipe

Usage

prepper(split_obj, recipe, ...)

Arguments

split_obj An rplit object

recipe An untrained recipe object.

... Arguments to pass to prep such as verbose or retain.

Details

prepper() sets the underlying prep() argument fresh to TRUE.

print.recipe Print a Recipe

Description

Print a Recipe

Usage

S3 method for class 'recipe'
print(x, form_width = 30, ...)

Arguments

x A recipe object

form_width The number of characters used to print the variables or terms in a formula

... further arguments passed to or from other methods (not currently used).

Value

The original object (invisibly)

Author(s)

Max Kuhn

recipe 25

recipe Create a Recipe for Preprocessing Data

Description

A recipe is a description of what steps should be applied to a data set in order to get it ready for data
analysis.

Usage

recipe(x, ...)

Default S3 method:
recipe(x, ...)

S3 method for class 'data.frame'
recipe(x, formula = NULL, ..., vars = NULL, roles = NULL)

S3 method for class 'formula'
recipe(formula, data, ...)

S3 method for class 'matrix'
recipe(x, ...)

Arguments

x, data A data frame or tibble of the template data set (see below).

... Further arguments passed to or from other methods (not currently used).

formula A model formula. No in-line functions should be used here (e.g. log(x), x:y,
etc.) and minus signs are not allowed. These types of transformations should
be enacted using step functions in this package. Dots are allowed as are simple
multivariate outcome terms (i.e. no need for cbind; see Examples).

vars A character string of column names corresponding to variables that will be used
in any context (see below)

roles A character string (the same length of vars) that describes a single role that
the variable will take. This value could be anything but common roles are
"outcome", "predictor", "case_weight", or "ID"

Details

Recipes are alternative methods for creating design matrices and for preprocessing data.

Variables in recipes can have any type of role in subsequent analyses such as: outcome, predictor,
case weights, stratification variables, etc.

recipe objects can be created in several ways. If the analysis only contains outcomes and pre-
dictors, the simplest way to create one is to use a simple formula (e.g. y ~ x1 + x2) that does not
contain inline functions such as log(x3). An example is given below.

26 recipe

Alternatively, a recipe object can be created by first specifying which variables in a data set should
be used and then sequentially defining their roles (see the last example).

There are two different types of operations that can be sequentially added to a recipe. Steps can
include common operations like logging a variable, creating dummy variables or interactions and
so on. More computationally complex actions such as dimension reduction or imputation can also
be specified. Checks are operations that conduct specific tests of the data. When the test is satisfied,
the data are returned without issue or modification. Otherwise, any error is thrown.

Once a recipe has been defined, the prep() function can be used to estimate quantities required for
the operations using a data set (a.k.a. the training data). prep() returns another recipe.

To apply the recipe to a data set, the bake() function is used in the same manner as predict would
be for models. This applies the steps to any data set.

Note that the data passed to recipe need not be the complete data that will be used to train the steps
(by prep()). The recipe only needs to know the names and types of data that will be used. For
large data sets, head could be used to pass the recipe a smaller data set to save time and memory.

Value

An object of class recipe with sub-objects:

var_info A tibble containing information about the original data set columns

term_info A tibble that contains the current set of terms in the data set. This initially
defaults to the same data contained in var_info.

steps A list of step or check objects that define the sequence of preprocessing oper-
ations that will be applied to data. The default value is NULL

template A tibble of the data. This is initialized to be the same as the data given in the
data argument but can be different after the recipe is trained.

Author(s)

Max Kuhn

Examples

###
simple example:
library(modeldata)
data(biomass)

split data
biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

When only predictors and outcomes, a simplified formula can be used.
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,

data = biomass_tr)

Now add preprocessing steps to the recipe.

recipes 27

sp_signed <- rec %>%
step_normalize(all_predictors()) %>%
step_spatialsign(all_predictors())

sp_signed

now estimate required parameters
sp_signed_trained <- prep(sp_signed, training = biomass_tr)
sp_signed_trained

apply the preprocessing to a data set
test_set_values <- bake(sp_signed_trained, new_data = biomass_te)

or use pipes for the entire workflow:
rec <- biomass_tr %>%

recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur) %>%
step_normalize(all_predictors()) %>%
step_spatialsign(all_predictors())

###
multivariate example

no need for `cbind(carbon, hydrogen)` for left-hand side
multi_y <- recipe(carbon + hydrogen ~ oxygen + nitrogen + sulfur,

data = biomass_tr)
multi_y <- multi_y %>%

step_center(all_outcomes()) %>%
step_scale(all_predictors())

multi_y_trained <- prep(multi_y, training = biomass_tr)

results <- bake(multi_y_trained, biomass_te)

###
Creating a recipe manually with different roles

rec <- recipe(biomass_tr) %>%
update_role(carbon, hydrogen, oxygen, nitrogen, sulfur,

new_role = "predictor") %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")

rec

recipes recipes: A package for computing and preprocessing design matrices.

Description

The recipes package can be used to create design matrices for modeling and to conduct prepro-
cessing of variables. It is meant to be a more extensive framework that R’s formula method. Some
differences between simple formula methods and recipes are that

28 roles

1. Variables can have arbitrary roles in the analysis beyond predictors and outcomes.

2. A recipe consists of one or more steps that define actions on the variables.

3. Recipes can be defined sequentially using pipes as well as being modifiable and extensible.

Basic Functions

The three main functions are recipe(), prep(), and bake().

recipe() defines the operations on the data and the associated roles. Once the preprocessing steps
are defined, any parameters are estimated using prep(). Once the data are ready for transformation,
the bake() function applies the operations.

Step Functions

These functions are used to add new actions to the recipe and have the naming convention "step_action".
For example, step_center() centers the data to have a zero mean and step_dummy() is used to
create dummy variables.

roles Manually Alter Roles

Description

update_role() alters an existing role in the recipe or assigns an initial role to variables that do not
yet have a declared role.

add_role() adds an additional role to variables that already have a role in the recipe. It does not
overwrite old roles, as a single variable can have multiple roles.

remove_role() eliminates a single existing role in the recipe.

Usage

add_role(recipe, ..., new_role = "predictor", new_type = NULL)

update_role(recipe, ..., new_role = "predictor", old_role = NULL)

remove_role(recipe, ..., old_role)

Arguments

recipe An existing recipe().

... One or more selector functions to choose which variables are being assigned a
role. See selections() for more details.

new_role A character string for a single role.

new_type A character string for specific type that the variable should be identified as. If
left as NULL, the type is automatically identified as the first type you see for that
variable in summary(recipe).

roles 29

old_role A character string for the specific role to update for the variables selected by
.... update_role() accepts a NULL as long as the variables have only a single
role.

Details

update_role() should be used when a variable doesn’t currently have a role in the recipe, or to
replace an old_role with a new_role. add_role() only adds additional roles to variables that
already have roles and will throw an error when the current role is missing (i.e. NA).

When using add_role(), if a variable is selected that already has the new_role, a warning is
emitted and that variable is skipped so no duplicate roles are added.

Adding or updating roles is a useful way to group certain variables that don’t fall in the standard
"predictor" bucket. You can perform a step on all of the variables that have a custom role with
the selector has_role().

Value

An updated recipe object.

Examples

library(recipes)
library(modeldata)
data(biomass)

Using the formula method, roles are created for any outcomes and predictors:
recipe(HHV ~ ., data = biomass) %>%

summary()

However `sample` and `dataset` aren't predictors. Since they already have
roles, `update_role()` can be used to make changes:
recipe(HHV ~ ., data = biomass) %>%

update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting variable") %>%
summary()

`update_role()` cannot set a role to NA, use `remove_role()` for that
Not run:
recipe(HHV ~ ., data = biomass) %>%

update_role(sample, new_role = NA_character_)

End(Not run)

--

Variables can have more than one role. `add_role()` can be used
if the column already has at least one role:
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, sulfur, new_role = "something") %>%
summary()

30 selections

`update_role()` has an argument called `old_role` that is required to
unambiguously update a role when the column currently has multiple roles.
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
update_role(carbon, new_role = "something else", old_role = "something") %>%
summary()

`carbon` has two roles at the end, so the last `update_roles()` fails since
`old_role` was not given.
Not run:
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, sulfur, new_role = "something") %>%
update_role(carbon, new_role = "something else")

End(Not run)

--

To remove a role, `remove_role()` can be used to remove a single role.
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
remove_role(carbon, old_role = "something") %>%
summary()

To remove all roles, call `remove_role()` multiple times to reset to `NA`
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
remove_role(carbon, old_role = "something") %>%
remove_role(carbon, old_role = "predictor") %>%
summary()

--

If the formula method is not used, all columns have a missing role:
recipe(biomass) %>%

summary()

selections Methods for Select Variables in Step Functions

Description

When selecting variables or model terms in step functions, dplyr-like tools are used. The selector
functions can choose variables based on their name, current role, data type, or any combination of
these. The selectors are passed as any other argument to the step. If the variables are explicitly
stated in the step function, this might be similar to:

recipe(~ ., data = USArrests) %>%
step_pca(Murder, Assault, UrbanPop, Rape, num = 3)

selections 31

The first four arguments indicate which variables should be used in the PCA while the last argument
is a specific argument to step_pca().

Note that:

1. The selector arguments should not contain functions beyond those supported (see below).
2. These arguments are not evaluated until the prep function for the step is executed.
3. The dplyr-like syntax allows for negative signs to exclude variables (e.g. -Murder) and the

set of selectors will processed in order.
4. A leading exclusion in these arguments (e.g. -Murder) has the effect of adding all variables

to the list except the excluded variable(s).

Also, select helpers from the tidyselect package can also be used: tidyselect::starts_with(),
tidyselect::ends_with(), tidyselect::contains(), tidyselect::matches(), tidyselect::num_range(),
tidyselect::everything(), tidyselect::one_of(), tidyselect::all_of(), and tidyselect::any_of()
For example:

recipe(Species ~ ., data = iris) %>%
step_center(starts_with("Sepal"), -contains("Width"))

would only select Sepal.Length

Inline functions that specify computations, such as log(x), should not be used in selectors and will
produce an error. A list of allowed selector functions is below.

Columns of the design matrix that may not exist when the step is coded can also be selected. For
example, when using step_pca, the number of columns created by feature extraction may not be
known when subsequent steps are defined. In this case, using matches("^PC") will select all of the
columns whose names start with "PC" once those columns are created.

There are sets of functions that can be used to select variables based on their role or type: has_role()
and has_type(). For convenience, there are also functions that are more specific: all_numeric(),
all_nominal(), all_predictors(), and all_outcomes(). These can be used in conjunction
with the previous functions described for selecting variables using their names:

data(biomass)
recipe(HHV ~ ., data = biomass) %>%
step_center(all_numeric(), -all_outcomes())

This results in all the numeric predictors: carbon, hydrogen, oxygen, nitrogen, and sulfur.

If a role for a variable has not been defined, it will never be selected using role-specific selectors.

Selectors can be used in step_interact() in similar ways but must be embedded in a model
formula (as opposed to a sequence of selectors). For example, the interaction specification could
be ~ starts_with("Species"):Sepal.Width. This can be useful if Species was converted to
dummy variables previously using step_dummy().

The complete list of allowable functions in steps:

• By name: tidyselect::starts_with(), tidyselect::ends_with(), tidyselect::contains(),
tidyselect::matches(), tidyselect::num_range(), tidyselect::everything()

• By role: has_role(), all_predictors(), and all_outcomes()

• By type: has_type(), all_numeric(), and all_nominal()

32 step_arrange

step_arrange Sort rows using dplyr

Description

step_arrange creates a specification of a recipe step that will sort rows using dplyr::arrange().

Usage

step_arrange(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("arrange")

)

S3 method for class 'step_arrange'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Comma separated list of unquoted variable names. Use desc()`` to sort a vari-
able in descending order. See [dplyr::arrange()] for more details. For the tidy‘
method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_arrange object

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

step_bagimpute 33

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which contains the sorting variable(s) or expres-
sion(s). The expressions are text representations and are not parsable.

Examples

rec <- recipe(~ ., data = iris) %>%
step_arrange(desc(Sepal.Length), 1/Petal.Length)

prepped <- prep(rec, training = iris %>% slice(1:75))
tidy(prepped, number = 1)

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
dplyr::arrange(desc(Sepal.Length), 1/Petal.Length)

rec_train <- juice(prepped)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
dplyr::arrange(desc(Sepal.Length), 1/Petal.Length)

rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

When you have variables/expressions, you can create a
list of symbols with `rlang::syms()`` and splice them in
the call with `!!!`. See https://tidyeval.tidyverse.org

sort_vars <- c("Sepal.Length", "Petal.Length")

qq_rec <-
recipe(~ ., data = iris) %>%
Embed the `values` object in the call using !!!
step_arrange(!!!syms(sort_vars)) %>%
prep(training = iris)

tidy(qq_rec, number = 1)

step_bagimpute Imputation via Bagged Trees

34 step_bagimpute

Description

step_bagimpute creates a specification of a recipe step that will create bagged tree models to
impute missing data.

Usage

step_bagimpute(
recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
trees = 25,
models = NULL,
options = list(keepX = FALSE),
seed_val = sample.int(10^4, 1),
skip = FALSE,
id = rand_id("bagimpute")

)

imp_vars(...)

S3 method for class 'step_bagimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_bagimpute, this
indicates the variables to be imputed. When used with imp_vars, the dots indi-
cates which variables are used to predict the missing data in each variable. See
selections() for more details. For the tidy method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

impute_with A call to imp_vars to specify which variables are used to impute the variables
that can include specific variable names separated by commas or different selec-
tors (see selections()). If a column is included in both lists to be imputed and
to be an imputation predictor, it will be removed from the latter and not used to
impute itself.

trees An integer for the number bagged trees to use in each model.

models The ipred::ipredbagg() objects are stored here once this bagged trees have
be trained by prep.recipe().

options A list of options to ipred::ipredbagg(). Defaults are set for the arguments
nbagg and keepX but others can be passed in. Note that the arguments X and y
should not be passed here.

step_bagimpute 35

seed_val A integer used to create reproducible models. The same seed is used across all
imputation models.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_bagimpute object.

Details

For each variables requiring imputation, a bagged tree is created where the outcome is the vari-
able of interest and the predictors are any other variables listed in the impute_with formula. One
advantage to the bagged tree is that is can accept predictors that have missing values themselves.
This imputation method can be used when the variable of interest (and predictors) are numeric or
categorical. Imputed categorical variables will remain categorical. Also, integers will be imputed
to integer too.

Note that if a variable that is to be imputed is also in impute_with, this variable will be ignored.

It is possible that missing values will still occur after imputation if a large majority (or all) of the
imputing variables are also missing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and model
(the bagged tree object).

References

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer Verlag.

Examples

library(modeldata)
data("credit_data")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)
Not run:

36 step_bin2factor

impute_rec <- rec %>%
step_bagimpute(Status, Home, Marital, Job, Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

Specifying which variables to imputate with

impute_rec <- rec %>%
step_bagimpute(Status, Home, Marital, Job, Income, Assets, Debt,

impute_with = imp_vars(Time, Age, Expenses),
for quick execution, nbagg lowered
options = list(nbagg = 5, keepX = FALSE))

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

End(Not run)

step_bin2factor Create a Factors from A Dummy Variable

Description

step_bin2factor creates a specification of a recipe step that will create a two-level factor from a
single dummy variable.

Usage

step_bin2factor(
recipe,
...,
role = NA,
trained = FALSE,
levels = c("yes", "no"),
ref_first = TRUE,

step_bin2factor 37

columns = NULL,
skip = FALSE,
id = rand_id("bin2factor")

)

S3 method for class 'step_bin2factor'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Selector functions that choose which variables will be converted. See selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

levels A length 2 character string that indicate the factor levels for the 1’s (in the first
position) and the zeros (second)

ref_first Logical. Should the first level, which replaces 1’s, be the factor reference level?

columns A vector with the selected variable names. This is NULL until computed by
prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_bin2factor object.

Details

This operation may be useful for situations where a binary piece of information may need to be
represented as categorical instead of numeric. For example, naive Bayes models would do better to
have factor predictors so that the binomial distribution is modeled in stead of a Gaussian probability
density of numeric binary data. Note that the numeric data is only verified to be numeric (and does
not count levels).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected).

Examples

library(modeldata)
data(covers)

38 step_BoxCox

rec <- recipe(~ description, covers) %>%
step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
step_regex(description, pattern = "(rock|stony)", result = "more_rocks") %>%
step_bin2factor(rocks)

tidy(rec, number = 3)

rec <- prep(rec, training = covers)
results <- bake(rec, new_data = covers)

table(results$rocks, results$more_rocks)

tidy(rec, number = 3)

step_BoxCox Box-Cox Transformation for Non-Negative Data

Description

step_BoxCox creates a specification of a recipe step that will transform data using a simple Box-
Cox transformation.

Usage

step_BoxCox(
recipe,
...,
role = NA,
trained = FALSE,
lambdas = NULL,
limits = c(-5, 5),
num_unique = 5,
skip = FALSE,
id = rand_id("BoxCox")

)

S3 method for class 'step_BoxCox'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

step_BoxCox 39

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas A numeric vector of transformation values. This is NULL until computed by
prep.recipe().

limits A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

num_unique An integer where data that have less possible values will not be evaluate for a
transformation.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_BoxCox object.

Details

The Box-Cox transformation, which requires a strictly positive variable, can be used to rescale a
variable to be more similar to a normal distribution. In this package, the partial log-likelihood func-
tion is directly optimized within a reasonable set of transformation values (which can be changed
by the user).

This transformation is typically done on the outcome variable using the residuals for a statistical
model (such as ordinary least squares). Here, a simple null model (intercept only) is used to apply
the transformation to the predictor variables individually. This can have the effect of making the
variable distributions more symmetric.

If the transformation parameters are estimated to be very closed to the bounds, or if the optimization
fails, a value of NA is used and no transformation is applied.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

References

Sakia, R. M. (1992). The Box-Cox transformation technique: A review. The Statistician, 169-178..

See Also

step_YeoJohnson() recipe() prep.recipe() bake.recipe()

Examples

rec <- recipe(~ ., data = as.data.frame(state.x77))

40 step_bs

bc_trans <- step_BoxCox(rec, all_numeric())

bc_estimates <- prep(bc_trans, training = as.data.frame(state.x77))

bc_data <- bake(bc_estimates, as.data.frame(state.x77))

plot(density(state.x77[, "Illiteracy"]), main = "before")
plot(density(bc_data$Illiteracy), main = "after")

tidy(bc_trans, number = 1)
tidy(bc_estimates, number = 1)

step_bs B-Spline Basis Functions

Description

step_bs creates a specification of a recipe step that will create new columns that are basis expan-
sions of variables using B-splines.

Usage

step_bs(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = NULL,
degree = 3,
objects = NULL,
options = list(),
skip = FALSE,
id = rand_id("bs")

)

S3 method for class 'step_bs'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

step_bs 41

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created from
the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom.

degree Degree of polynomial spline (integer).

objects A list of splines::bs() objects created once the step has been trained.

options A list of options for splines::bs() which should not include x, degree, or df.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_bs object.

