Package ‘readxl’

March 13, 2019
Title Read Excel Files
Version 1.3.1

Description Import excel files into R. Supports ".xIs' via the
embedded 'libxls' C library <https://github.com/libxls/libxls> and
"xIsx' via the embedded RapidXML' C++ library
<http://rapidxml.sourceforge.net>. Works on Windows, Mac and Linux
without external dependencies.

License GPL-3
URL https://readxl.tidyverse.org, https://github.com/tidyverse/readxl

BugReports https://github.com/tidyverse/readxl/issues
Imports cellranger, Rcpp (>= 0.12.18), tibble (>= 1.3.1), utils
Suggests covr, knitr, rmarkdown, rprojroot (>= 1.1), testthat
LinkingTo progress, Rcpp

VignetteBuilder knitr

Encoding UTF-8

LazyData true

Note libxls-SHA cef1393

RoxygenNote 6.1.1

NeedsCompilation yes

Author Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Jennifer Bryan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>),
RStudio [cph, fnd] (Copyright holder of all R code and all C/C++ code
without explicit copyright attribution),

Marcin Kalicinski [ctb, cph] (Author of included RapidXML code),
Komarov Valery [ctb, cph] (Author of included libxls code),
Christophe Leitienne [ctb, cph] (Author of included libxls code),
Bob Colbert [ctb, cph] (Author of included libxls code),

David Hoerl [ctb, cph] (Author of included libxIs code),

Evan Miller [ctb, cph] (Author of included libxIs code)

Maintainer Jennifer Bryan <jenny@rstudio.com>
Repository CRAN
Date/Publication 2019-03-13 16:30:02 UTC

https://readxl.tidyverse.org
https://github.com/tidyverse/readxl
https://github.com/tidyverse/readxl/issues

2 cell-specification

R topics documented:

cell-specification L. e 2
excel_format e 3
excel_sheets L e 4
readxl_example 5
readxl_progress e e 5
read_excel e e 6

Index 9

cell-specification Specify cells for reading
Description

The range argument of read_excel () provides many ways to limit the read to a specific rectangle
of cells. The simplest usage is to provide an Excel-like cell range, such as range = "D12:F15" or
range = "R1C12:R6C15". The cell rectangle can be specified in various other ways, using helper
functions. In all cases, cell range processing is handled by the cellranger package, where you can
find full documentation for the functions used in the examples below.

See Also

The cellranger package has full documentation on cell specification and offers additional functions
for manipulating "A1:D10" style spreadsheet ranges. Here are the most relevant:

e cellranger::cell_limits()

e cellranger::cell_rows()

e cellranger::cell_cols()

e cellranger: :anchored()

Examples

path <- readxl_example("geometry.xls")
Rows 1 and 2 are empty (as are rows 7 and higher)
Column 1 aka "A" is empty (as are columns 5 of "E" and higher)

By default, the populated data cells are "shrink-wrapped” into a
minimal data frame
read_excel (path)

Specific rectangle that is subset of populated cells, possibly improper
read_excel(path, range = "B3:D6")
read_excel(path, range = "C3:D5")

Specific rectangle that forces inclusion of unpopulated cells
read_excel(path, range = "A3:D5")
read_excel(path, range = "A4:E5")

excel format 3

read_excel(path, range = "C5:E7")

Anchor a rectangle of specified size at a particular cell
read_excel(path, range = anchored(”C4"”, dim = c(3, 2)), col_names = FALSE)

Specify only the rows or only the columns
read_excel (path, range = cell_rows(3:6))
read_excel(path, range = cell_cols("C:D"))
read_excel(path, range = cell_cols(2))

Specify exactly one row or column bound
read_excel(path, range = cell_rows(c(5, NA)))
read_excel(path, range = cell_rows(c(NA, 4)))
read_excel(path, range = cell_cols(c("C", NA)))
read_excel(path, range = cell_cols(c(NA, 2)))

General open rectangles

upper left = C4, everything else unspecified
read_excel(path, range = cell_limits(c(4, 3), c(NA, NA)))
upper right = D4, everything else unspecified
read_excel(path, range = cell_limits(c(4, NA), c(NA, 4)))

excel_format Determine file format

Description

Determine if files are xlIs or xIsx (or from the xlsx family).

excel_format(guess = TRUE) is used by read_excel() to determine format. It draws on logic
from two lower level functions:

e format_from_ext () attempts to determine format from the file extension.
* format_from_signature() consults the file signature or "magic number".