Details

step_bs can create new features from a single variable that enable fitting routines to model this
variable in a nonlinear manner. The extent of the possible nonlinearity is determined by the df,
degree, or knot arguments of splines::bs(). The original variables are removed from the data
and new columns are added. The naming convention for the new variables is varname_bs_1 and so
on.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected and
holiday.

See Also

step_poly() recipe() step_ns() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

with_splines <- rec %>%
step_bs(carbon, hydrogen)

with_splines <- prep(with_splines, training = biomass_tr)

42 step_center

expanded <- bake(with_splines, biomass_te)
expanded

step_center Centering numeric data

Description

step_center creates a specification of a recipe step that will normalize numeric data to have a
mean of zero.

Usage

step_center(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("center")

)

S3 method for class 'step_center'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
means A named numeric vector of means. This is NULL until computed by prep.recipe().
na_rm A logical value indicating whether NA values should be removed during compu-

tations.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_center object.

step_classdist 43

Details

Centering data means that the average of a variable is subtracted from the data. step_center esti-
mates the variable means from the data used in the training argument of prep.recipe. bake.recipe
then applies the centering to new data sets using these means.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the means).

See Also

recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

center_trans <- rec %>%
step_center(carbon, contains("gen"), -hydrogen)

center_obj <- prep(center_trans, training = biomass_tr)

transformed_te <- bake(center_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te

tidy(center_trans, number = 1)
tidy(center_obj, number = 1)

step_classdist Distances to Class Centroids

Description

step_classdist creates a specification of a recipe step that will convert numeric data into Maha-
lanobis distance measurements to the data centroid. This is done for each value of a categorical
class variable.

44 step_classdist

Usage

step_classdist(
recipe,
...,
class,
role = "predictor",
trained = FALSE,
mean_func = mean,
cov_func = cov,
pool = FALSE,
log = TRUE,
objects = NULL,
prefix = "classdist_",
skip = FALSE,
id = rand_id("classdist")

)

S3 method for class 'step_classdist'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

class A single character string that specifies a single categorical variable to be used as
the class.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that resulting distances will be used
as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
mean_func A function to compute the center of the distribution.
cov_func A function that computes the covariance matrix
pool A logical: should the covariance matrix be computed by pooling the data for all

of the classes?
log A logical: should the distances be transformed by the natural log function?
objects Statistics are stored here once this step has been trained by prep.recipe().
prefix A character string that defines the naming convention for new distance columns.

Defaults to "classdist_". See Details below.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

step_corr 45

id A character string that is unique to this step to identify it.

x A step_classdist object.

Details

step_classdist will create a new column for every unique value of the class variable. The
resulting variables will not replace the original values and by default have the prefix classdist_.
The naming format can be changed using the prefix argument.

Note that, by default, the default covariance function requires that each class should have at least as
many rows as variables listed in the terms argument. If pool = TRUE, there must be at least as many
data points are variables overall.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
centroid of the class), and class.

Examples

in case of missing data...
mean2 <- function(x) mean(x, na.rm = TRUE)

define naming convention
rec <- recipe(Species ~ ., data = iris) %>%

step_classdist(all_predictors(), class = "Species",
pool = FALSE, mean_func = mean2, prefix = "centroid_")

default naming
rec <- recipe(Species ~ ., data = iris) %>%

step_classdist(all_predictors(), class = "Species",
pool = FALSE, mean_func = mean2)

rec_dists <- prep(rec, training = iris)

dists_to_species <- bake(rec_dists, new_data = iris, everything())
on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("Species", dist_cols)]

tidy(rec, number = 1)
tidy(rec_dists, number = 1)

step_corr High Correlation Filter

46 step_corr

Description

step_corr creates a specification of a recipe step that will potentially remove variables that have
large absolute correlations with other variables.

Usage

step_corr(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.9,
use = "pairwise.complete.obs",
method = "pearson",
removals = NULL,
skip = FALSE,
id = rand_id("corr")

)

S3 method for class 'step_corr'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A value for the threshold of absolute correlation values. The step will try to
remove the minimum number of columns so that all the resulting absolute cor-
relations are less than this value.

use A character string for the use argument to the stats::cor() function.

method A character string for the method argument to the stats::cor() function.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep.recipe() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_corr object.

step_corr 47

Details

This step attempts to remove variables to keep the largest absolute correlation between the variables
less than threshold.

When a column has a single unique value, that column will be excluded from the correlation analy-
sis. Also, if the data set has sporadic missing values (and an inappropriate value of use is chosen),
some columns will also be excluded from the filter.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be removed.

Author(s)

Original R code for filtering algorithm by Dong Li, modified by Max Kuhn. Contributions by
Reynald Lescarbeau (for original in caret package). Max Kuhn for the step function.

See Also

step_nzv() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

set.seed(3535)
biomass$duplicate <- biomass$carbon + rnorm(nrow(biomass))

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
sulfur + duplicate,

data = biomass_tr)

corr_filter <- rec %>%
step_corr(all_predictors(), threshold = .5)

filter_obj <- prep(corr_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
round(abs(cor(biomass_tr[, c(3:7, 9)])), 2)
round(abs(cor(filtered_te)), 2)

tidy(corr_filter, number = 1)
tidy(filter_obj, number = 1)

48 step_count

step_count Create Counts of Patterns using Regular Expressions

Description

step_count creates a specification of a recipe step that will create a variable that counts instances
of a regular expression pattern in text.

Usage

step_count(
recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
normalize = FALSE,
options = list(),
result = make.names(pattern),
input = NULL,
skip = FALSE,
id = rand_id("count")

)

S3 method for class 'step_count'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... A single selector functions to choose which variable will be searched for the
pattern. The selector should resolve into a single variable. See selections()
for more details. For the tidy method, these are not currently used.

role For a variable created by this step, what analysis role should they be assigned?.
By default, the function assumes that the new dummy variable column created
by the original variable will be used as a predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

pattern A character string containing a regular expression (or character string for fixed
= TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible.

normalize A logical; should the integer counts be divided by the total number of characters
in the string?.

options A list of options to gregexpr() that should not include x or pattern.

step_cut 49

result A single character value for the name of the new variable. It should be a valid
column name.

input A single character value for the name of the variable being searched. This is
NULL until computed by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_count object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and result
(the new column name).

Examples

library(modeldata)
data(covers)

rec <- recipe(~ description, covers) %>%
step_count(description, pattern = "(rock|stony)", result = "rocks") %>%
step_count(description, pattern = "famil", normalize = TRUE)

rec2 <- prep(rec, training = covers)
rec2

count_values <- bake(rec2, new_data = covers)
count_values

tidy(rec, number = 1)
tidy(rec2, number = 1)

step_cut Cut a numeric variable into a factor

Description

step_cut() creates a specification of a recipe step that cuts a numeric variable into a factor based
on provided boundary values

50 step_cut

Usage

step_cut(
recipe,
...,
role = NA,
trained = FALSE,
breaks,
include_outside_range = FALSE,
skip = FALSE,
id = rand_id("cut")

)

S3 method for class 'step_cut'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
breaks A numeric vector with at least one cut point.
include_outside_range

Logical, indicating if values outside the range in the train set should be included
in the lowest or highest bucket. Defaults to FALSE, values outside the original
range will be set to NA.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_cut object.

Details

Unlike the base::cut() function there is no need to specify the min and the max values in the
breaks. All values before the lowest break point will end up in the first bucket, all values after the
last break points will end up in the last.

step_cut() will call base::cut() in the baking step with include.lowest set to TRUE.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

step_date 51

Examples

df <- data.frame(x = 1:10, y = 5:14)
rec <- recipe(df)

The min and max of the variable are used as boundaries
if they exceed the breaks
rec %>%

step_cut(x, breaks = 5) %>%
prep() %>%
bake(df)

You can use the same breaks on multiple variables
then for each variable the boundaries are set separately
rec %>%

step_cut(x, y, breaks = c(6, 9)) %>%
prep() %>%
bake(df)

It is up to you if you want values outside the
range learned at prep to be included
new_df <- data.frame(x = 1:11)
rec %>%

step_cut(x, breaks = 5, include_outside_range = TRUE) %>%
prep() %>%
bake(new_df)

rec %>%
step_cut(x, breaks = 5, include_outside_range = FALSE) %>%
prep() %>%
bake(new_df)

step_date Date Feature Generator

Description

step_date creates a a specification of a recipe step that will convert date data into one or more
factor or numeric variables.

Usage

step_date(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,

52 step_date

ordinal = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("date")

)

S3 method for class 'step_date'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used
to create the new variables. The selected variables should have class Date or
POSIXct. See selections() for more details. For the tidy method, these are
not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

features A character string that includes at least one of the following values: month, dow
(day of week), doy (day of year), week, month, decimal (decimal date, e.g.
2002.197), quarter, semester, year.

abbr A logical. Only available for features month or dow. FALSE will display the
day of the week as an ordered factor of character strings, such as "Sunday".
TRUE will display an abbreviated version of the label, such as "Sun". abbr is
disregarded if label = FALSE.

label A logical. Only available for features month or dow. TRUE will display the day
of the week as an ordered factor of character strings, such as "Sunday." FALSE
will display the day of the week as a number.

ordinal A logical: should factors be ordered? Only available for features month or dow.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once prep.recipe() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_date object.

Details

Unlike other steps, step_date does not remove the original date variables. step_rm() can be used
for this purpose.

step_depth 53

Value

For step_date, an updated version of recipe with the new step added to the sequence of exist-
ing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names), and ordinal (a logical).

See Also

step_holiday() step_rm() recipe() prep.recipe() bake.recipe()

Examples

library(lubridate)

examples <- data.frame(Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10))

date_rec <- recipe(~ Dan + Stefan, examples) %>%
step_date(all_predictors())

tidy(date_rec, number = 1)

date_rec <- prep(date_rec, training = examples)

date_values <- bake(date_rec, new_data = examples)
date_values

tidy(date_rec, number = 1)

step_depth Data Depths

Description

step_depth creates a a specification of a recipe step that will convert numeric data into measure-
ment of data depth. This is done for each value of a categorical class variable.

Usage

step_depth(
recipe,
...,
class,
role = "predictor",
trained = FALSE,
metric = "halfspace",
options = list(),
data = NULL,
prefix = "depth_",

54 step_depth

skip = FALSE,
id = rand_id("depth")

)

S3 method for class 'step_depth'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used to
create the new features. See selections() for more details. For the tidy
method, these are not currently used.

class A single character string that specifies a single categorical variable to be used as
the class.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that resulting depth estimates will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

metric A character string specifying the depth metric. Possible values are "potential",
"halfspace", "Mahalanobis", "simplicialVolume", "spatial", and "zonoid".

options A list of options to pass to the underlying depth functions. See ddalpha::depth.halfspace(),
ddalpha::depth.Mahalanobis(), ddalpha::depth.potential(), ddalpha::depth.projection(),
ddalpha::depth.simplicial(), ddalpha::depth.simplicialVolume(), ddalpha::depth.spatial(),
ddalpha::depth.zonoid().

data The training data are stored here once after prep.recipe() is executed.

prefix A character string that defines the naming convention for new depth columns.
Defaults to "depth_". See Details below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_depth object.

Details

Data depth metrics attempt to measure how close data a data point is to the center of its distribution.
There are a number of methods for calculating death but a simple example is the inverse of the
distance of a data point to the centroid of the distribution. Generally, small values indicate that a
data point not close to the centroid. step_depth can compute a class-specific depth for a new data
point based on the proximity of the new value to the training set distribution.

This step requires the ddalpha package. If not installed, the step will stop with a note about in-
stalling the package.

step_discretize 55

Note that the entire training set is saved to compute future depth values. The saved data have been
trained (i.e. prepared) and baked (i.e. processed) up to the point before the location that step_depth
occupies in the recipe. Also, the data requirements for the different step methods may vary. For
example, using metric = "Mahalanobis" requires that each class should have at least as many rows
as variables listed in the terms argument.

The function will create a new column for every unique value of the class variable. The resulting
variables will not replace the original values and by default have the prefix depth_. The naming
format can be changed using the prefix argument.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and class.

Examples

halfspace depth is the default
rec <- recipe(Species ~ ., data = iris) %>%

step_depth(all_predictors(), class = "Species")

use zonoid metric instead
also, define naming convention for new columns
rec <- recipe(Species ~ ., data = iris) %>%

step_depth(all_predictors(), class = "Species",
metric = "zonoid", prefix = "zonoid_")

rec_dists <- prep(rec, training = iris)

dists_to_species <- bake(rec_dists, new_data = iris)
dists_to_species

tidy(rec, number = 1)
tidy(rec_dists, number = 1)

step_discretize Discretize Numeric Variables

Description

step_discretize creates a a specification of a recipe step that will convert numeric data into a
factor with bins having approximately the same number of data points (based on a training set).

Usage

step_discretize(
recipe,
...,
role = NA,

56 step_discretize

trained = FALSE,
num_breaks = 4,
min_unique = 10,
objects = NULL,
options = list(),
skip = FALSE,
id = rand_id("discretize")

)

S3 method for class 'step_discretize'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... For step_discretize, the dots specify one or more selector functions to choose
which variables are affected by the step. See selections() for more details.
For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_breaks An integer defining how many cuts to make of the data.

min_unique An integer defining a sample size line of dignity for the binning. If (the num-
ber of unique values)/(cuts+1) is less than min_unique, no discretization takes
place.

objects The discretize() objects are stored here once the recipe has be trained by
prep.recipe().

options A list of options to discretize(). A defaults is set for the argument x. Note
that the using the options prefix and labels when more than one variable is
being transformed might be problematic as all variables inherit those values.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_discretize object

Value

step_discretize returns an updated version of recipe with the new step added to the sequence of
existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected) and value (the breaks).

step_downsample 57

step_downsample Down-Sample a Data Set Based on a Factor Variable

Description

step_downsample is now available as themis::step_downsample(). This function creates a spec-
ification of a recipe step that will remove rows of a data set to make the occurrence of levels in a
specific factor level equal.

Usage

step_downsample(
recipe,
...,
under_ratio = 1,
ratio = NA,
role = NA,
trained = FALSE,
column = NULL,
target = NA,
skip = TRUE,
seed = sample.int(10^5, 1),
id = rand_id("downsample")

)

S3 method for class 'step_downsample'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variable is used to sample the
data. See selections() for more details. The selection should result in single
factor variable. For the tidy method, these are not currently used.

under_ratio A numeric value for the ratio of the minority-to-majority frequencies. The de-
fault value (1) means that all other levels are sampled down to have the same
frequency as the least occurring level. A value of 2 would mean that the ma-
jority levels will have (at most) (approximately) twice as many rows than the
minority level.

ratio Deprecated argument; same as under_ratio

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

column A character string of the variable name that will be populated (eventually) by
the ... selectors.

58 step_downsample

target An integer that will be used to subsample. This should not be set by the user and
will be populated by prep.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

seed An integer that will be used as the seed when downsampling.

id A character string that is unique to this step to identify it.

x A step_downsample object.

Details

Down-sampling is intended to be performed on the training set alone. For this reason, the default
is skip = TRUE. It is advisable to use prep(recipe,retain = TRUE) when preparing the recipe; in
this way juice() can be used to obtain the down-sampled version of the data.

If there are missing values in the factor variable that is used to define the sampling, missing data are
selected at random in the same way that the other factor levels are sampled. Missing values are not
used to determine the amount of data in the minority level

For any data with factor levels occurring with the same frequency as the minority level, all data will
be retained.

All columns in the data are sampled and returned by juice() and bake().

Keep in mind that the location of down-sampling in the step may have effects. For example, if
centering and scaling, it is not clear whether those operations should be conducted before or after
rows are removed.

When used in modeling, users should strongly consider using the option skip = TRUE so that the
extra sampling is not conducted outside of the training set.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the variable used to sample.

Examples

library(modeldata)
data(okc)

sort(table(okc$diet, useNA = "always"))

ds_rec <- recipe(~ ., data = okc) %>%
step_downsample(diet) %>%
prep(training = okc)

table(juice(ds_rec)$diet, useNA = "always")

since `skip` defaults to TRUE, baking the step has no effect

step_dummy 59

baked_okc <- bake(ds_rec, new_data = okc)
table(baked_okc$diet, useNA = "always")

step_dummy Dummy Variables Creation

Description

step_dummy creates a a specification of a recipe step that will convert nominal data (e.g. character
or factors) into one or more numeric binary model terms for the levels of the original data.

Usage

step_dummy(
recipe,
...,
role = "predictor",
trained = FALSE,
one_hot = FALSE,
preserve = FALSE,
naming = dummy_names,
levels = NULL,
skip = FALSE,
id = rand_id("dummy")

)

S3 method for class 'step_dummy'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which factor variables will be used to
create the dummy variables. See selections() for more details. The selected
variables must be factors. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the binary dummy variable columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

one_hot A logical. For C levels, should C dummy variables be created rather than C-1?

preserve A single logical; should the selected column(s) be retained (in addition to the
new dummy variables).

naming A function that defines the naming convention for new dummy columns. See
Details below.

60 step_dummy

levels A list that contains the information needed to create dummy variables for each
variable contained in terms. This is NULL until the step is trained by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_dummy object.

Details

step_dummy will create a set of binary dummy variables from a factor variable. For example, if an
unordered factor column in the data set has levels of "red", "green", "blue", the dummy variable
bake will create two additional columns of 0/1 data for two of those three values (and remove the
original column). For ordered factors, polynomial contrasts are used to encode the numeric values.

By default, the excluded dummy variable (i.e. the reference cell) will correspond to the first level
of the unordered factor being converted.

The function allows for non-standard naming of the resulting variables. For an unordered factor
named x, with levels "a" and "b", the default naming convention would be to create a new variable
called x_b. Note that if the factor levels are not valid variable names (e.g. "some text with spaces"),
it will be changed by base::make.names() to be valid (see the example below). The naming
format can be changed using the naming argument and the function dummy_names() is the default.
This function will also change the names of ordinal dummy variables. Instead of values such as
".L", ".Q", or "^4", ordinal dummy variables are given simple integer suffixes such as "_1", "_2",
etc.

To change the type of contrast being used, change the global contrast option via options.

When the factor being converted has a missing value, all of the corresponding dummy variables are
also missing.

When data to be processed contains novel levels (i.e., not contained in the training set), a missing
value is assigned to the results. See step_other() for an alternative.

If no columns are selected (perhaps due to an earlier step_zv()), the bake() and juice() functions
will return the data as-is (e.g. with no dummy variables).

The package vignette for dummy variables and interactions has more information.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or original variables selected) and
columns (the list of corresponding binary columns).

See Also

step_factor2string(), step_string2factor(), dummy_names(), step_regex(), step_count(),
step_ordinalscore(), step_unorder(), step_other() step_novel()

https://tidymodels.github.io/recipes/articles/Dummies.html

step_factor2string 61

Examples

library(modeldata)
data(okc)
okc <- okc[complete.cases(okc),]

rec <- recipe(~ diet + age + height, data = okc)

dummies <- rec %>% step_dummy(diet)
dummies <- prep(dummies, training = okc)

dummy_data <- bake(dummies, new_data = okc)

unique(okc$diet)
grep("^diet", names(dummy_data), value = TRUE)

Obtain the full set of dummy variables using `one_hot` option
rec %>%

step_dummy(diet, one_hot = TRUE) %>%
prep(training = okc) %>%
juice(starts_with("diet")) %>%
names() %>%
length()

length(unique(okc$diet))

Without one_hot
length(grep("^diet", names(dummy_data), value = TRUE))

tidy(dummies, number = 1)

step_factor2string Convert Factors to Strings

Description

step_factor2string will convert one or more factor vectors to strings.

Usage

step_factor2string(
recipe,
...,
role = NA,
trained = FALSE,
columns = FALSE,
skip = FALSE,
id = rand_id("factor2string")

)

62 step_factor2string

S3 method for class 'step_factor2string'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will converted to
strings See selections() for more details. For the tidy method, these are
not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be converted. This is NULL until com-
puted by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_factor2string object.

Details

prep has an option strings_as_factors that defaults to TRUE. If this step is used with the default
option, the string(s() produced by this step will be converted to factors after all of the steps have
been prepped.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected).

See Also

step_string2factor() step_dummy()

Examples

library(modeldata)
data(okc)

rec <- recipe(~ diet + location, data = okc)

rec <- rec %>%
step_string2factor(diet)

step_filter 63

factor_test <- rec %>%
prep(training = okc,

strings_as_factors = FALSE) %>%
juice

diet is a
class(factor_test$diet)

rec <- rec %>%
step_factor2string(diet)

string_test <- rec %>%
prep(training = okc,

strings_as_factors = FALSE) %>%
juice

diet is a
class(string_test$diet)

tidy(rec, number = 1)

step_filter Filter rows using dplyr

Description

step_filter creates a specification of a recipe step that will remove rows using dplyr::filter().

Usage

step_filter(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("filter")

)

S3 method for class 'step_filter'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Logical predicates defined in terms of the variables in the data. Multiple condi-
tions are combined with &. Only rows where the condition evaluates to TRUE are
kept. See dplyr::filter() for more details. For the tidy method, these are
not currently used.

64 step_filter

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = FALSE; in most instances
that affect the rows of the data being predicted, this step probably should not be
applied.

id A character string that is unique to this step to identify it.

x A step_filter object

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms which contains the conditional statements. These
expressions are text representations and are not parsable.

Examples

rec <- recipe(~ ., data = iris) %>%
step_filter(Sepal.Length > 4.5, Species == "setosa")

prepped <- prep(rec, training = iris %>% slice(1:75))

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
dplyr::filter(Sepal.Length > 4.5, Species == "setosa")

rec_train <- juice(prepped)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
dplyr::filter(Sepal.Length > 4.5, Species != "setosa")

rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

step_geodist 65

values <- c("versicolor", "virginica")

qq_rec <-
recipe(~ ., data = iris) %>%
Embed the `values` object in the call using !!
step_filter(Sepal.Length > 4.5, Species %in% !!values)

tidy(qq_rec, number = 1)

step_geodist Distance between two locations

Description

step_geodist creates a a specification of a recipe step that will calculate the distance between
points on a map to a reference location.

Usage

step_geodist(
recipe,
lat = NULL,
lon = NULL,
role = "predictor",
trained = FALSE,
ref_lat = NULL,
ref_lon = NULL,
log = FALSE,
name = "geo_dist",
columns = NULL,
skip = FALSE,
id = rand_id("geodist")

)

S3 method for class 'step_geodist'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

lon, lat Selector functions to choose which variables are affected by the step. See selec-
tions() for more details.

role or model term created by this step, what analysis role should be assigned?. By
default, the function assumes that resulting distance will be used as a predictor
in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

66 step_geodist

ref_lon, ref_lat

Single numeric values for the location of the reference point.

log A logical: should the distance be transformed by the natural log function?

name A single character value to use for the new predictor column. If a column exists
with this name, an error is issued.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_geodist object.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

Details

step_geodist will create a

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns echoing the values of lat, lon, ref_lat, ref_lon,
name, and id.

Examples

library(modeldata)
data(Smithsonian)

How close are the museums to Union Station?
near_station <- recipe(~ ., data = Smithsonian) %>%

update_role(name, new_role = "location") %>%
step_geodist(lat = latitude, lon = longitude, log = FALSE,

ref_lat = 38.8986312, ref_lon = -77.0062457) %>%
prep(training = Smithsonian)

juice(near_station) %>%
arrange(geo_dist)

tidy(near_station, number = 1)

step_holiday 67

step_holiday Holiday Feature Generator

Description

step_holiday creates a a specification of a recipe step that will convert date data into one or more
binary indicator variables for common holidays.

Usage

step_holiday(
recipe,
...,
role = "predictor",
trained = FALSE,
holidays = c("LaborDay", "NewYearsDay", "ChristmasDay"),
columns = NULL,
skip = FALSE,
id = rand_id("holiday")

)

S3 method for class 'step_holiday'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to create
the new variables. The selected variables should have class Date or POSIXct.
See selections() for more details. For the tidy method, these are not cur-
rently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

holidays A character string that includes at least one holiday supported by the timeDate
package. See timeDate::listHolidays() for a complete list.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once prep.recipe() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

68 step_hyperbolic

id A character string that is unique to this step to identify it.

x A step_holiday object.

Details

Unlike other steps, step_holiday does not remove the original date variables. step_rm() can be
used for this purpose.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected and
holiday.

See Also

step_date() step_rm() recipe() prep.recipe() bake.recipe() timeDate::listHolidays()

Examples

library(lubridate)

examples <- data.frame(someday = ymd("2000-12-20") + days(0:40))
holiday_rec <- recipe(~ someday, examples) %>%

step_holiday(all_predictors())

holiday_rec <- prep(holiday_rec, training = examples)
holiday_values <- bake(holiday_rec, new_data = examples)
holiday_values

step_hyperbolic Hyperbolic Transformations

Description

step_hyperbolic creates a specification of a recipe step that will transform data using a hyperbolic
function.

Usage

step_hyperbolic(
recipe,
...,
role = NA,
trained = FALSE,
func = "sin",
inverse = TRUE,
columns = NULL,

step_hyperbolic 69

skip = FALSE,
id = rand_id("hyperbolic")

)

S3 method for class 'step_hyperbolic'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

func A character value for the function. Valid values are "sin", "cos", or "tan".

inverse A logical: should the inverse function be used?

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_hyperbolic object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected), inverse,
and func.

See Also

step_logit() step_invlogit() step_log() step_sqrt() recipe() prep.recipe() bake.recipe()

Examples

set.seed(313)
examples <- matrix(rnorm(40), ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

cos_trans <- rec %>%

70 step_ica

step_hyperbolic(all_predictors(),
func = "cos", inverse = FALSE)

cos_obj <- prep(cos_trans, training = examples)

transformed_te <- bake(cos_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(cos_trans, number = 1)
tidy(cos_obj, number = 1)

step_ica ICA Signal Extraction

Description

step_ica creates a specification of a recipe step that will convert numeric data into one or more
independent components.

Usage

step_ica(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(method = "C"),
res = NULL,
prefix = "IC",
skip = FALSE,
id = rand_id("ica")

)

S3 method for class 'step_ica'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new independent component
columns created by the original variables will be used as predictors in a model.

step_ica 71

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of ICA components to retain as new predictors. If num_comp is
greater than the number of columns or the number of possible components, a
smaller value will be used.

options A list of options to fastICA::fastICA(). No defaults are set here. Note that
the arguments X and n.comp should not be passed here.

res The fastICA::fastICA() object is stored here once this preprocessing step has
be trained by prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_ica object.

Details

Independent component analysis (ICA) is a transformation of a group of variables that produces a
new set of artificial features or components. ICA assumes that the variables are mixtures of a set of
distinct, non-Gaussian signals and attempts to transform the data to isolate these signals. Like PCA,
the components are statistically independent from one another. This means that they can be used to
combat large inter-variables correlations in a data set. Also like PCA, it is advisable to center and
scale the variables prior to running ICA.

This package produces components using the "FastICA" methodology (see reference below). This
step requires the dimRed and fastICA packages. If not installed, the step will stop with a note
about installing these packages.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be IC1 - IC9. If num_comp = 101, the
names would be IC001 - IC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
loading), and component.

References

Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications.
Neural Networks, 13(4-5), 411-430.

72 step_integer

See Also

step_pca() step_kpca() step_isomap() recipe() prep.recipe() bake.recipe()

Examples

from fastICA::fastICA
set.seed(131)
S <- matrix(runif(400), 200, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- as.data.frame(S %*% A)

tr <- X[1:100,]
te <- X[101:200,]

rec <- recipe(~ ., data = tr)

ica_trans <- step_center(rec, V1, V2)
ica_trans <- step_scale(ica_trans, V1, V2)
ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)

if (require(dimRed) & require(fastICA)) {
ica_estimates <- prep(ica_trans, training = tr)
ica_data <- bake(ica_estimates, te)

plot(te$V1, te$V2)
plot(ica_data$IC1, ica_data$IC2)

tidy(ica_trans, number = 3)
tidy(ica_estimates, number = 3)

}

step_integer Convert values to predefined integers

Description

step_integer creates a a specification of a recipe step that will convert new data into a set of
integers based on the original data values.

Usage

step_integer(
recipe,
...,
role = "predictor",
trained = FALSE,
strict = FALSE,
zero_based = FALSE,
key = NULL,

step_integer 73

skip = FALSE,
id = rand_id("integer")

)

S3 method for class 'step_integer'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to create
the integer variables. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
strict A logical for whether the values should be returned as integers (as opposed to

double).
zero_based A logical for whether the integers should start at zero and new values be ap-

pended as the largest integer.
key A list that contains the information needed to create integer variables for each

variable contained in terms. This is NULL until the step is trained by prep.recipe().
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_integer object.

Details

step_integer will determine the unique values of each variable from the training set (excluding
missing values), order them, and then assign integers to each value. When baked, each data point
is translated to its corresponding integer or a value of zero for yet unseen data (although see the
zero_based argument above). Missing values propagate.

Factor inputs are ordered by their levels. All others are ordered by sort.

Despite the name, the new values are returned as numeric unless strict = TRUE, which will coerce
the results to integers.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
is a list column with the conversion key.

74 step_interact

See Also

step_factor2string(), step_string2factor(), step_regex(), step_count(), step_ordinalscore(),
step_unorder(), step_other() step_novel(), step_dummy()

Examples

library(modeldata)
data(okc)

okc$location <- factor(okc$location)

okc_tr <- okc[1:100,]
okc_tr$age[1] <- NA

okc_te <- okc[101:105,]
okc_te$age[1] <- NA
okc_te$diet[1] <- "fast food"
okc_te$diet[2] <- NA

rec <- recipe(Class ~ ., data = okc_tr) %>%
step_integer(all_predictors()) %>%
prep(training = okc_tr)

bake(rec, okc_te, all_predictors())
tidy(rec, number = 1)

step_interact Create Interaction Variables

Description

step_interact creates a specification of a recipe step that will create new columns that are inter-
action terms between two or more variables.

Usage

step_interact(
recipe,
terms,
role = "predictor",
trained = FALSE,
objects = NULL,
sep = "_x_",
skip = FALSE,
id = rand_id("interact")

)

S3 method for class 'step_interact'
tidy(x, ...)

step_interact 75

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

terms A traditional R formula that contains interaction terms. This can include . and
selectors.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created from
the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

objects A list of terms objects for each individual interaction.

sep A character value used to delineate variables in an interaction (e.g. var1_x_var2
instead of the more traditional var1:var2).

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_interact object

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

Details

step_interact can create interactions between variables. It is primarily intended for numeric
data; categorical variables should probably be converted to dummy variables using step_dummy()
prior to being used for interactions.

Unlike other step functions, the terms argument should be a traditional R model formula but should
contain no inline functions (e.g. log). For example, for predictors A, B, and C, a formula such as
~A:B:C can be used to make a three way interaction between the variables. If the formula contains
terms other than interactions (e.g. (A+B+C)^3) only the interaction terms are retained for the design
matrix.

The separator between the variables defaults to "_x_" so that the three way interaction shown pre-
viously would generate a column named A_x_B_x_C. This can be changed using the sep argument.

When dummy variables are created and are used in interactions, selectors can help specify the
interactions succinctly. For example, suppose a factor column X gets converted to dummy variables
x_2, x_3, ..., x_6 using step_dummy(). If you wanted an interaction with numeric column z, you
could create a set of specific interaction effects (e.g. x_2:z + x_3:z and so on) or you could use
starts_with("z_"):z. When prep() evaluates this step, starts_with("z_") resolves to (x_2 +
x_3 + x_4 + x_5 + x6) so that the formula is now (x_2 + x_3 + x_4 + x_5 + x6):z and all two-way
interactions are created.

76 step_intercept

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the interaction effects.

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

int_mod_1 <- rec %>%
step_interact(terms = ~ carbon:hydrogen)

int_mod_2 <- rec %>%
step_interact(terms = ~ (matches("gen$") + sulfur)^2)

int_mod_1 <- prep(int_mod_1, training = biomass_tr)
int_mod_2 <- prep(int_mod_2, training = biomass_tr)

dat_1 <- bake(int_mod_1, biomass_te)
dat_2 <- bake(int_mod_2, biomass_te)

names(dat_1)
names(dat_2)

tidy(int_mod_1, number = 1)
tidy(int_mod_2, number = 1)

step_intercept Add intercept (or constant) column

Description

step_intercept creates a specification of a recipe step that will add an intercept or constant term
in the first column of a data matrix. step_intercept has defaults to predictor role so that it is by
default called in the bake step. Be careful to avoid unintentional transformations when calling steps
with all_predictors.

Usage

step_intercept(
recipe,
...,
role = "predictor",

step_intercept 77

trained = FALSE,
name = "intercept",
value = 1,
skip = FALSE,
id = rand_id("intercept")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Argument ignored; included for consistency with other step specification func-
tions.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created from
the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
Again included for consistency.

name Character name for new added column

value A numeric constant to fill the intercept column. Defaults to 1.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

rec_trans <- recipe(HHV ~ ., data = biomass_tr[, -(1:2)]) %>%
step_intercept(value = 2) %>%
step_scale(carbon)

78 step_inverse

rec_obj <- prep(rec_trans, training = biomass_tr)

with_intercept <- bake(rec_obj, biomass_te)
with_intercept

step_inverse Inverse Transformation

Description

step_inverse creates a specification of a recipe step that will inverse transform the data.

Usage

step_inverse(
recipe,
...,
role = NA,
offset = 0,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("inverse")

)

S3 method for class 'step_inverse'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
offset An optional value to add to the data prior to logging (to avoid 1/0).
trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of variable names that will be populated (eventually) by the

terms argument.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

step_invlogit 79

id A character string that is unique to this step to identify it.

x A step_inverse object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

See Also

step_log() step_sqrt() step_hyperbolic() recipe() prep.recipe() bake.recipe()

Examples

set.seed(313)
examples <- matrix(runif(40), ncol = 2)
examples <- data.frame(examples)

rec <- recipe(~ X1 + X2, data = examples)

inverse_trans <- rec %>%
step_inverse(all_predictors())

inverse_obj <- prep(inverse_trans, training = examples)

transformed_te <- bake(inverse_obj, examples)
plot(examples$X1, transformed_te$X1)

tidy(inverse_trans, number = 1)
tidy(inverse_obj, number = 1)

step_invlogit Inverse Logit Transformation

Description

step_invlogit creates a specification of a recipe step that will transform the data from real values
to be between zero and one.

Usage

step_invlogit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("invlogit")

80 step_invlogit

)

S3 method for class 'step_invlogit'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_invlogit object.

Details

The inverse logit transformation takes values on the real line and translates them to be between zero
and one using the function f(x) = 1/(1+exp(-x)).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

See Also

step_logit() step_log() step_sqrt() step_hyperbolic() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

step_isomap 81

ilogit_trans <- rec %>%
step_center(carbon, hydrogen) %>%
step_scale(carbon, hydrogen) %>%
step_invlogit(carbon, hydrogen)

ilogit_obj <- prep(ilogit_trans, training = biomass_tr)

transformed_te <- bake(ilogit_obj, biomass_te)
plot(biomass_te$carbon, transformed_te$carbon)

step_isomap Isomap Embedding

Description

step_isomap creates a specification of a recipe step that will convert numeric data into one or more
new dimensions.

Usage

step_isomap(
recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,
prefix = "Isomap",
skip = FALSE,
id = rand_id("isomap")

)

S3 method for class 'step_isomap'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the dimensions. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new dimension columns
created by the original variables will be used as predictors in a model.

82 step_isomap

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_terms The number of isomap dimensions to retain as new predictors. If num_terms
is greater than the number of columns or the number of possible dimensions, a
smaller value will be used.

neighbors The number of neighbors.

options A list of options to dimRed::Isomap().

res The dimRed::Isomap() object is stored here once this preprocessing step has
be trained by prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_isomap object

Details

Isomap is a form of multidimensional scaling (MDS). MDS methods try to find a reduced set of
dimensions such that the geometric distances between the original data points are preserved. This
version of MDS uses nearest neighbors in the data as a method for increasing the fidelity of the new
dimensions to the original data values.

This step requires the dimRed, RSpectra, igraph, and RANN packages. If not installed, the step
will stop with a note about installing these packages.

It is advisable to center and scale the variables prior to running Isomap (step_center and step_scale
can be used for this purpose).

The argument num_terms controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_terms < 10, their names will be Isomap1 - Isomap9. If num_terms
= 101, the names would be Isomap001 - Isomap101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected).

References

De Silva, V., and Tenenbaum, J. B. (2003). Global versus local methods in nonlinear dimensionality
reduction. Advances in Neural Information Processing Systems. 721-728.

dimRed, a framework for dimensionality reduction, https://github.com/gdkrmr

step_knnimpute 83

See Also

step_pca() step_kpca() step_ica() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

im_trans <- rec %>%
step_YeoJohnson(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_isomap(all_predictors(), neighbors = 100, num_terms = 2)

if (require(dimRed) & require(RSpectra)) {
im_estimates <- prep(im_trans, training = biomass_tr)

im_te <- bake(im_estimates, biomass_te)

rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
plot(im_te$Isomap1, im_te$Isomap2,

xlim = rng, ylim = rng)

tidy(im_trans, number = 3)
tidy(im_estimates, number = 3)

}

step_knnimpute Imputation via K-Nearest Neighbors

Description

step_knnimpute creates a specification of a recipe step that will impute missing data using nearest
neighbors.