File extensions associated with xIsx vs. xIs:

e xIsx: .x1lsx, .x1sm, .x1tx, .x1tm
e xIs: .xls

File signatures (in hexadecimal) for xlsx vs xls:

* xlIsx: First 4 bytes are 50 4B 03 04
* xls: First 8 bytes are DO CF 11 EQ A1 B1 1A E1

Usage
excel_format(path, guess = TRUE)

format_from_ext(path)

format_from_signature(path)

https://en.wikipedia.org/wiki/List_of_file_signatures

4 excel _sheets

Arguments
path Path to the x1s/xIsx file.
guess Logical. If the file extension is absent or not recognized, this controls whether
we attempt to guess format based on the file signature or "magic number".
Value

Character vector with values "x1sx"”, "x1s", or NA.

Examples

files <- c(
"a.xlsx",
"b.x1s",
"c.png"”,
file.path(R.home("doc”), "html”, "logo.jpg"),
readx1l_example("clippy.x1lsx"),
readx]l_example("deaths.x1s")

)

excel_format(files)

excel_sheets List all sheets in an excel spreadsheet

Description

List all sheets in an excel spreadsheet

Usage

excel_sheets(path)

Arguments

path Path to the xIs/xIsx file.

Examples

excel_sheets(readxl_example("datasets.x1lsx"))
excel_sheets(readxl_example("datasets.x1s"))

To load all sheets in a workbook, use lapply
path <- readxl_example("datasets.xls")
lapply(excel_sheets(path), read_excel, path = path)

readx]_example 5

readxl_example Get path to readxl example

Description

readx] comes bundled with some example files in its inst/extdata directory. This function make
them easy to access.

Usage

readxl_example(path = NULL)

Arguments

path Name of file. If NULL, the example files will be listed.

Examples

readx1_example()
readxl_example("datasets.xlsx")

readxl_progress Determine whether to show progress spinner

Description
By default, readxl displays a progress spinner unless one of the following is TRUE:
* The spinner is explicitly disabled by setting options(readxl.show_progress = FALSE).
¢ The code is run in a non-interactive session (interactive() is FALSE).

* The code is run by knitr / rmarkdown.

* The code is run in an RStudio notebook chunk. readxl uses the progress package under-the-
hood and therefore is also sensitive to any options that it consults.

Usage

readxl_progress()

https://cran.r-project.org/package=progress

6 read_excel

read_excel Read xls and xlsx files

Description

Read xIs and xIsx files

read_excel () calls excel_format () to determine if path is xlIs or xIsx, based on the file extension
and the file itself, in that order. Use read_x1s() and read_x1sx() directly if you know better and
want to prevent such guessing.

Usage
read_excel(path, sheet = NULL, range = NULL, col_names = TRUE,
col_types = NULL, na = "", trim_ws = TRUE, skip = 0,
n_max = Inf, guess_max = min(1000, n_max),
progress = readxl_progress(), .name_repair = "unique")

read_xls(path, sheet = NULL, range = NULL, col_names = TRUE,

col_types = NULL, na = "", trim_ws = TRUE, skip = 0,
n_max = Inf, guess_max = min(1000, n_max),
progress = readxl_progress(), .name_repair = "unique")

read_xlsx(path, sheet = NULL, range = NULL, col_names = TRUE,

col_types = NULL, na = "", trim_ws = TRUE, skip = 0,
n_max = Inf, guess_max = min(1000, n_max),
progress = readxl_progress(), .name_repair = "unique")
Arguments
path Path to the xIs/xIsx file.
sheet Sheet to read. Either a string (the name of a sheet), or an integer (the position

of the sheet). Ignored if the sheet is specified via range. If neither argument
specifies the sheet, defaults to the first sheet.

range A cell range to read from, as described in cell-specification. Includes typi-
cal Excel ranges like "B3:D87", possibly including the sheet name like "Bud-
get!B2:G14", and more. Interpreted strictly, even if the range forces the inclu-
sion of leading or trailing empty rows or columns. Takes precedence over skip,
n_max and sheet.

col_names TRUE to use the first row as column names, FALSE to get default names, or a
character vector giving a name for each column. If user provides col_types as
a vector, col_names can have one entry per column, i.e. have the same length
as col_types, or one entry per unskipped column.

col_types Either NULL to guess all from the spreadsheet or a character vector containing
one entry per column from these options: "skip", "guess", "logical", "numeric",
"date", "text" or "list". If exactly one col_type is specified, it will be recycled.

read_excel

na

trim_ws

skip

n_max

guess_max

progress

.name_repair

Value

A tibble

See Also

The content of a cell in a skipped column is never read and that column will not
appear in the data frame output. A list cell loads a column as a list of length 1
vectors, which are typed using the type guessing logic from col_types = NULL,
but on a cell-by-cell basis.