Usage

step_knnimpute(
recipe,
...,
role = NA,
trained = FALSE,

84 step_knnimpute

neighbors = 5,
impute_with = imp_vars(all_predictors()),
options = list(nthread = 1, eps = 1e-08),
ref_data = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("knnimpute")

)

S3 method for class 'step_knnimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_knnimpute, this
indicates the variables to be imputed. When used with imp_vars, the dots indi-
cates which variables are used to predict the missing data in each variable. See
selections() for more details. For the tidy method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

neighbors The number of neighbors.

impute_with A call to imp_vars to specify which variables are used to impute the variables
that can include specific variable names separated by commas or different selec-
tors (see selections()). If a column is included in both lists to be imputed and
to be an imputation predictor, it will be removed from the latter and not used to
impute itself.

options A named list of options to pass to gower::gower_topn(). Available options
are currently nthread and eps.

ref_data A tibble of data that will reflect the data preprocessing done up to the point of
this imputation step. This is NULL until the step is trained by prep.recipe().

columns The column names that will be imputed and used for imputation. This is NULL
until the step is trained by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_knnimpute object.

step_knnimpute 85

Details

The step uses the training set to impute any other data sets. The only distance function available is
Gower’s distance which can be used for mixtures of nominal and numeric data.

Once the nearest neighbors are determined, the mode is used to predictor nominal variables and
the mean is used for numeric data. Note that, if the underlying data are integer, the mean will be
converted to an integer too.

Note that if a variable that is to be imputed is also in impute_with, this variable will be ignored.

It is possible that missing values will still occur after imputation if a large majority (or all) of the
imputing variables are also missing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for imputation),
predictors (those variables used to impute), and neighbors.

References

Gower, C. (1971) "A general coefficient of similarity and some of its properties," Biometrics, 857-
871.

Examples

library(recipes)
library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]
biomass_te_whole <- biomass_te

induce some missing data at random
set.seed(9039)
carb_missing <- sample(1:nrow(biomass_te), 3)
nitro_missing <- sample(1:nrow(biomass_te), 3)

biomass_te$carbon[carb_missing] <- NA
biomass_te$nitrogen[nitro_missing] <- NA

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

ratio_recipe <- rec %>%
step_knnimpute(all_predictors(), neighbors = 3)

ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
imputed <- bake(ratio_recipe2, biomass_te)

how well did it work?
summary(biomass_te_whole$carbon)
cbind(before = biomass_te_whole$carbon[carb_missing],

86 step_kpca

after = imputed$carbon[carb_missing])

summary(biomass_te_whole$nitrogen)
cbind(before = biomass_te_whole$nitrogen[nitro_missing],

after = imputed$nitrogen[nitro_missing])

tidy(ratio_recipe, number = 1)
tidy(ratio_recipe2, number = 1)

step_kpca Kernel PCA Signal Extraction

Description

step_kpca a specification of a recipe step that will convert numeric data into one or more principal
components using a kernel basis expansion.

Usage

step_kpca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
options = list(kernel = "rbfdot", kpar = list(sigma = 0.2)),
prefix = "kPC",
skip = FALSE,
id = rand_id("kpca")

)

S3 method for class 'step_kpca'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new principal component columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

step_kpca 87

num_comp The number of PCA components to retain as new predictors. If num_comp is
greater than the number of columns or the number of possible components, a
smaller value will be used.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep.recipe().

options A list of options to kernlab::kpca(). Defaults are set for the arguments kernel
and kpar but others can be passed in. Note that the arguments x and features
should not be passed here (or at all).

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_kpca object

Details

Kernel principal component analysis (kPCA) is an extension a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the dimRed and kernlab packages. If not installed, the step will stop with a note
about installing these packages.

As with ordinary PCA, it is important to standardized the variables prior to running PCA (step_center
and step_scale can be used for this purpose).

When performing kPCA, the kernel function (and any important kernel parameters) must be chosen.
The kernlab package is used and the reference below discusses the types of kernels available and
their parameter(s). These specifications can be made in the kernel and kpar slots of the options
argument to step_kpca.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC001 - kPC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected).

88 step_kpca_poly

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

See Also

step_pca() step_ica() step_isomap() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

kpca_trans <- rec %>%
step_YeoJohnson(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_kpca(all_predictors())

if (require(dimRed) & require(kernlab)) {
kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

rng <- extendrange(c(kpca_te$kPC1, kpca_te$kPC2))
plot(kpca_te$kPC1, kpca_te$kPC2,

xlim = rng, ylim = rng)

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

}

step_kpca_poly Polynomial Kernel PCA Signal Extraction

Description

step_kpca_poly a specification of a recipe step that will convert numeric data into one or more
principal components using a polynomial kernel basis expansion.

step_kpca_poly 89

Usage

step_kpca_poly(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
degree = 2,
scale_factor = 1,
offset = 1,
prefix = "kPC",
skip = FALSE,
id = rand_id("kpca_poly")

)

S3 method for class 'step_kpca_poly'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new principal component columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of PCA components to retain as new predictors. If num_comp is
greater than the number of columns or the number of possible components, a
smaller value will be used.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep.recipe().

degree, scale_factor, offset

Numeric values for the polynomial kernel function.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_kpca_poly object

90 step_kpca_poly

Details

Kernel principal component analysis (kPCA) is an extension a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the dimRed and kernlab packages. If not installed, the step will stop with a note
about installing these packages.

As with ordinary PCA, it is important to standardized the variables prior to running PCA (step_center
and step_scale can be used for this purpose).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC001 - kPC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected).

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

See Also

step_pca() step_ica() step_isomap() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

kpca_trans <- rec %>%
step_YeoJohnson(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_kpca_poly(all_predictors())

if (require(dimRed) & require(kernlab)) {

step_kpca_rbf 91

kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

rng <- extendrange(c(kpca_te$kPC1, kpca_te$kPC2))
plot(kpca_te$kPC1, kpca_te$kPC2,

xlim = rng, ylim = rng)

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

}

step_kpca_rbf Radial Basis Function Kernel PCA Signal Extraction

Description

step_kpca_rbf a specification of a recipe step that will convert numeric data into one or more
principal components using a radial basis function kernel basis expansion.

Usage

step_kpca_rbf(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
sigma = 0.2,
prefix = "kPC",
skip = FALSE,
id = rand_id("kpca_rbf")

)

S3 method for class 'step_kpca_rbf'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new principal component columns
created by the original variables will be used as predictors in a model.

92 step_kpca_rbf

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of PCA components to retain as new predictors. If num_comp is
greater than the number of columns or the number of possible components, a
smaller value will be used.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep.recipe().

sigma A numeric value for the radial basis function parameter.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_kpca_rbf object

Details

Kernel principal component analysis (kPCA) is an extension a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the dimRed and kernlab packages. If not installed, the step will stop with a note
about installing these packages.

As with ordinary PCA, it is important to standardized the variables prior to running PCA (step_center
and step_scale can be used for this purpose).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC001 - kPC101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected).

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

step_lag 93

See Also

step_pca() step_ica() step_isomap() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

kpca_trans <- rec %>%
step_YeoJohnson(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_kpca_rbf(all_predictors())

if (require(dimRed) & require(kernlab)) {
kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

rng <- extendrange(c(kpca_te$kPC1, kpca_te$kPC2))
plot(kpca_te$kPC1, kpca_te$kPC2,

xlim = rng, ylim = rng)

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

}

step_lag Create a lagged predictor

Description

step_lag creates a specification of a recipe step that will add new columns of lagged data. Lagged
data will by default include NA values where the lag was induced. These can be removed with
step_naomit(), or you may specify an alternative filler value with the default argument.

Usage

step_lag(
recipe,
...,
role = "predictor",
trained = FALSE,
lag = 1,

94 step_lag

prefix = "lag_",
default = NA,
columns = NULL,
skip = FALSE,
id = rand_id("lag")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor"

trained A logical to indicate if the quantities for preprocessing have been estimated.

lag A vector of positive integers. Each specified column will be lagged for each
value in the vector.

prefix A prefix for generated column names, default to "lag_".

default Passed to dplyr::lag, determines what fills empty rows left by lagging (de-
faults to NA).

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

recipe() prep.recipe() bake.recipe() step_naomit()

Examples

n <- 10
start <- as.Date('1999/01/01')
end <- as.Date('1999/01/10')

step_lincomb 95

df <- data.frame(x = runif(n),
index = 1:n,
day = seq(start, end, by = "day"))

recipe(~ ., data = df) %>%
step_lag(index, day, lag = 2:3) %>%
prep(df) %>%
bake(df)

step_lincomb Linear Combination Filter

Description

step_lincomb creates a specification of a recipe step that will potentially remove numeric variables
that have linear combinations between them.

Usage

step_lincomb(
recipe,
...,
role = NA,
trained = FALSE,
max_steps = 5,
removals = NULL,
skip = FALSE,
id = rand_id("lincomp")

)

S3 method for class 'step_lincomb'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

max_steps A value.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep.recipe() is called.

96 step_lincomb

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_lincomb object.

Details

This step finds exact linear combinations between two or more variables and recommends which
column(s) should be removed to resolve the issue. This algorithm may need to be applied multiple
times (as defined by max_steps).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be removed.

Author(s)

Max Kuhn, Kirk Mettler, and Jed Wing

See Also

step_nzv() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass$new_1 <- with(biomass,
.1*carbon - .2*hydrogen + .6*sulfur)

biomass$new_2 <- with(biomass,
.5*carbon - .2*oxygen + .6*nitrogen)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
sulfur + new_1 + new_2,

data = biomass_tr)

lincomb_filter <- rec %>%
step_lincomb(all_predictors())

lincomb_filter_trained <- prep(lincomb_filter, training = biomass_tr)
lincomb_filter_trained

tidy(lincomb_filter, number = 1)

step_log 97

tidy(lincomb_filter_trained, number = 1)

step_log Logarithmic Transformation

Description

step_log creates a specification of a recipe step that will log transform data.

Usage

step_log(
recipe,
...,
role = NA,
trained = FALSE,
base = exp(1),
offset = 0,
columns = NULL,
skip = FALSE,
signed = FALSE,
id = rand_id("log")

)

S3 method for class 'step_log'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

base A numeric value for the base.

offset An optional value to add to the data prior to logging (to avoid log(0)).

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

98 step_log

signed A logical indicating whether to take the signed log. This is sign(x) * abs(x) when
abs(x) => 1 or 0 if abs(x) < 1. If TRUE the offset argument will be ignored.

id A character string that is unique to this step to identify it.

x A step_log object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

See Also

step_logit() step_invlogit() step_hyperbolic() step_sqrt() recipe() prep.recipe()
bake.recipe()

Examples

set.seed(313)
examples <- matrix(exp(rnorm(40)), ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

log_trans <- rec %>%
step_log(all_predictors())

log_obj <- prep(log_trans, training = examples)

transformed_te <- bake(log_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(log_trans, number = 1)
tidy(log_obj, number = 1)

using the signed argument with negative values

examples2 <- matrix(rnorm(40, sd = 5), ncol = 2)
examples2 <- as.data.frame(examples2)

recipe(~ V1 + V2, data = examples2) %>%
step_log(all_predictors()) %>%
prep(training = examples2) %>%
bake(examples2)

recipe(~ V1 + V2, data = examples2) %>%
step_log(all_predictors(), signed = TRUE) %>%
prep(training = examples2) %>%
bake(examples2)

step_logit 99

step_logit Logit Transformation

Description

step_logit creates a specification of a recipe step that will logit transform the data.

Usage

step_logit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("logit")

)

S3 method for class 'step_logit'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_logit object.

Details

The logit transformation takes values between zero and one and translates them to be on the real
line using the function f(p) = log(p/(1-p)).

100 step_lowerimpute

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

See Also

step_invlogit() step_log() step_sqrt() step_hyperbolic() recipe() prep.recipe() bake.recipe()

Examples

set.seed(313)
examples <- matrix(runif(40), ncol = 2)
examples <- data.frame(examples)

rec <- recipe(~ X1 + X2, data = examples)

logit_trans <- rec %>%
step_logit(all_predictors())

logit_obj <- prep(logit_trans, training = examples)

transformed_te <- bake(logit_obj, examples)
plot(examples$X1, transformed_te$X1)

tidy(logit_trans, number = 1)
tidy(logit_obj, number = 1)

step_lowerimpute Impute Numeric Data Below the Threshold of Measurement

Description

step_lowerimpute creates a specification of a recipe step designed for cases where the non-
negative numeric data cannot be measured below a known value. In these cases, one method for
imputing the data is to substitute the truncated value by a random uniform number between zero
and the truncation point.

Usage

step_lowerimpute(
recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("lowerimpute")

)

step_lowerimpute 101

S3 method for class 'step_lowerimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A named numeric vector of lower bounds This is NULL until computed by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_lowerimpute object.

Details

step_lowerimpute estimates the variable minimums from the data used in the training argument
of prep.recipe. bake.recipe then simulates a value for any data at the minimum with a random
uniform value between zero and the minimum.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
for the estimated threshold.

Examples

library(recipes)
library(modeldata)
data(biomass)

Truncate some values to emulate what a lower limit of
the measurement system might look like

biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

102 step_meanimpute

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

impute_rec <- rec %>%
step_lowerimpute(carbon, hydrogen)

tidy(impute_rec, number = 1)

impute_rec <- prep(impute_rec, training = biomass_tr)

tidy(impute_rec, number = 1)

transformed_te <- bake(impute_rec, biomass_te)

plot(transformed_te$carbon, biomass_te$carbon,
ylab = "pre-imputation", xlab = "imputed")

step_meanimpute Impute Numeric Data Using the Mean

Description

step_meanimpute creates a specification of a recipe step that will substitute missing values of
numeric variables by the training set mean of those variables.

Usage

step_meanimpute(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("meanimpute")

)

S3 method for class 'step_meanimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

step_meanimpute 103

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

means A named numeric vector of means. This is NULL until computed by prep.recipe().
Note that, if the original data are integers, the mean will be converted to an inte-
ger to maintain the same a data type.

trim The fraction (0 to 0.5) of observations to be trimmed from each end of the vari-
ables before the mean is computed. Values of trim outside that range are taken
as the nearest endpoint.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_meanimpute object.

Details

step_meanimpute estimates the variable means from the data used in the training argument of
prep.recipe. bake.recipe then applies the new values to new data sets using these averages.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and model
(the mean value).

Examples

library(modeldata)
data("credit_data")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_meanimpute(Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

104 step_medianimpute

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_medianimpute Impute Numeric Data Using the Median

Description

step_medianimpute creates a specification of a recipe step that will substitute missing values of
numeric variables by the training set median of those variables.

Usage

step_medianimpute(
recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("medianimpute")

)

S3 method for class 'step_medianimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
medians A named numeric vector of medians. This is NULL until computed by prep.recipe().

Note that, if the original data are integers, the median will be converted to an in-
teger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

step_modeimpute 105

id A character string that is unique to this step to identify it.

x A step_medianimpute object.

Details

step_medianimpute estimates the variable medians from the data used in the training argument
of prep.recipe. bake.recipe then applies the new values to new data sets using these medians

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and model
(the median value).

Examples

library(modeldata)
data("credit_data")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_medianimpute(Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_modeimpute Impute Nominal Data Using the Most Common Value

106 step_modeimpute

Description

step_modeimpute creates a specification of a recipe step that will substitute missing values of
nominal variables by the training set mode of those variables.

Usage

step_modeimpute(
recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
skip = FALSE,
id = rand_id("modeimpute")

)

S3 method for class 'step_modeimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
modes A named character vector of modes. This is NULL until computed by prep.recipe().
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_modeimpute object.

Details

step_modeimpute estimates the variable modes from the data used in the training argument of
prep.recipe. bake.recipe then applies the new values to new data sets using these values. If the
training set data has more than one mode, one is selected at random.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and model
(the mode value).

step_mutate 107

Examples

library(modeldata)
data("credit_data")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_modeimpute(Status, Home, Marital)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

table(credit_te$Home, imputed_te$Home, useNA = "always")

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_mutate Add new variables using mutate

Description

step_mutate creates a specification of a recipe step that will add variables using dplyr::mutate().

Usage

step_mutate(
recipe,
...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate")

)

S3 method for class 'step_mutate'
tidy(x, ...)

108 step_mutate

S3 method for class 'step_mutate_at'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Name-value pairs of expressions. See dplyr::mutate(). If the argument is not
named, the expression is converted to a column name.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new dimension columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure(s) of

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_mutate object

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns values which contains the mutate expressions as character
strings (and are not reparsable).

Examples

rec <-
recipe(~ ., data = iris) %>%
step_mutate(
dbl_width = Sepal.Width * 2,
half_length = Sepal.Length / 2

)

prepped <- prep(rec, training = iris %>% slice(1:75))

library(dplyr)

step_mutate_at 109

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
mutate(
dbl_width = Sepal.Width * 2,
half_length = Sepal.Length / 2

)

rec_train <- juice(prepped)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
mutate(

dbl_width = Sepal.Width * 2,
half_length = Sepal.Length / 2

)
rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

Embedding objects:
const <- 1.414

qq_rec <-
recipe(~ ., data = iris) %>%
step_mutate(

bad_approach = Sepal.Width * const,
best_approach = Sepal.Width * !!const

) %>%
prep(training = iris)

juice(qq_rec, contains("appro")) %>% slice(1:4)

The difference:
tidy(qq_rec, number = 1)

step_mutate_at Mutate multiple columns

Description

step_mutate_at creates a specification of a recipe step that will modify the selected variables using
a common function.

Usage

step_mutate_at(

110 step_mutate_at

recipe,
...,
fn,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate_at")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

fn A function fun, a quosure style lambda ‘~ fun(.)“ or a list of either form. (see
dplyr::mutate_at()). Note that this argument must be named.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new dimension columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs A vector of column names populated by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which contains the columns being transformed.

Examples

library(dplyr)
recipe(~ ., data = iris) %>%

step_mutate_at(contains("Length"), fn = ~ 1/.) %>%
prep() %>%
juice() %>%
slice(1:10)

recipe(~ ., data = iris) %>%
leads to more columns being created.
step_mutate_at(contains("Length"), fn = list(log = log, sqrt = sqrt)) %>%

step_naomit 111

prep() %>%
juice() %>%
slice(1:10)

step_naomit Remove observations with missing values

Description

step_naomit creates a specification of a recipe step that will add remove observations (rows of
data) if they contain NA or NaN values.

Usage

step_naomit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("naomit")

)

S3 method for class 'step_naomit'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to cre-
ate the dummy variables. See selections() for more details. The selected
variables must be factors.

role Unused, include for consistency with other steps.
trained A logical to indicate if the quantities for preprocessing have been estimated.

Again included for consistency.
columns A character string of variable names that will be populated (eventually) by the

terms argument.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = FALSE; in most instances
that affect the rows of the data being predicted, this step probably should not be
applied.

id A character string that is unique to this step to identify it.
x A step_naomit object.

112 step_nnmf

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

recipe() prep.recipe() bake.recipe()

Examples

recipe(Ozone ~ ., data = airquality) %>%
step_naomit(Solar.R) %>%
prep(airquality, verbose = FALSE) %>%
juice()

step_nnmf NNMF Signal Extraction

Description

step_nnmf creates a specification of a recipe step that will convert numeric data into one or more
non-negative components.

Usage

step_nnmf(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
num_run = 30,
options = list(),
res = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
skip = FALSE,
id = rand_id("nnmf")

)

S3 method for class 'step_nnmf'
tidy(x, ...)

step_nnmf 113

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new component columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used.

num_run A positive integer for the number of computations runs used to obtain a consen-
sus projection.

options A list of options to nmf() in the NMF package by way of the NNMF() function
in the dimRed package. Note that the arguments data and ndim should not be
passed here.

res The NNMF() object is stored here once this preprocessing step has be trained by
prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

seed An integer that will be used to set the seed in isolation when computing the
factorization.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_nnmf object.

Details

Non-negative matrix factorization computes latent components that have non-negative values and
take into account that the original data have non-negative values.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num < 10, their names will be NNMF1 - NNMF9. If num = 101, the names
would be NNMF001 - NNMF101.

114 step_normalize

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms (the selectors or variables selected) and the number
of components.

See Also

step_pca(), step_ica(), step_kpca(), step_isomap(), recipe(), prep.recipe(), bake.recipe()

Examples

library(modeldata)
data(biomass)

rec <- recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = "id var") %>%
update_role(dataset, new_role = "split variable") %>%
step_nnmf(all_predictors(), num_comp = 2, seed = 473, num_run = 2) %>%
prep(training = biomass)
#
juice(rec)
#
library(ggplot2)
ggplot(juice(rec), aes(x = NNMF2, y = NNMF1, col = HHV)) + geom_point()

step_normalize Center and scale numeric data

Description

step_normalize creates a specification of a recipe step that will normalize numeric data to have a
standard deviation of one and a mean of zero.

Usage

step_normalize(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
sds = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("normalize")

)

step_normalize 115

S3 method for class 'step_normalize'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

means A named numeric vector of means. This is NULL until computed by prep.recipe().

sds A named numeric vector of standard deviations This is NULL until computed by
prep.recipe().

na_rm A logical value indicating whether NA values should be removed when comput-
ing the standard deviation and mean.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_normalize object.

Details

Centering data means that the average of a variable is subtracted from the data. Scaling data
means that the standard deviation of a variable is divided out of the data. step_normalize es-
timates the variable standard deviations and means from the data used in the training argument of
prep.recipe. bake.recipe then applies the scaling to new data sets using these estimates.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
standard deviations and means), and statistic for the type of value.

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

116 step_novel

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

norm_trans <- rec %>%
step_normalize(carbon, hydrogen)

norm_obj <- prep(norm_trans, training = biomass_tr)

transformed_te <- bake(norm_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te
tidy(norm_trans, number = 1)
tidy(norm_obj, number = 1)

step_novel Simple Value Assignments for Novel Factor Levels

Description

step_novel creates a specification of a recipe step that will assign a previously unseen factor level
to a new value.

Usage

step_novel(
recipe,
...,
role = NA,
trained = FALSE,
new_level = "new",
objects = NULL,
skip = FALSE,
id = rand_id("novel")

)

S3 method for class 'step_novel'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be affected by
the step. These variables should be character or factor types. See selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

step_novel 117

trained A logical to indicate if the quantities for preprocessing have been estimated.

new_level A single character value that will be assigned to new factor levels.

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_novel object.

Details

The selected variables are adjusted to have a new level (given by new_level) that is placed in the
last position. During preparation there will be no data points associated with this new level since all
of the data have been seen.

Note that if the original columns are character, they will be converted to factors by this step.

Missing values will remain missing.

If new_level is already in the data given to prep, an error is thrown.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and value
(the factor levels that is used for the new value)

See Also

step_factor2string(), step_string2factor(), dummy_names(), step_regex(), step_count(),
step_ordinalscore(), step_unorder(), step_other()

Examples

library(modeldata)
data(okc)

okc_tr <- okc[1:30000,]
okc_te <- okc[30001:30006,]
okc_te$diet[3] <- "cannibalism"
okc_te$diet[4] <- "vampirism"

rec <- recipe(~ diet + location, data = okc_tr)

rec <- rec %>%
step_novel(diet, location)

rec <- prep(rec, training = okc_tr)

118 step_ns

processed <- bake(rec, okc_te)
tibble(old = okc_te$diet, new = processed$diet)

tidy(rec, number = 1)

step_ns Nature Spline Basis Functions

Description

step_ns creates a specification of a recipe step that will create new columns that are basis expan-
sions of variables using natural splines.

Usage

step_ns(
recipe,
...,
role = "predictor",
trained = FALSE,
objects = NULL,
deg_free = 2,
options = list(),
skip = FALSE,
id = rand_id("ns")

)

S3 method for class 'step_ns'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created from
the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

objects A list of splines::ns() objects created once the step has been trained.

deg_free The degrees of freedom.

options A list of options for splines::ns() which should not include x or df.

step_ns 119

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_ns object.

Details

step_ns can create new features from a single variable that enable fitting routines to model this
variable in a nonlinear manner. The extent of the possible nonlinearity is determined by the df
or knot arguments of splines::ns(). The original variables are removed from the data and new
columns are added. The naming convention for the new variables is varname_ns_1 and so on.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected and
holiday.

See Also

step_poly() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

with_splines <- rec %>%
step_ns(carbon, hydrogen)

with_splines <- prep(with_splines, training = biomass_tr)

expanded <- bake(with_splines, biomass_te)
expanded

120 step_num2factor

step_num2factor Convert Numbers to Factors

Description

step_num2factor will convert one or more numeric vectors to factors (ordered or unordered). This
can be useful when categories are encoded as integers.

Usage

step_num2factor(
recipe,
...,
role = NA,
transform = function(x) x,
trained = FALSE,
levels,
ordered = FALSE,
skip = FALSE,
id = rand_id("num2factor")

)

S3 method for class 'step_num2factor'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will converted to fac-
tors. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

transform A function taking a single argument x that can be used to modify the numeric
values prior to determining the levels (perhaps using base::as.integer()).
The output of a function should be an integer that corresponds to the value of
levels that should be assigned. If not an integer, the value will be converted to
an integer during bake().

trained A logical to indicate if the quantities for preprocessing have been estimated.

levels A character vector of values that will be used as the levels. These are the numeric
data converted to character and ordered. This is modified once prep.recipe()
is executed.

ordered A single logical value; should the factor(s) be ordered?

step_num2factor 121

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_num2factor object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and ordered.

See Also

step_factor2string(), step_string2factor(), step_dummy()

Examples

library(dplyr)
library(modeldata)
data(attrition)

attrition %>%
group_by(StockOptionLevel) %>%
count()

amnt <- c("nothin", "meh", "some", "copious")

rec <-
recipe(Attrition ~ StockOptionLevel, data = attrition) %>%
step_num2factor(
StockOptionLevel,
transform = function(x) x + 1,
levels = amnt

)

encoded <- rec %>% prep() %>% juice()

table(encoded$StockOptionLevel, attrition$StockOptionLevel)

an example for binning

binner <- function(x) {
x <- cut(x, breaks = 1000 * c(0, 5, 10, 20), include.lowest = TRUE)
now return the group number
as.numeric(x)

}

inc <- c("low", "med", "high")

122 step_nzv

rec <-
recipe(Attrition ~ MonthlyIncome, data = attrition) %>%
step_num2factor(
MonthlyIncome,
transform = binner,
levels = inc,
ordered = TRUE

) %>%
prep()

encoded <- juice(rec)

table(encoded$MonthlyIncome, binner(attrition$MonthlyIncome))

What happens when a value is out of range?
ceo <- attrition %>% slice(1) %>% mutate(MonthlyIncome = 10^10)

bake(rec, ceo)

step_nzv Near-Zero Variance Filter

Description

step_nzv creates a specification of a recipe step that will potentially remove variables that are
highly sparse and unbalanced.

Usage

step_nzv(
recipe,
...,
role = NA,
trained = FALSE,
freq_cut = 95/5,
unique_cut = 10,
options = list(freq_cut = 95/5, unique_cut = 10),
removals = NULL,
skip = FALSE,
id = rand_id("nzv")

)

S3 method for class 'step_nzv'
tidy(x, ...)

step_nzv 123

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will evaluated by
the filtering. See selections() for more details. For the tidy method, these
are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.
freq_cut, unique_cut

Numeric parameters for the filtering process. See the Details section below.

options A list of options for the filter (see Details below).

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep.recipe() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_nzv object.

Details

This step diagnoses predictors that have one unique value (i.e. are zero variance predictors) or
predictors that are have both of the following characteristics:

1. they have very few unique values relative to the number of samples and

2. the ratio of the frequency of the most common value to the frequency of the second most
common value is large.

For example, an example of near zero variance predictor is one that, for 1000 samples, has two
distinct values and 999 of them are a single value.

To be flagged, first the frequency of the most prevalent value over the second most frequent value
(called the "frequency ratio") must be above freq_cut. Secondly, the "percent of unique values,"
the number of unique values divided by the total number of samples (times 100), must also be below
unique_cut.

In the above example, the frequency ratio is 999 and the unique value percent is 0.2%.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be removed.

See Also

step_corr() recipe() prep.recipe() bake.recipe()

124 step_ordinalscore

Examples

library(modeldata)
data(biomass)

biomass$sparse <- c(1, rep(0, nrow(biomass) - 1))

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
nitrogen + sulfur + sparse,

data = biomass_tr)

nzv_filter <- rec %>%
step_nzv(all_predictors())

filter_obj <- prep(nzv_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
any(names(filtered_te) == "sparse")

tidy(nzv_filter, number = 1)
tidy(filter_obj, number = 1)

step_ordinalscore Convert Ordinal Factors to Numeric Scores

Description

step_ordinalscore creates a specification of a recipe step that will convert ordinal factor variables
into numeric scores.

Usage

step_ordinalscore(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
convert = as.numeric,
skip = FALSE,
id = rand_id("ordinalscore")

)

S3 method for class 'step_ordinalscore'
tidy(x, ...)

step_ordinalscore 125

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be converted. This is NULL until com-
puted by prep.recipe().

convert A function that takes an ordinal factor vector as an input and outputs a single
numeric variable.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_ordinalscore object.

Details

Dummy variables from ordered factors with C levels will create polynomial basis functions with C-1
terms. As an alternative, this step can be used to translate the ordered levels into a single numeric
vector of values that represent (subjective) scores. By default, the translation uses a linear scale (1,
2, 3, ... C) but custom score functions can also be used (see the example below).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected).

Examples

fail_lvls <- c("meh", "annoying", "really_bad")

ord_data <-
data.frame(item = c("paperclip", "twitter", "airbag"),

fail_severity = factor(fail_lvls,
levels = fail_lvls,
ordered = TRUE))

model.matrix(~fail_severity, data = ord_data)

linear_values <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity)

126 step_other

linear_values <- prep(linear_values, training = ord_data)

juice(linear_values, everything())

custom <- function(x) {
new_values <- c(1, 3, 7)
new_values[as.numeric(x)]

}

nonlin_scores <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity, convert = custom)

tidy(nonlin_scores, number = 2)

nonlin_scores <- prep(nonlin_scores, training = ord_data)

juice(nonlin_scores, everything())

tidy(nonlin_scores, number = 2)

step_other Collapse Some Categorical Levels

Description

step_other creates a specification of a recipe step that will potentially pool infrequently occurring
values into an "other" category.

Usage

step_other(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.05,
other = "other",
objects = NULL,
skip = FALSE,
id = rand_id("other")

)

S3 method for class 'step_other'
tidy(x, ...)

step_other 127

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will potentially
be reduced. See selections() for more details. For the tidy method, these
are not currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
threshold A numeric value between 0 and 1 or an integer greater or equal to one. If it’s less

than one then factor levels whose rate of occurrence in the training set are below
threshold will be "othered". If it’s greater or equal to one then it’s treated
as a frequency and factor levels that occur less then threshold times will be
"othered".

other A single character value for the "other" category.
objects A list of objects that contain the information to pool infrequent levels that is

determined by prep.recipe().
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_other object.

Details

The overall proportion (or total counts) of the categories are computed. The "other" category is
used in place of any categorical levels whose individual proportion (or frequency) in the training set
is less than threshold.
If no pooling is done the data are unmodified (although character data may be changed to factors
based on the value of strings_as_factors in prep.recipe()). Otherwise, a factor is always
returned with different factor levels.
If threshold is less than the largest category proportion, all levels except for the most frequent are
collapsed to the other level.
If the retained categories include the value of other, an error is thrown. If other is in the list of
discarded levels, no error occurs.
If no pooling is done, novel factor levels are converted to missing. If pooling is needed, they will
be placed into the other category.
When data to be processed contains novel levels (i.e., not contained in the training set), the other
category is assigned.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and retained
(the factor levels that were not pulled into "other")

128 step_pca

See Also

step_factor2string(), step_string2factor(), dummy_names(), step_regex(), step_count(),
step_ordinalscore(), step_unorder(), step_novel()

Examples

library(modeldata)
data(okc)

set.seed(19)
in_train <- sample(1:nrow(okc), size = 30000)

okc_tr <- okc[in_train,]
okc_te <- okc[-in_train,]

rec <- recipe(~ diet + location, data = okc_tr)

rec <- rec %>%
step_other(diet, location, threshold = .1, other = "other values")

rec <- prep(rec, training = okc_tr)

collapsed <- bake(rec, okc_te)
table(okc_te$diet, collapsed$diet, useNA = "always")

tidy(rec, number = 1)

novel levels are also "othered"
tahiti <- okc[1,]
tahiti$location <- "a magical place"
bake(rec, tahiti)

threshold as a frequency
rec <- recipe(~ diet + location, data = okc_tr)

rec <- rec %>%
step_other(diet, location, threshold = 2000, other = "other values")

rec <- prep(rec, training = okc_tr)

tidy(rec, number = 1)
compare it to
okc_tr %>% count(diet, sort = TRUE) %>% top_n(4)
okc_tr %>% count(location, sort = TRUE) %>% top_n(3)

step_pca PCA Signal Extraction

Description

step_pca creates a specification of a recipe step that will convert numeric data into one or more
principal components.

step_pca 129

Usage

step_pca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
threshold = NA,
options = list(),
res = NULL,
prefix = "PC",
skip = FALSE,
id = rand_id("pca")

)

S3 method for class 'step_pca'
tidy(x, type = "coef", ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new principal component
columns created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of PCA components to retain as new predictors. If num_comp is
greater than the number of columns or the number of possible components, a
smaller value will be used.

threshold A fraction of the total variance that should be covered by the components. For
example, threshold = .75 means that step_pca should generate enough com-
ponents to capture 75\ Note: using this argument will override and resent any
value given to num_comp.

options A list of options to the default method for stats::prcomp(). Argument defaults
are set to retx = FALSE, center = FALSE, scale. = FALSE, and tol = NULL. Note
that the argument x should not be passed here (or at all).

res The stats::prcomp.default() object is stored here once this preprocessing
step has be trained by prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations

130 step_pca

may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_pca object.

type For the tidy() method, either "coefs" (for the variable loadings per component)
or "variance" (how much variance does each component account for).

Details

Principal component analysis (PCA) is a transformation of a group of variables that produces a new
set of artificial features or components. These components are designed to capture the maximum
amount of information (i.e. variance) in the original variables. Also, the components are statistically
independent from one another. This means that they can be used to combat large inter-variables
correlations in a data set.

It is advisable to standardized the variables prior to running PCA. Here, each variable will be cen-
tered and scaled prior to the PCA calculation. This can be changed using the options argument or
by using step_center() and step_scale().

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PC1 - PC9. If num_comp = 101, the
names would be PC001 - PC101.

Alternatively, threshold can be used to determine the number of components that are required to
capture a specified fraction of the total variance in the variables.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the
loading), and component.

References

Jolliffe, I. T. (2010). Principal Component Analysis. Springer.

See Also

step_ica() step_kpca() step_isomap() recipe() prep.recipe() bake.recipe()

Examples

rec <- recipe(~ ., data = USArrests)
pca_trans <- rec %>%

step_center(all_numeric()) %>%
step_scale(all_numeric()) %>%
step_pca(all_numeric(), num_comp = 3)

pca_estimates <- prep(pca_trans, training = USArrests)

step_pls 131

pca_data <- bake(pca_estimates, USArrests)

rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,

xlim = rng, ylim = rng)

with_thresh <- rec %>%
step_center(all_numeric()) %>%
step_scale(all_numeric()) %>%
step_pca(all_numeric(), threshold = .99)

with_thresh <- prep(with_thresh, training = USArrests)
bake(with_thresh, USArrests)

tidy(pca_trans, number = 3)
tidy(pca_estimates, number = 3)

step_pls Partial Least Squares Feature Extraction

Description

step_pls creates a specification of a recipe step that will convert numeric data into one or more
new dimensions.

Usage

step_pls(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
predictor_prop = 1,
outcome = NULL,
options = list(scale = TRUE),
preserve = FALSE,
res = NULL,
prefix = "PLS",
skip = FALSE,
id = rand_id("pls")

)

S3 method for class 'step_pls'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

132 step_pls

... One or more selector functions to choose which variables will be used to com-
pute the dimensions. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new dimension columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of pls dimensions to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible dimensions, a smaller
value will be used.

predictor_prop The maximum number of original predictors that can have non-zero coefficients
for each PLS component (via regularization).

outcome When a single outcome is available, character string or call to dplyr::vars()
can be used to specify a single outcome variable.

options A list of options to mixOmics::pls(), mixOmics::spls(), mixOmics::plsda(),
or mixOmics::splsda() (depending on the data and arguments).

preserve A single logical: should the original predictor data be retained along with the
new features?

res A list of results are stored here once this preprocessing step has be trained by
prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_pls object

Details

PLS is a supervised version of principal component analysis that requires the outcome data to
compute the new features.

This step requires the Bioconductor mixOmics package. If not installed, the step will stop with a
note about installing the package.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PLS1 - PLS9. If num_comp = 101,
the names would be PLS001 - PLS101.

Sparsity can be encouraged using the predictor_prop parameter. This affects each PLS compo-
nent, and indicates the maximum proportion of predictors with non-zero coefficients in each compo-
nent. step_pls() converts this proportion to determine the keepX parameter in mixOmics::spls()
and mixOmics::splsda(). See the references in mixOmics::spls() for details.

step_pls 133

The tidy() method returns the coefficients that are usually defined as

W (P ′W)−1

(See the Wikipedia article below)

When applied to data, these values are usually scaled by a column-specific norm. The tidy()
method applies this same norm to the coefficients shown above.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms (the selectors or variables selected), components,
and values.