Character vector of strings to interpret as missing values. By default, readxl
treats blank cells as missing data.

Should leading and trailing whitespace be trimmed?

Minimum number of rows to skip before reading anything, be it column names
or data. Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if range is given.

Maximum number of data rows to read. Trailing empty rows are automatically
skipped, so this is an upper bound on the number of rows in the returned tibble.
Ignored if range is given.

Maximum number of data rows to use for guessing column types.

Display a progress spinner? By default, the spinner appears only in an inter-
active session, outside the context of knitting a document, and when the call is
likely to run for several seconds or more. See readxl_progress() for more
details.

Handling of column names. By default, readx] ensures column names are not
empty and are unique. If the tibble package version is recent enough, there
is full support for .name_repair as documented in tibble::tibble(). If an
older version of tibble is present, readxl falls back to name repair in the style of
tibble v1.4.2.

cell-specification for more details on targetting cells with the range argument

Examples

datasets <- readxl_example("datasets.xlsx")
read_excel (datasets)

Specify sheet either by position or by name
read_excel(datasets, 2)
read_excel (datasets, "mtcars")

Skip rows and use default column names
read_excel (datasets, skip = 148, col_names = FALSE)

Recycle a single column type
read_excel (datasets, col_types = "text")

Specify some col_types and guess others

read_excel

read_excel (datasets, col_types = c("text”, "guess"”, "numeric”, "guess", "guess"))

Accomodate a column with disparate types via col_type = "list”

df <- read_excel(readxl_example("clippy.xlsx"), col_types = c("text", "list"))
df

df$value

sapply(df$value, class)

Limit the number of data rows read
read_excel (datasets, n_max = 3)

Read from an Excel range using A1 or R1C1 notation
read_excel(datasets, range = "C1:E7")
read_excel (datasets, range = "R1C2:R2C5")

Specify the sheet as part of the range
read_excel (datasets, range = "mtcars!B1:D5")

Read only specific rows or columns
read_excel(datasets, range = cell_rows(102:151), col_names = FALSE)
read_excel(datasets, range = cell_cols("B:D"))

Get a preview of column names
names(read_excel(readxl_example("datasets.xlsx"), n_max = 0))

if (utils::packageVersion("tibble"”) > "1.4.2") {
exploit full .name_repair flexibility from tibble

"universal” names are unique and syntactic
read_excel(

readxl_example("deaths.x1sx"),

range = "arts!A5:F15",

.name_repair = "universal”

specify name repair as a built-in function
read_excel(readxl_example("clippy.x1lsx"”), .name_repair = toupper)

specify name repair as a custom function
my_custom_name_repair <- function(nms) tolower(gsub("[.]",
read_excel(

readxl_example("datasets.xlsx"),

.name_repair = my_custom_name_repair

non

_", nms))

specify name repair as an anonymous function
read_excel(

readxl_example("datasets.xlsx"),

sheet = "chickwts”,

.name_repair = ~ substr(.x, start = 1, stop = 3)

Index

anchored (cell-specification), 2

cell-specification, 2,6, 7
cell_cols (cell-specification), 2
cell_limits (cell-specification), 2
cell_rows (cell-specification), 2
cellranger, 2

cellranger: :anchored(), 2
cellranger::cell_cols(), 2
cellranger::cell_limits(), 2
cellranger::cell_rows(), 2

excel_format, 3
excel_format(), 6
excel_sheets, 4

format_from_ext (excel_format), 3
format_from_signature (excel_format), 3

read_excel, 6
read_excel(), 2

read_xls (read_excel), 6
read_xlsx (read_excel), 6
readxl_example, 5
readxl_progress, 5
readxl_progress(), 7

tibble, 7
tibble::tibble(), 7

	cell-specification
	excel_format
	excel_sheets
	readxl_example
	readxl_progress
	read_excel
	Index