References

https://en.wikipedia.org/wiki/Partial_least_squares_regression

Rohart F, Gautier B, Singh A, Lê Cao K-A (2017) mixOmics: An R package for ’omics feature
selection and multiple data integration. PLoS Comput Biol 13(11): e1005752. https://doi.org/
10.1371/journal.pcbi.1005752

See Also

step_pca(), step_kpca(), step_ica(), recipe(), prep.recipe(), bake.recipe()

Examples

requires the Bioconductor mixOmics package
data(biomass, package = "modeldata")

biom_tr <-
biomass %>%
dplyr::filter(dataset == "Training") %>%
dplyr::select(-dataset,-sample)

biom_te <-
biomass %>%
dplyr::filter(dataset == "Testing") %>%
dplyr::select(-dataset,-sample,-HHV)

dense_pls <-
recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = "HHV", num_comp = 3)

sparse_pls <-
recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = "HHV", num_comp = 3, predictor_prop = 4/5)

PLS discriminant analysis

https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752

134 step_poly

data(cells, package = "modeldata")

cell_tr <-
cells %>%
dplyr::filter(case == "Train") %>%
dplyr::select(-case)

cell_te <-
cells %>%
dplyr::filter(case == "Test") %>%
dplyr::select(-case,-class)

dense_plsda <-
recipe(class ~ ., data = cell_tr) %>%
step_pls(all_predictors(), outcome = "class", num_comp = 5)

sparse_plsda <-
recipe(class ~ ., data = cell_tr) %>%
step_pls(all_predictors(), outcome = "class", num_comp = 5, predictor_prop = 1/4)

step_poly Orthogonal Polynomial Basis Functions

Description

step_poly creates a specification of a recipe step that will create new columns that are basis ex-
pansions of variables using orthogonal polynomials.

Usage

step_poly(
recipe,
...,
role = "predictor",
trained = FALSE,
objects = NULL,
degree = 2,
options = list(),
skip = FALSE,
id = rand_id("poly")

)

S3 method for class 'step_poly'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_poly 135

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created from
the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

objects A list of stats::poly() objects created once the step has been trained.

degree The polynomial degree (an integer).

options A list of options for stats::poly() which should not include x, degree, or
simple. Note that the option raw = TRUE will produce the regular polynomial
values (not orthogonalized).

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_poly object.

Details

step_poly can new features from a single variable that enable fitting routines to model this variable
in a nonlinear manner. The extent of the possible nonlinearity is determined by the degree argument
of stats::poly(). The original variables are removed from the data and new columns are added.
The naming convention for the new variables is varname_poly_1 and so on.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and degree.

See Also

step_ns() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

quadratic <- rec %>%

136 step_profile

step_poly(carbon, hydrogen)
quadratic <- prep(quadratic, training = biomass_tr)

expanded <- bake(quadratic, biomass_te)
expanded

tidy(quadratic, number = 1)

step_profile Create a Profiling Version of a Data Set

Description

step_profile creates a specification of a recipe step that will fix the levels of all variables but
one and will create a sequence of values for the remaining variable. This step can be helpful when
creating partial regression plots for additive models.

Usage

step_profile(
recipe,
...,
profile = NULL,
pct = 0.5,
index = 1,
grid = list(pctl = TRUE, len = 100),
columns = NULL,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("profile")

)

S3 method for class 'step_profile'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will fixed to a single
value. See selections() for more details. For the tidy method, these are not
currently used.

profile A call to dplyr::vars()) to specify which variable will be profiled (see selections()).
If a column is included in both lists to be fixed and to be profiled, an error is
thrown.

step_profile 137

pct A value between 0 and 1 that is the percentile to fix continuous variables. This is
applied to all continuous variables captured by the selectors. For date variables,
either the minimum, median, or maximum used based on their distance to pct.

index The level that qualitative variables will be fixed. If the variables are character
(not factors), this will be the index of the sorted unique values. This is applied
to all qualitative variables captured by the selectors.

grid A named list with elements pctl (a logical) and len (an integer). If pctl =
TRUE, then len denotes how many percentiles to use to create the profiling grid.
This creates a grid between 0 and 1 and the profile is determined by the per-
centiles of the data. For example, if pctl = TRUE and len = 3, the profile would
contain the minimum, median, and maximum values. If pctl = FALSE, it de-
fines how many grid points between the minimum and maximum values should
be created. This parameter is ignored for qualitative variables (since all of their
possible levels are profiled). In the case of date variables, pctl = FALSE will
always be used since there is no quantile method for dates.

columns A character string that contains the names of columns that should be fixed and
their values. These values are not determined until prep.recipe() is called.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_profile object.

Details

This step is atypical in that, when baked, the new_data argument is ignored; the resulting data set
is based on the fixed and profiled variable’s information.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (which is the columns that will be affected), and
type (fixed or profiled).

Examples

library(modeldata)
data(okc)

Setup a grid across date but keep the other values fixed
recipe(~ diet + height + date, data = okc) %>%

step_profile(-date, profile = vars(date)) %>%
prep(training = okc) %>%

138 step_range

juice

##########

An *additive* model; not for use when there are interactions or
other functional relationships between predictors

lin_mod <- lm(mpg ~ poly(disp, 2) + cyl + hp, data = mtcars)

Show the difference in the two grid creation methods

disp_pctl <- recipe(~ disp + cyl + hp, data = mtcars) %>%
step_profile(-disp, profile = vars(disp)) %>%
prep(training = mtcars)

disp_grid <- recipe(~ disp + cyl + hp, data = mtcars) %>%
step_profile(

-disp,
profile = vars(disp),
grid = list(pctl = FALSE, len = 100)

) %>%
prep(training = mtcars)

grid_data <- juice(disp_grid)
grid_data <- grid_data %>%

mutate(pred = predict(lin_mod, grid_data),
method = "grid")

pctl_data <- juice(disp_pctl)
pctl_data <- pctl_data %>%

mutate(pred = predict(lin_mod, pctl_data),
method = "percentile")

plot_data <- bind_rows(grid_data, pctl_data)

library(ggplot2)

ggplot(plot_data, aes(x = disp, y = pred)) +
geom_point(alpha = .5, cex = 1) +
facet_wrap(~ method)

step_range Scaling Numeric Data to a Specific Range

Description

step_range creates a specification of a recipe step that will normalize numeric data to be within a
pre-defined range of values.

step_range 139

Usage

step_range(
recipe,
...,
role = NA,
trained = FALSE,
min = 0,
max = 1,
ranges = NULL,
skip = FALSE,
id = rand_id("range")

)

S3 method for class 'step_range'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be scaled. See
selections() for more details. For the tidy method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

min A single numeric value for the smallest value in the range.

max A single numeric value for the largest value in the range.

ranges A character vector of variables that will be normalized. Note that this is ignored
until the values are determined by prep.recipe(). Setting this value will be
ineffective.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_range object.

Details

When a new data point is outside of the ranges seen in the training set, the new values are truncated
at min or max.

140 step_ratio

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected), min, and
max.

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

ranged_trans <- rec %>%
step_range(carbon, hydrogen)

ranged_obj <- prep(ranged_trans, training = biomass_tr)

transformed_te <- bake(ranged_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te

tidy(ranged_trans, number = 1)
tidy(ranged_obj, number = 1)

step_ratio Ratio Variable Creation

Description

step_ratio creates a a specification of a recipe step that will create one or more ratios out of
numeric variables.

Usage

step_ratio(
recipe,
...,
role = "predictor",
trained = FALSE,
denom = denom_vars(),
naming = function(numer, denom) make.names(paste(numer, denom, sep = "_o_")),
columns = NULL,
skip = FALSE,

step_ratio 141

id = rand_id("ratio")
)

denom_vars(...)

S3 method for class 'step_ratio'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used in the
numerator of the ratio. When used with denom_vars, the dots indicates which
variables are used in the denominator. See selections() for more details. For
the tidy method, these are not currently used.

role For terms created by this step, what analysis role should they be assigned?. By
default, the function assumes that the newly created ratios created by the original
variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

denom A call to denom_vars to specify which variables are used in the denominator that
can include specific variable names separated by commas or different selectors
(see selections()). If a column is included in both lists to be numerator and
denominator, it will be removed from the listing.

naming A function that defines the naming convention for new ratio columns.

columns The column names used in the ratios. This argument is not populated until
prep.recipe() is executed.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_ratio object

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and denom.

Examples

library(recipes)
library(modeldata)
data(biomass)

biomass$total <- apply(biomass[, 3:7], 1, sum)

142 step_regex

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
sulfur + total,

data = biomass_tr)

ratio_recipe <- rec %>%
all predictors over total
step_ratio(all_predictors(), denom = denom_vars(total)) %>%
get rid of the original predictors
step_rm(all_predictors(), -ends_with("total"))

ratio_recipe <- prep(ratio_recipe, training = biomass_tr)

ratio_data <- bake(ratio_recipe, biomass_te)
ratio_data

step_regex Create Dummy Variables using Regular Expressions

Description

step_regex creates a specification of a recipe step that will create a new dummy variable based on
a regular expression.

Usage

step_regex(
recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
options = list(),
result = make.names(pattern),
input = NULL,
skip = FALSE,
id = rand_id("regex")

)

S3 method for class 'step_regex'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_regex 143

... A single selector functions to choose which variable will be searched for the
pattern. The selector should resolve into a single variable. See selections()
for more details. For the tidy method, these are not currently used.

role For a variable created by this step, what analysis role should they be assigned?.
By default, the function assumes that the new dummy variable column created
by the original variable will be used as a predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

pattern A character string containing a regular expression (or character string for fixed
= TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible.

options A list of options to grepl() that should not include x or pattern.

result A single character value for the name of the new variable. It should be a valid
column name.

input A single character value for the name of the variable being searched. This is
NULL until computed by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_regex object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and result
(the new column name).

Examples

library(modeldata)
data(covers)

rec <- recipe(~ description, covers) %>%
step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
step_regex(description, pattern = "ratake families")

rec2 <- prep(rec, training = covers)
rec2

with_dummies <- bake(rec2, new_data = covers)
with_dummies
tidy(rec, number = 1)
tidy(rec2, number = 1)

144 step_relevel

step_relevel Relevel factors to a desired level

Description

step_relevel creates a specification of a recipe step that will reorder the provided factor columns
so that the level specified by ref_level is first. This is useful for contr.treatment contrasts which take
the first level as the reference.

Usage

step_relevel(
recipe,
...,
role = NA,
trained = FALSE,
ref_level,
objects = NULL,
skip = FALSE,
id = rand_id("relevel")

)

S3 method for class 'step_relevel'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be affected by
the step. These variables should be character or factor types. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

ref_level A single character value that will be used to relevel the factor column(s) (if the
level is present).

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_relevel object.

step_relu 145

Details

The selected variables are releveled to a level (given by ref_level). Placing the ref_level in the
first position.

Note that if the original columns are character, they will be converted to factors by this step.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Examples

library(modeldata)
data(okc)
rec <- recipe(~ diet + location, data = okc) %>%

step_unknown(diet, new_level = "UNKNOWN") %>%
step_relevel(diet, ref_level = "UNKNOWN") %>%
prep()

data <- bake(rec, okc)
levels(data$diet)

step_relu Apply (Smoothed) Rectified Linear Transformation

Description

step_relu creates a specification of a recipe step that will apply the rectified linear or softplus
transformations to numeric data. The transformed data is added as new columns to the data matrix.

Usage

step_relu(
recipe,
...,
role = "predictor",
trained = FALSE,
shift = 0,
reverse = FALSE,
smooth = FALSE,
prefix = "right_relu_",
columns = NULL,
skip = FALSE,
id = rand_id("relu")

)

S3 method for class 'step_relu'
tidy(x, ...)

146 step_relu

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor".

trained A logical to indicate if the quantities for preprocessing have been estimated.

shift A numeric value dictating a translation to apply to the data.

reverse A logical to indicate if the left hinge should be used as opposed to the right
hinge.

smooth A logical indicating if the softplus function, a smooth approximation to the rec-
tified linear transformation, should be used.

prefix A prefix for generated column names, default to "right_relu_" when right hinge
transformation and "left_relu_" for reversed/left hinge transformations.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_relu object.

Details

The rectified linear transformation is calculated as

max(0, x− c)

and is also known as the ReLu or right hinge function. If reverse is true, then the transformation
is reflected about the y-axis, like so:

max(0, c− x)

Setting the smooth option to true will instead calculate a smooth approximation to ReLu according
to

ln(1 + e(x− c)

The reverse argument may also be applied to this transformation.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

step_rename 147

Connection to MARS

The rectified linear transformation is used in Multivariate Adaptive Regression Splines as a basis
function to fit piecewise linear functions to data in a strategy similar to that employed in tree based
models. The transformation is a popular choice as an activation function in many neural networks,
which could then be seen as a stacked generalization of MARS when making use of ReLu activa-
tions. The hinge function also appears in the loss function of Support Vector Machines, where it
penalizes residuals only if they are within a certain margin of the decision boundary.

See Also

recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

transformed_te <- rec %>%
step_relu(carbon, shift = 40) %>%
prep(biomass_tr) %>%
bake(biomass_te)

transformed_te

step_rename Rename variables by name

Description

step_rename creates a specification of a recipe step that will add variables using dplyr::rename().

Usage

step_rename(
recipe,
...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("rename")

148 step_rename

)

S3 method for class 'step_rename'
tidy(x, ...)

S3 method for class 'step_rename_at'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more unquoted expressions separated by commas. See dplyr::rename()
where the convention is new_name = old_name.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new dimension columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure(s) of

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_rename object

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns values which contains the rename expressions as character
strings (and are not reparsable).

Examples

recipe(~ ., data = iris) %>%
step_rename(Sepal_Width = Sepal.Width) %>%
prep() %>%
juice() %>%
slice(1:5)

vars <- c(var1 = "cyl", var2 = "am")

step_rename_at 149

car_rec <-
recipe(~ ., data = mtcars) %>%
step_rename(!!vars)

car_rec %>%
prep() %>%
juice()

car_rec %>%
tidy(number = 1)

step_rename_at Rename multiple columns

Description

step_rename_at creates a specification of a recipe step that will rename the selected variables
using a common function.

Usage

step_rename_at(
recipe,
...,
fn,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("rename_at")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

fn A function fun, a quosure style lambda ‘~ fun(.)“ or a list of either form (but
containing only a single function, see dplyr::rename_at()). Note that this
argument must be named.

role For model terms created by this step, what analysis role should they be assigned?
By default, the function assumes that the new dimension columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

150 step_rm

inputs A vector of column names populated by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which contains the columns being transformed.

Examples

library(dplyr)
recipe(~ ., data = iris) %>%

step_rename_at(everything(), fn = ~ gsub(".", "_", ., fixed = TRUE)) %>%
prep() %>%
juice() %>%
slice(1:10)

step_rm General Variable Filter

Description

step_rm creates a specification of a recipe step that will remove variables based on their name,
type, or role.

Usage

step_rm(
recipe,
...,
role = NA,
trained = FALSE,
removals = NULL,
skip = FALSE,
id = rand_id("rm")

)

S3 method for class 'step_rm'
tidy(x, ...)

step_rm 151

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will evaluated by
the filtering bake. See selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep.recipe() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_rm object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be removed.

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

library(dplyr)
smaller_set <- rec %>%

step_rm(contains("gen"))

smaller_set <- prep(smaller_set, training = biomass_tr)

filtered_te <- bake(smaller_set, biomass_te)
filtered_te

tidy(smaller_set, number = 1)

152 step_rollimpute

step_rollimpute Impute Numeric Data Using a Rolling Window Statistic

Description

step_rollimpute creates a specification of a recipe step that will substitute missing values of
numeric variables by the a measure of location (e.g. median) within a moving window.

Usage

step_rollimpute(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("rollimpute")

)

S3 method for class 'step_rollimpute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. These columns should be non-integer
numerics (i.e., double precision). For the tidy method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A named numeric vector of columns. This is NULL until computed by prep.recipe().

statistic A function with a single argument for the data to compute the imputed value.
Only complete values will be passed to the function and it should return a double
precision value.

window The size of the window around a point to be imputed. Should be an odd integer
greater than one. See Details below for a discussion of points at the ends of the
series.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome

step_rollimpute 153

variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_rollimpute object.

Details

On the tails, the window is shifted towards the ends. For example, for a 5-point window, the
windows for the first four points are 1:5, 1:5, 1:5, and then 2:6.

When missing data are in the window, they are not passed to the function. If all of the data in the
window are missing, a missing value is returned.

The statistics are calculated on the training set values before imputation. This means that if previous
data within the window are missing, their imputed values are not included in the window data used
for imputation. In other words, each imputation does not know anything about previous imputations
in the series prior to the current point.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and window
(the window size).

Examples

library(lubridate)

set.seed(145)
example_data <-

data.frame(
day = ymd("2012-06-07") + days(1:12),
x1 = round(runif(12), 2),
x2 = round(runif(12), 2),
x3 = round(runif(12), 2)

)
example_data$x1[c(1, 5, 6)] <- NA
example_data$x2[c(1:4, 10)] <- NA

library(recipes)
seven_pt <- recipe(~ . , data = example_data) %>%

update_role(day, new_role = "time_index") %>%
step_rollimpute(all_predictors(), window = 7) %>%
prep(training = example_data)

juice(seven_pt)

154 step_sample

step_sample Sample rows using dplyr

Description

step_sample creates a specification of a recipe step that will sample rows using dplyr::sample_n()
or dplyr::sample_frac().

Usage

step_sample(
recipe,
...,
role = NA,
trained = FALSE,
size = NULL,
replace = FALSE,
skip = TRUE,
id = rand_id("sample")

)

S3 method for class 'step_sample'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Argument ignored; included for consistency with other step specification func-
tions. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

size An integer or fraction. If the value is within (0, 1), dplyr::sample_frac() is
applied to the data. If an integer value of 1 or greater is used, dplyr::sample_n()
is applied. The default of NULL uses dplyr::sample_n() with the size of the
training set (or smaller for smaller new_data).

replace Sample with or without replacement?

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = FALSE; in most instances
that affect the rows of the data being predicted, this step probably should not be
applied.

id A character string that is unique to this step to identify it.

x A step_sample object

step_scale 155

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns size, replace, and id.

Examples

Uses `sample_n`
recipe(~ ., data = iris) %>%

step_sample(size = 1) %>%
prep(training = iris) %>%
juice() %>%
nrow()

Uses `sample_frac`
recipe(~ ., data = iris) %>%

step_sample(size = 0.9999) %>%
prep(training = iris) %>%
juice() %>%
nrow()

Uses `sample_n` and returns _at maximum_ 120 samples.
smaller_iris <-

recipe(~ ., data = iris) %>%
step_sample() %>%
prep(training = iris %>% slice(1:120))

juice(smaller_iris) %>% nrow()
bake(smaller_iris, iris %>% slice(121:150)) %>% nrow()

step_scale Scaling Numeric Data

Description

step_scale creates a specification of a recipe step that will normalize numeric data to have a
standard deviation of one.

Usage

step_scale(
recipe,
...,
role = NA,
trained = FALSE,
sds = NULL,
factor = 1,
na_rm = TRUE,
skip = FALSE,

156 step_scale

id = rand_id("scale")
)

S3 method for class 'step_scale'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
sds A named numeric vector of standard deviations. This is NULL until computed by

prep.recipe().
factor A numeric value of either 1 or 2 that scales the numeric inputs by one or two

standard deviations. By dividing by two standard deviations, the coefficients
attached to continous predictors can be interpreted the same way as with binary
inputs. Defaults to 1. More in reference below.

na_rm A logical value indicating whether NA values should be removed when comput-
ing the standard deviation.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_scale object.

Details

Scaling data means that the standard deviation of a variable is divided out of the data. step_scale
estimates the variable standard deviations from the data used in the training argument of prep.recipe.
bake.recipe then applies the scaling to new data sets using these standard deviations.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the standard deviations).

References

Gelman, A. (2007) "Scaling regression inputs by dividing by two standard deviations." Unpub-
lished. Source: http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.
pdf.

http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf

step_shuffle 157

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

scaled_trans <- rec %>%
step_scale(carbon, hydrogen)

scaled_obj <- prep(scaled_trans, training = biomass_tr)

transformed_te <- bake(scaled_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te
tidy(scaled_trans, number = 1)
tidy(scaled_obj, number = 1)

step_shuffle Shuffle Variables

Description

step_shuffle creates a specification of a recipe step that will randomly change the order of rows
for selected variables.

Usage

step_shuffle(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("shuffle")

)

S3 method for class 'step_shuffle'
tidy(x, ...)

158 step_slice

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will permuted. See
selections() for more details. For the tidy method, these are not currently
used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string that contains the names of columns that should be shuffled.
These values are not determined until prep.recipe() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_shuffle object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

Examples

integers <- data.frame(A = 1:12, B = 13:24, C = 25:36)

library(dplyr)
rec <- recipe(~ A + B + C, data = integers) %>%

step_shuffle(A, B)

rand_set <- prep(rec, training = integers)

set.seed(5377)
bake(rand_set, integers)

tidy(rec, number = 1)
tidy(rand_set, number = 1)

step_slice Filter rows by position using dplyr

Description

step_slice creates a specification of a recipe step that will filter rows using dplyr::slice().

step_slice 159

Usage

step_slice(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("slice")

)

S3 method for class 'step_slice'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Integer row values. See dplyr::slice() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = FALSE; in most instances
that affect the rows of the data being predicted, this step probably should not be
applied.

id A character string that is unique to this step to identify it.

x A step_slice object

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which contains the filtering indices.

Examples

rec <- recipe(~ ., data = iris) %>%
step_slice(1:3)

160 step_spatialsign

prepped <- prep(rec, training = iris %>% slice(1:75))
tidy(prepped, number = 1)

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
slice(1:3)

rec_train <- juice(prepped)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
slice(1:3)

rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

Embedding the integer expression (or vector) into the
recipe:

keep_rows <- 1:6

qq_rec <-
recipe(~ ., data = iris) %>%
Embed `keep_rows` in the call using !!
step_slice(!!keep_rows) %>%
prep(training = iris)

tidy(qq_rec, number = 1)

step_spatialsign Spatial Sign Preprocessing

Description

step_spatialsign is a specification of a recipe step that will convert numeric data into a projection
on to a unit sphere.

Usage

step_spatialsign(
recipe,
...,
role = "predictor",

step_spatialsign 161

na_rm = TRUE,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("spatialsign")

)

S3 method for class 'step_spatialsign'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used for the
normalization. See selections() for more details. For the tidy method, these
are not currently used.

role For model terms created by this step, what analysis role should they be assigned?

na_rm A logical: should missing data be removed from the norm computation?

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_spatialsign object.

Details

The spatial sign transformation projects the variables onto a unit sphere and is related to global
contrast normalization. The spatial sign of a vector w is w/norm(w).

The variables should be centered and scaled prior to the computations.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

References

Serneels, S., De Nolf, E., and Van Espen, P. (2006). Spatial sign preprocessing: a simple way
to impart moderate robustness to multivariate estimators. Journal of Chemical Information and
Modeling, 46(3), 1402-1409.

162 step_sqrt

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

ss_trans <- rec %>%
step_center(carbon, hydrogen) %>%
step_scale(carbon, hydrogen) %>%
step_spatialsign(carbon, hydrogen)

ss_obj <- prep(ss_trans, training = biomass_tr)

transformed_te <- bake(ss_obj, biomass_te)

plot(biomass_te$carbon, biomass_te$hydrogen)

plot(transformed_te$carbon, transformed_te$hydrogen)

tidy(ss_trans, number = 3)
tidy(ss_obj, number = 3)

step_sqrt Square Root Transformation

Description

step_sqrt creates a specification of a recipe step that will square root transform the data.

Usage

step_sqrt(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("sqrt")

)

S3 method for class 'step_sqrt'
tidy(x, ...)

step_sqrt 163

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be transformed.
See selections() for more details. For the tidy method, these are not cur-
rently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_sqrt object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be affected.

See Also

step_logit() step_invlogit() step_log() step_hyperbolic() recipe() prep.recipe()
bake.recipe()

Examples

set.seed(313)
examples <- matrix(rnorm(40)^2, ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

sqrt_trans <- rec %>%
step_sqrt(all_predictors())

sqrt_obj <- prep(sqrt_trans, training = examples)

transformed_te <- bake(sqrt_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(sqrt_trans, number = 1)
tidy(sqrt_obj, number = 1)

164 step_string2factor

step_string2factor Convert Strings to Factors

Description

step_string2factor will convert one or more character vectors to factors (ordered or unordered).

Usage

step_string2factor(
recipe,
...,
role = NA,
trained = FALSE,
levels = NULL,
ordered = FALSE,
skip = FALSE,
id = rand_id("string2factor")

)

S3 method for class 'step_string2factor'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will converted to fac-
tors. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

levels An options specification of the levels to be used for the new factor. If left NULL,
the sorted unique values present when bake is called will be used.

ordered A single logical value; should the factor(s) be ordered?

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_string2factor object.

step_unknown 165

Details

If levels is given, step_string2factor will convert all variables affected by this step to have the
same levels.

Also, note that prep has an option strings_as_factors that defaults to TRUE. This should be
changed so that raw character data will be applied to step_string2factor. However, this step can
also take existing factors (but will leave them as-is).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and ordered.

See Also

step_factor2string() step_dummy() step_other() step_novel()

Examples

library(modeldata)
data(okc)

rec <- recipe(~ diet + location, data = okc)

make_factor <- rec %>%
step_string2factor(diet)

make_factor <- prep(make_factor,
training = okc,
strings_as_factors = FALSE)

note that `diet` is a factor
juice(make_factor) %>% head
okc %>% head
tidy(make_factor, number = 1)

step_unknown Assign missing categories to "unknown"

Description

step_unknown creates a specification of a recipe step that will assign a missing value in a factor
level to"unknown".

Usage

step_unknown(
recipe,
...,
role = NA,

166 step_unknown

trained = FALSE,
new_level = "unknown",
objects = NULL,
skip = FALSE,
id = rand_id("unknown")

)

S3 method for class 'step_unknown'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be affected by
the step. These variables should be character or factor types. See selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

new_level A single character value that will be assigned to new factor levels.

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_unknown object.

Details

The selected variables are adjusted to have a new level (given by new_level) that is placed in the
last position.

Note that if the original columns are character, they will be converted to factors by this step.

If new_level is already in the data given to prep, an error is thrown.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and value
(the factor levels that is used for the new value)

See Also

step_factor2string(), step_string2factor(), dummy_names(), step_regex(), step_count(),
step_ordinalscore(), step_unorder(), step_other(), step_novel()

step_unorder 167

Examples

library(modeldata)
data(okc)

rec <-
recipe(~ diet + location, data = okc) %>%
step_unknown(diet, new_level = "unknown diet") %>%
step_unknown(location, new_level = "unknown location") %>%
prep()

table(juice(rec)$diet, okc$diet, useNA = "always") %>%
as.data.frame() %>%
dplyr::filter(Freq > 0)

tidy(rec, number = 1)

step_unorder Convert Ordered Factors to Unordered Factors

Description

step_unorder creates a specification of a recipe step that will transform the data.

Usage

step_unorder(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("unorder")

)

S3 method for class 'step_unorder'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

168 step_unorder

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_unorder object.

Details

The factors level order is preserved during the transformation.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected).

See Also

step_ordinalscore() recipe() prep.recipe() bake.recipe()

Examples

lmh <- c("Low", "Med", "High")

examples <- data.frame(X1 = factor(rep(letters[1:4], each = 3)),
X2 = ordered(rep(lmh, each = 4),

levels = lmh))

rec <- recipe(~ X1 + X2, data = examples)

factor_trans <- rec %>%
step_unorder(all_predictors())

factor_obj <- prep(factor_trans, training = examples)

transformed_te <- bake(factor_obj, examples)
table(transformed_te$X2, examples$X2)

tidy(factor_trans, number = 1)
tidy(factor_obj, number = 1)

step_upsample 169

step_upsample Up-Sample a Data Set Based on a Factor Variable

Description

step_upsample is now available as themis::step_upsample(). This function creates a specifi-
cation of a recipe step that will replicate rows of a data set to make the occurrence of levels in a
specific factor level equal.

Usage

step_upsample(
recipe,
...,
over_ratio = 1,
ratio = NA,
role = NA,
trained = FALSE,
column = NULL,
target = NA,
skip = TRUE,
seed = sample.int(10^5, 1),
id = rand_id("upsample")

)

S3 method for class 'step_upsample'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variable is used to sample the
data. See selections() for more details. The selection should result in single
factor variable. For the tidy method, these are not currently used.

over_ratio A numeric value for the ratio of the majority-to-minority frequencies. The de-
fault value (1) means that all other levels are sampled up to have the same fre-
quency as the most occurring level. A value of 0.5 would mean that the minority
levels will have (at most) (approximately) half as many rows than the majority
level.

ratio Deprecated argument; same as over_ratio.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

column A character string of the variable name that will be populated (eventually) by
the ... selectors.

170 step_upsample

target An integer that will be used to subsample. This should not be set by the user and
will be populated by prep.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

seed An integer that will be used as the seed when upsampling.

id A character string that is unique to this step to identify it.

x A step_upsample object.

Details

Up-sampling is intended to be performed on the training set alone. For this reason, the default is
skip = TRUE. It is advisable to use prep(recipe,retain = TRUE) when preparing the recipe; in
this way juice() can be used to obtain the up-sampled version of the data.

If there are missing values in the factor variable that is used to define the sampling, missing data are
selected at random in the same way that the other factor levels are sampled. Missing values are not
used to determine the amount of data in the majority level (see example below).

For any data with factor levels occurring with the same frequency as the majority level, all data will
be retained.

All columns in the data are sampled and returned by juice() and bake().

When used in modeling, users should strongly consider using the option skip = TRUE so that the
extra sampling is not conducted outside of the training set.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the variable used to sample.

Examples

library(modeldata)
data(okc)

orig <- table(okc$diet, useNA = "always")

sort(orig, decreasing = TRUE)

up_rec <- recipe(~ ., data = okc) %>%
Bring the minority levels up to about 200 each
200/16562 is approx 0.0121
step_upsample(diet, over_ratio = 0.0121) %>%
prep(training = okc)

training <- table(juice(up_rec)$diet, useNA = "always")

Since `skip` defaults to TRUE, baking the step has no effect

step_window 171

baked_okc <- bake(up_rec, new_data = okc)
baked <- table(baked_okc$diet, useNA = "always")

Note that if the original data contained more rows than the
target n (= ratio * majority_n), the data are left alone:
data.frame(

level = names(orig),
orig_freq = as.vector(orig),
train_freq = as.vector(training),
baked_freq = as.vector(baked)

)

step_window Moving Window Functions

Description

step_window creates a specification of a recipe step that will create new columns that are the results
of functions that compute statistics across moving windows.

Usage

step_window(
recipe,
...,
role = NA,
trained = FALSE,
size = 3,
na_rm = TRUE,
statistic = "mean",
columns = NULL,
names = NULL,
skip = FALSE,
id = rand_id("window")

)

S3 method for class 'step_window'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

172 step_window

role For model terms created by this step, what analysis role should they be assigned?
If names is left to be NULL, the rolling statistics replace the original columns and
the roles are left unchanged. If names is set, those new columns will have a role
of NULL unless this argument has a value.

trained A logical to indicate if the quantities for preprocessing have been estimated.

size An odd integer >= 3 for the window size.

na_rm A logical for whether missing values should be removed from the calculations
within each window.

statistic A character string for the type of statistic that should be calculated for each mov-
ing window. Possible values are: 'max', 'mean', 'median', 'min', 'prod',
'sd', 'sum', 'var'

columns A character string that contains the names of columns that should be processed.
These values are not determined until prep.recipe() is called.

names An optional character string that is the same length of the number of terms se-
lected by terms. If you are not sure what columns will be selected, use the
summary function (see the example below). These will be the names of the new
columns created by the step.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_window object.

Details

The calculations use a somewhat atypical method for handling the beginning and end parts of the
rolling statistics. The process starts with the center justified window calculations and the beginning
and ending parts of the rolling values are determined using the first and last rolling values, respec-
tively. For example if a column x with 12 values is smoothed with a 5-point moving median, the first
three smoothed values are estimated by median(x[1:5]) and the fourth uses median(x[2:6]).

step will stop with a note about installing the package.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms (the selectors or variables selected) and statistic
(the summary function name), and size.

Examples

library(recipes)
library(dplyr)
library(rlang)
library(ggplot2, quietly = TRUE)

step_YeoJohnson 173

set.seed(5522)
sim_dat <- data.frame(x1 = (20:100) / 10)
n <- nrow(sim_dat)
sim_dat$y1 <- sin(sim_dat$x1) + rnorm(n, sd = 0.1)
sim_dat$y2 <- cos(sim_dat$x1) + rnorm(n, sd = 0.1)
sim_dat$x2 <- runif(n)
sim_dat$x3 <- rnorm(n)

rec <- recipe(y1 + y2 ~ x1 + x2 + x3, data = sim_dat) %>%
step_window(starts_with("y"), size = 7, statistic = "median",

names = paste0("med_7pt_", 1:2),
role = "outcome") %>%

step_window(starts_with("y"),
names = paste0("mean_3pt_", 1:2),
role = "outcome")

rec <- prep(rec, training = sim_dat)

If you aren't sure how to set the names, see which variables are selected
and the order that they are selected:
terms_select(info = summary(rec), terms = quos(starts_with("y")))

smoothed_dat <- bake(rec, sim_dat, everything())

ggplot(data = sim_dat, aes(x = x1, y = y1)) +
geom_point() +
geom_line(data = smoothed_dat, aes(y = med_7pt_1)) +
geom_line(data = smoothed_dat, aes(y = mean_3pt_1), col = "red") +
theme_bw()

tidy(rec, number = 1)
tidy(rec, number = 2)

If you want to replace the selected variables with the rolling statistic
don't set `names`
sim_dat$original <- sim_dat$y1
rec <- recipe(y1 + y2 + original ~ x1 + x2 + x3, data = sim_dat) %>%

step_window(starts_with("y"))
rec <- prep(rec, training = sim_dat)
smoothed_dat <- bake(rec, sim_dat, everything())
ggplot(smoothed_dat, aes(x = original, y = y1)) +

geom_point() +
theme_bw()

step_YeoJohnson Yeo-Johnson Transformation

Description

step_YeoJohnson creates a specification of a recipe step that will transform data using a simple
Yeo-Johnson transformation.

174 step_YeoJohnson

Usage

step_YeoJohnson(
recipe,
...,
role = NA,
trained = FALSE,
lambdas = NULL,
limits = c(-5, 5),
num_unique = 5,
na_rm = TRUE,
skip = FALSE,
id = rand_id("YeoJohnson")

)

S3 method for class 'step_YeoJohnson'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
lambdas A numeric vector of transformation values. This is NULL until computed by

prep.recipe().
limits A length 2 numeric vector defining the range to compute the transformation

parameter lambda.
num_unique An integer where data that have less possible values will not be evaluate for a

transformation.
na_rm A logical value indicating whether NA values should be removed during compu-

tations.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
x A step_YeoJohnson object.

Details

The Yeo-Johnson transformation is very similar to the Box-Cox but does not require the input vari-
ables to be strictly positive. In the package, the partial log-likelihood function is directly optimized
within a reasonable set of transformation values (which can be changed by the user).

step_YeoJohnson 175

This transformation is typically done on the outcome variable using the residuals for a statistical
model (such as ordinary least squares). Here, a simple null model (intercept only) is used to apply
the transformation to the predictor variables individually. This can have the effect of making the
variable distributions more symmetric.

If the transformation parameters are estimated to be very closed to the bounds, or if the optimization
fails, a value of NA is used and no transformation is applied.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

References

Yeo, I. K., and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika.

See Also

step_BoxCox() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)

yj_transform <- step_YeoJohnson(rec, all_numeric())

yj_estimates <- prep(yj_transform, training = biomass_tr)

yj_te <- bake(yj_estimates, biomass_te)

plot(density(biomass_te$sulfur), main = "before")
plot(density(yj_te$sulfur), main = "after")

tidy(yj_transform, number = 1)
tidy(yj_estimates, number = 1)

176 step_zv

step_zv Zero Variance Filter

Description

step_zv creates a specification of a recipe step that will remove variables that contain only a single
value.

Usage

step_zv(
recipe,
...,
role = NA,
trained = FALSE,
removals = NULL,
skip = FALSE,
id = rand_id("zv")

)

S3 method for class 'step_zv'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will evaluated by
the filtering. See selections() for more details. For the tidy method, these
are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep.recipe() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_zv object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms which is the columns that will be removed.

summary.recipe 177

See Also

step_nzv() step_corr() recipe() prep.recipe() bake.recipe()

Examples

library(modeldata)
data(biomass)

biomass$one_value <- 1

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
nitrogen + sulfur + one_value,

data = biomass_tr)

zv_filter <- rec %>%
step_zv(all_predictors())

filter_obj <- prep(zv_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
any(names(filtered_te) == "one_value")

tidy(zv_filter, number = 1)
tidy(filter_obj, number = 1)

summary.recipe Summarize a Recipe

Description

This function prints the current set of variables/features and some of their characteristics.

Usage

S3 method for class 'recipe'
summary(object, original = FALSE, ...)

Arguments

object A recipe object

original A logical: show the current set of variables or the original set when the recipe
was defined.

... further arguments passed to or from other methods (not currently used).

178 terms_select

Details

Note that, until the recipe has been trained, the current and original variables are the same.

It is possible for variables to have multiple roles by adding them with add_role(). If a variable has
multiple roles, it will have more than one row in the summary tibble.

Value

A tibble with columns variable, type, role, and source.

See Also

recipe() prep.recipe()

Examples

rec <- recipe(~ ., data = USArrests)
summary(rec)
rec <- step_pca(rec, all_numeric(), num = 3)
summary(rec) # still the same since not yet trained
rec <- prep(rec, training = USArrests)
summary(rec)

terms_select Select Terms in a Step Function.

Description

This function bakes the step function selectors and might be useful when creating custom steps.

Usage

terms_select(terms, info, empty_fun = abort_selection)

Arguments

terms A list of formulas whose right-hand side contains quoted expressions. See
rlang::quos() for examples.

info A tibble with columns variable, type, role, and source that represent the
current state of the data. The function summary.recipe() can be used to get
this information from a recipe.

empty_fun A function to execute when no terms are selected by the step. The default func-
tion throws an error with a message.

Value

A character string of column names or an error of there are no selectors or if no variables are
selected.

tidy.recipe 179

See Also

recipe() summary.recipe() prep.recipe()

Examples

library(rlang)
library(modeldata)
data(okc)
rec <- recipe(~ ., data = okc)
info <- summary(rec)
terms_select(info = info, quos(all_predictors()))

tidy.recipe Tidy the Result of a Recipe

Description

tidy will return a data frame that contains information regarding a recipe or operation within the
recipe (when a tidy method for the operation exists).

Usage

S3 method for class 'recipe'
tidy(x, number = NA, id = NA, ...)

S3 method for class 'step'
tidy(x, ...)

S3 method for class 'check'
tidy(x, ...)

Arguments

x A recipe object (trained or otherwise).

number An integer or NA. If missing and id is not provided, the return value is a list of
the operations in the recipe. If a number is given, a tidy method is executed for
that operation in the recipe (if it exists). number must not be provided if id is.

id A character string or NA. If missing and number is not provided, the return value
is a list of the operations in the recipe. If a character string is given, a tidy
method is executed for that operation in the recipe (if it exists). id must not be
provided if number is.

... Not currently used.

180 update.step

Value

A tibble with columns that would vary depending on what tidy method is executed. When number
and id are NA, a tibble with columns number (the operation iteration), operation (either "step" or
"check"), type (the method, e.g. "nzv", "center"), a logical column called trained for whether the
operation has been estimated using prep, a logical for skip, and a character column id.

Examples

library(modeldata)
data(okc)

okc_rec <- recipe(~ ., data = okc) %>%
step_other(all_nominal(), threshold = 0.05, other = "another") %>%
step_date(date, features = "dow") %>%
step_center(all_numeric()) %>%
step_dummy(all_nominal()) %>%
check_cols(starts_with("date"), age, height)

tidy(okc_rec)

tidy(okc_rec, number = 2)
tidy(okc_rec, number = 3)

okc_rec_trained <- prep(okc_rec, training = okc)

tidy(okc_rec_trained)
tidy(okc_rec_trained, number = 3)

update.step Update a recipe step

Description

This step method for update() takes named arguments as ... who’s values will replace the ele-
ments of the same name in the actual step.

Usage

S3 method for class 'step'
update(object, ...)

Arguments

object A recipe step.

... Key-value pairs where the keys match up with names of elements in the step,
and the values are the new values to update the step with.

update.step 181

Details

For a step to be updated, it must not already have been trained. Otherwise, conflicting information
can arise between the data returned from juice() and the information in the step.

Examples

library(modeldata)
data(biomass)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

Create a recipe using step_bs() with degree = 3
rec <- recipe(

HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

) %>%
step_bs(carbon, hydrogen, degree = 3)

Update the step to use degree = 4
rec2 <- rec
rec2$steps[[1]] <- update(rec2$steps[[1]], degree = 4)

Prep both recipes
rec_prepped <- prep(rec, training = biomass_tr)
rec2_prepped <- prep(rec2, training = biomass_tr)

Juice both to see what changed
juice(rec_prepped)
juice(rec2_prepped)

Cannot update a recipe step that has been trained!
Not run:
update(rec_prepped$steps[[1]], degree = 4)

End(Not run)

Index

∗Topic datagen
add_step, 4
bake, 4
check_class, 5
check_range, 12
discretize, 15
has_role, 19
names0, 21
prep, 22
recipe, 25
roles, 28
step_arrange, 32
step_bagimpute, 33
step_bin2factor, 36
step_BoxCox, 38
step_bs, 40
step_center, 42
step_classdist, 43
step_corr, 45
step_count, 48
step_cut, 49
step_date, 51
step_depth, 53
step_downsample, 57
step_dummy, 59
step_factor2string, 61
step_filter, 63
step_geodist, 65
step_holiday, 67
step_hyperbolic, 68
step_ica, 70
step_integer, 72
step_interact, 74
step_inverse, 78
step_invlogit, 79
step_isomap, 81
step_knnimpute, 83
step_kpca, 86
step_kpca_poly, 88

step_kpca_rbf, 91
step_lincomb, 95
step_log, 97
step_logit, 99
step_lowerimpute, 100
step_meanimpute, 102
step_medianimpute, 104
step_modeimpute, 105
step_mutate, 107
step_mutate_at, 109
step_nnmf, 112
step_normalize, 114
step_novel, 116
step_ns, 118
step_num2factor, 120
step_nzv, 122
step_ordinalscore, 124
step_other, 126
step_pca, 128
step_pls, 131
step_poly, 134
step_profile, 136
step_range, 138
step_ratio, 140
step_regex, 142
step_relevel, 144
step_rename, 147
step_rename_at, 149
step_rm, 150
step_rollimpute, 152
step_sample, 154
step_scale, 155
step_shuffle, 157
step_slice, 158
step_spatialsign, 160
step_sqrt, 162
step_string2factor, 164
step_unknown, 165
step_unorder, 167

182

INDEX 183

step_upsample, 169
step_window, 171
step_YeoJohnson, 173
step_zv, 176
terms_select, 178

add_check (add_step), 4
add_role (roles), 28
add_role(), 178
add_step, 4
all_nominal (has_role), 19
all_nominal(), 31
all_numeric (has_role), 19
all_numeric(), 31
all_outcomes (has_role), 19
all_outcomes(), 31
all_predictors (has_role), 19
all_predictors(), 31

bake, 4
bake(), 5, 26, 28, 58, 170
bake.recipe(), 6–8, 10, 11, 13, 14, 20, 32,

35, 37, 39, 41–44, 46, 47, 49, 50,
52–54, 56, 58, 60, 62, 64, 66–69,
71–73, 75, 77–80, 82–84, 87–90,
92–94, 96–101, 103, 104, 106, 108,
110–115, 117, 119, 121, 123, 125,
127, 129, 130, 132, 133, 135, 137,
139, 141, 143, 144, 146–148,
150–152, 154, 156, 158, 159, 161,
163, 164, 166, 168, 170, 172,
174–177

base::as.integer(), 120
base::make.names(), 60

check_class, 5
check_cols, 8
check_missing, 9
check_new_values, 11
check_range, 12
current_info (has_role), 19

ddalpha::depth.halfspace(), 54
ddalpha::depth.Mahalanobis(), 54
ddalpha::depth.potential(), 54
ddalpha::depth.projection(), 54
ddalpha::depth.simplicial(), 54
ddalpha::depth.simplicialVolume(), 54
ddalpha::depth.spatial(), 54

ddalpha::depth.zonoid(), 54
denom_vars (step_ratio), 140
detect_step, 15
dimRed::Isomap(), 82
discretize, 15
discretize(), 56
dplyr::arrange(), 32
dplyr::filter(), 63
dplyr::mutate(), 107, 108
dplyr::mutate_at(), 110
dplyr::rename(), 147, 148
dplyr::rename_at(), 149
dplyr::sample_frac(), 154
dplyr::sample_n(), 154
dplyr::slice(), 158, 159
dplyr::vars(), 132, 136
dummy_names (names0), 21
dummy_names(), 60, 117, 128, 166

everything(), 5, 20

fastICA::fastICA(), 71
formula.recipe, 17
fully_trained, 18

gower::gower_topn(), 84
gregexpr(), 48
grepl(), 143

has_role, 19
has_role(), 29, 31
has_type (has_role), 19
has_type(), 31

imp_vars (step_bagimpute), 33
ipred::ipredbagg(), 34

juice, 20
juice(), 5, 58, 170, 181

kernlab::kpca(), 87, 89, 92

names0, 21

predict.discretize (discretize), 15
prep, 22
prep(), 5, 8, 9, 11, 23, 26, 28, 75
prep.recipe(), 4, 6–8, 10, 11, 13, 14, 20, 32,

34, 35, 37, 39, 41–44, 46, 47, 49, 50,
52–54, 56, 58, 60, 62, 64, 66–69,

184 INDEX

71–73, 75, 77–80, 82–84, 87–90,
92–101, 103, 104, 106, 108,
110–115, 117, 119–121, 123, 125,
127, 129, 130, 132, 133, 135, 137,
139, 141, 143, 144, 146–148,
150–152, 154, 156, 158, 159, 161,
163, 164, 166, 168, 170, 172,
174–179

prepper, 23
print.recipe, 24

recipe, 25
recipe(), 4, 5, 7, 14, 20, 28, 39, 41, 43, 47,

53, 68, 69, 72, 77, 79, 80, 83, 88, 90,
93, 94, 96, 98, 100, 112, 114, 119,
123, 130, 133, 135, 147, 163, 168,
175, 177–179

recipes, 27
remove_role (roles), 28
rlang::quos(), 178
roles, 28

selection (selections), 30
selections, 30
selections(), 5, 6, 8, 9, 11, 13, 20, 28, 34,

37, 38, 40, 42, 44, 46, 48, 50, 52, 54,
56, 57, 59, 62, 66, 67, 69, 70, 73, 75,
78, 80, 81, 84, 86, 89, 91, 94, 95, 97,
99, 101, 102, 104, 106, 110, 111,
113, 115, 116, 118, 120, 123, 125,
127, 129, 132, 135, 136, 139, 141,
143, 144, 146, 149, 151, 152, 156,
158, 161, 163, 164, 166, 167, 169,
171, 174, 176

splines::bs(), 41
splines::ns(), 118, 119
stats::cor(), 46
stats::poly(), 135
stats::prcomp(), 129
stats::prcomp.default(), 129
stats::quantile(), 16
step_arrange, 32
step_bagimpute, 33
step_bin2factor, 36
step_BoxCox, 38
step_BoxCox(), 175
step_bs, 40
step_center, 42
step_center(), 28, 130

step_classdist, 43
step_corr, 45
step_corr(), 123, 177
step_count, 48
step_count(), 60, 74, 117, 128, 166
step_cut, 49
step_date, 51
step_date(), 68
step_depth, 53
step_discretize, 55
step_downsample, 57
step_dummy, 59
step_dummy(), 21, 28, 31, 62, 74, 75, 121, 165
step_factor2string, 61
step_factor2string(), 60, 74, 117, 121,

128, 165, 166
step_filter, 63
step_geodist, 65
step_holiday, 67
step_holiday(), 53
step_hyperbolic, 68
step_hyperbolic(), 79, 80, 98, 100, 163
step_ica, 70
step_ica(), 83, 88, 90, 93, 114, 130, 133
step_integer, 72
step_interact, 74
step_interact(), 31
step_intercept, 76
step_inverse, 78
step_invlogit, 79
step_invlogit(), 69, 98, 100, 163
step_isomap, 81
step_isomap(), 72, 88, 90, 93, 114, 130
step_knnimpute, 83
step_kpca, 86
step_kpca(), 72, 83, 114, 130, 133
step_kpca_poly, 88
step_kpca_rbf, 91
step_lag, 93
step_lincomb, 95
step_log, 97
step_log(), 69, 79, 80, 100, 163
step_logit, 99
step_logit(), 69, 80, 98, 163
step_lowerimpute, 100
step_meanimpute, 102
step_medianimpute, 104
step_modeimpute, 105

INDEX 185

step_mutate, 107
step_mutate_at, 109
step_naomit, 111
step_naomit(), 93, 94
step_nnmf, 112
step_normalize, 114
step_novel, 116
step_novel(), 60, 74, 128, 165, 166
step_ns, 118
step_ns(), 41, 135
step_num2factor, 120
step_nzv, 122
step_nzv(), 47, 96, 177
step_ordinalscore, 124
step_ordinalscore(), 60, 74, 117, 128, 166,

168
step_other, 126
step_other(), 60, 74, 117, 165, 166
step_pca, 128
step_pca(), 31, 72, 83, 88, 90, 93, 114, 133
step_pls, 131
step_poly, 134
step_poly(), 41, 119
step_profile, 136
step_range, 138
step_ratio, 140
step_regex, 142
step_regex(), 60, 74, 117, 128, 166
step_relevel, 144
step_relu, 145
step_rename, 147
step_rename_at, 149
step_rm, 150
step_rm(), 52, 53, 68
step_rollimpute, 152
step_sample, 154
step_scale, 155
step_scale(), 130
step_shuffle, 157
step_slice, 158
step_spatialsign, 160
step_sqrt, 162
step_sqrt(), 69, 79, 80, 98, 100
step_string2factor, 164
step_string2factor(), 60, 62, 74, 117, 121,

128, 166
step_unknown, 165
step_unorder, 167

step_unorder(), 60, 74, 117, 128, 166
step_upsample, 169
step_window, 171
step_YeoJohnson, 173
step_YeoJohnson(), 39
step_zv, 176
summary.recipe, 177
summary.recipe(), 178, 179

terms_select, 178
tidy.check (tidy.recipe), 179
tidy.check_class (check_class), 5
tidy.check_cols (check_cols), 8
tidy.check_missing (check_missing), 9
tidy.check_range (check_range), 12
tidy.recipe, 179
tidy.step (tidy.recipe), 179
tidy.step_arrange (step_arrange), 32
tidy.step_bagimpute (step_bagimpute), 33
tidy.step_bin2factor (step_bin2factor),

36
tidy.step_BoxCox (step_BoxCox), 38
tidy.step_bs (step_bs), 40
tidy.step_center (step_center), 42
tidy.step_classdist (step_classdist), 43
tidy.step_corr (step_corr), 45
tidy.step_count (step_count), 48
tidy.step_cut (step_cut), 49
tidy.step_date (step_date), 51
tidy.step_depth (step_depth), 53
tidy.step_discretize (step_discretize),

55
tidy.step_downsample (step_downsample),

57
tidy.step_dummy (step_dummy), 59
tidy.step_factor2string

(step_factor2string), 61
tidy.step_filter (step_filter), 63
tidy.step_geodist (step_geodist), 65
tidy.step_holiday (step_holiday), 67
tidy.step_hyperbolic (step_hyperbolic),

68
tidy.step_ica (step_ica), 70
tidy.step_integer (step_integer), 72
tidy.step_interact (step_interact), 74
tidy.step_inverse (step_inverse), 78
tidy.step_invlogit (step_invlogit), 79
tidy.step_isomap (step_isomap), 81
tidy.step_knnimpute (step_knnimpute), 83

186 INDEX

tidy.step_kpca (step_kpca), 86
tidy.step_kpca_poly (step_kpca_poly), 88
tidy.step_kpca_rbf (step_kpca_rbf), 91
tidy.step_lincomb (step_lincomb), 95
tidy.step_log (step_log), 97
tidy.step_logit (step_logit), 99
tidy.step_lowerimpute

(step_lowerimpute), 100
tidy.step_meanimpute (step_meanimpute),

102
tidy.step_medianimpute

(step_medianimpute), 104
tidy.step_modeimpute (step_modeimpute),

105
tidy.step_mutate (step_mutate), 107
tidy.step_mutate_at (step_mutate), 107
tidy.step_naomit (step_naomit), 111
tidy.step_nnmf (step_nnmf), 112
tidy.step_normalize (step_normalize),

114
tidy.step_novel (step_novel), 116
tidy.step_ns (step_ns), 118
tidy.step_num2factor (step_num2factor),

120
tidy.step_nzv (step_nzv), 122
tidy.step_ordinalscore

(step_ordinalscore), 124
tidy.step_other (step_other), 126
tidy.step_pca (step_pca), 128
tidy.step_pls (step_pls), 131
tidy.step_poly (step_poly), 134
tidy.step_profile (step_profile), 136
tidy.step_range (step_range), 138
tidy.step_ratio (step_ratio), 140
tidy.step_regex (step_regex), 142
tidy.step_relevel (step_relevel), 144
tidy.step_relu (step_relu), 145
tidy.step_rename (step_rename), 147
tidy.step_rename_at (step_rename), 147
tidy.step_rm (step_rm), 150
tidy.step_rollimpute (step_rollimpute),

152
tidy.step_sample (step_sample), 154
tidy.step_scale (step_scale), 155
tidy.step_shuffle (step_shuffle), 157
tidy.step_slice (step_slice), 158
tidy.step_spatialsign

(step_spatialsign), 160

tidy.step_sqrt (step_sqrt), 162
tidy.step_string2factor

(step_string2factor), 164
tidy.step_unknown (step_unknown), 165
tidy.step_unorder (step_unorder), 167
tidy.step_upsample (step_upsample), 169
tidy.step_window (step_window), 171
tidy.step_YeoJohnson (step_YeoJohnson),

173
tidy.step_zv (step_zv), 176
tidyselect::all_of(), 31
tidyselect::any_of(), 31
tidyselect::contains(), 31
tidyselect::ends_with(), 31
tidyselect::everything(), 31
tidyselect::matches(), 31
tidyselect::num_range(), 31
tidyselect::one_of(), 31
tidyselect::starts_with(), 31
timeDate::listHolidays(), 67, 68

update.step, 180
update_role (roles), 28

	add_step
	bake
	check_class
	check_cols
	check_missing
	check_new_values
	check_range
	detect_step
	discretize
	formula.recipe
	fully_trained
	has_role
	juice
	names0
	prep
	prepper
	print.recipe
	recipe
	recipes
	roles
	selections
	step_arrange
	step_bagimpute
	step_bin2factor
	step_BoxCox
	step_bs
	step_center
	step_classdist
	step_corr
	step_count
	step_cut
	step_date
	step_depth
	step_discretize
	step_downsample
	step_dummy
	step_factor2string
	step_filter
	step_geodist
	step_holiday
	step_hyperbolic
	step_ica
	step_integer
	step_interact
	step_intercept
	step_inverse
	step_invlogit
	step_isomap
	step_knnimpute
	step_kpca
	step_kpca_poly
	step_kpca_rbf
	step_lag
	step_lincomb
	step_log
	step_logit
	step_lowerimpute
	step_meanimpute
	step_medianimpute
	step_modeimpute
	step_mutate
	step_mutate_at
	step_naomit
	step_nnmf
	step_normalize
	step_novel
	step_ns
	step_num2factor
	step_nzv
	step_ordinalscore
	step_other
	step_pca
	step_pls
	step_poly
	step_profile
	step_range
	step_ratio
	step_regex
	step_relevel
	step_relu
	step_rename
	step_rename_at
	step_rm
	step_rollimpute
	step_sample
	step_scale
	step_shuffle
	step_slice
	step_spatialsign
	step_sqrt
	step_string2factor
	step_unknown
	step_unorder
	step_upsample
	step_window
	step_YeoJohnson
	step_zv
	summary.recipe
	terms_select
	tidy.recipe
	update.step
	Index

