
Package ‘readJDX’
July 21, 2020

Type Package

Title Import Data in the JCAMP-DX Format

Version 0.5.1

Date 2020-07-19

Description Import data written in the JCAMP-DX format. This is an instrument-independent for-
mat used in the field of spectroscopy. Examples include IR, NMR, and Raman spec-
troscopy. See the vignette for background and supported formats. The official JCAMP-
DX site is <http://www.jcamp-dx.org/>.

URL https://github.com/bryanhanson/readJDX

BugReports https://github.com/bryanhanson/readJDX/issues

License GPL (>= 3)

ByteCompile TRUE

Depends R (>= 3.0)

Suggests knitr, kableExtra, pinp

Imports stringr

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Bryan A. Hanson [aut, cre] (<https://orcid.org/0000-0003-3536-8246>)

Maintainer Bryan A. Hanson <hanson@depauw.edu>

Repository CRAN

Date/Publication 2020-07-21 13:40:06 UTC

R topics documented:
decompLines . 2
readJDX . 3
sinkall . 6

Index 8

1

https://github.com/bryanhanson/readJDX
https://github.com/bryanhanson/readJDX/issues

2 decompLines

decompLines Decompress the Data Lines in a JCAMP-DX File

Description

This function is used by the package, and can also be called by the user who wishes to study
problematic lines in a file in a standalone manner. See the examples.

Usage

decompLines(VL, debug = 0)

Arguments

VL Character. A vector of character strings composed of the compressed data strings
in the file. If coming from the package internals, named as "Line_1" etc. If used
in standalone mode, names will be added/overwritten as "Line_1" etc.

debug Integer. See readJDX for details.

Value

A list of numeric strings, the result of unpacking the compressed data. One list element is returned
for each line. The numeric string is named with the ASDF compression mode.

Details

Each individual line passed here is converted to a list to make processing and naming the pieces
easier.The individual entries are named according to their original ASDF compression code. Unless
otherwise noted all functions called from here should act on a list of lines, via lapply. Note too that
the X values are present, e.g. X, Y1, Y2 ... Yn.

Formats

AFFN is separated by any amount of white space so processing is straightforward, as exponents
are handled automatically, and white space stripped off automatically, courtesy of R internals. It
appears AFFN is never mixed with other formats. The other formats are collectively called ASDF
in the standard.

Examples

testLines1 <- c(
"482A885145L989378k853295J46714q39581j382088R41076k774051J365135l135709P53917",
"472a903359j71857q18832K573831k615133L481852l395846L894844l478693M916433",
"463B483240m513444O146172m826168N233079m522551M000252m097028L466111l460183",
"454i0520L061628k524598K788931k509430L219286k511160K709095k122775J594246"

)
demo1 <- decompLines(testLines1, debug = 6)

readJDX 3

testLines2 <- c(
EU AFFN:
"1898,58486802541 -0,0170190036296844 -0,0170874372124672 -0,0171865783631802",
"1917,23501403401 -0,0176097713410854 -0,0177919361740351 -0,0179808251559734",
AFFN with fixed field width/extra space:
" 16383 2259260 -5242968 -7176216 -1616072",
" 16379 10650432 4373926 -3660824 2136488"

)

demo2 <- decompLines(testLines2, debug = 6)

readJDX Import a File Written in the JCAMP-DX Format

Description

This function supervises the entire import process. Not all official formats are supported, see the
vignettes. Prior to release, this package is checked against a very large number of files in the
author’s collection. However, the JCAMP-DX standard allows many variations and it is difficult to
anticipate all permutations. Error messages will generally let you know what’s going on. If you
have a file that you feel should be supported but gives an error, please file an issue at Github and
share the file.

Usage

readJDX(file = "", SOFC = TRUE, debug = 0)

Arguments

file Character. The file name to import.

SOFC Logical. "Stop on Failed Check" The default is TRUE i.e. stop when something
is not right. This ensures that correct data is returned. Change to FALSE at your
own risk. NOTE: Only certain checks can be skipped via this option, as there
are some parameters that must be available and correct in order to return any
answer. For instance, one must end up with the same number of X and Y values.
This option is provided for those advanced users who have carefully checked
their original files and want to skip the required checks. It may also be useful for
troubleshooting. The JCAMP-DX standard requires several checks of the data as
it is decompressed. These checks are essential to obtaining the correct results.
However, some JCAMP-DX writing programs do not follow the standard to
the letter. For instance we have observed that not all JCAMP-DX writers put
FIRSTY into the metadata, even though it is required by the standard. In other
cases values in the file have low precision (see section on precision). Another
example is we have observed files where the X values are the count of data
points, and FIRSTY is given in Hz. Since the field strength and center of the
sweep frequency is needed to convert to ppm, and these are not required in the
standard, one cannot return an answer in ppm or Hz automatically. In cases like
this, once can set SOFC = FALSE and then manually convert the X axis.

4 readJDX

debug Integer. The level of debug reporting desired. For those options giving a lot
of output, you may wish to consider directing the output via sinkall and then
search the results for the problematic lines.

• 1 or higher = import progress is reported.
• 2 = details about the variable lists, compression formats and parameters that

were found.
• 3 = print the extracted X values (huge output!).
• 4 = detailed info on the Y value processing (huge output!).
• 5 = detailed info about processing the Y values when DUP is in use (huge

output!).
• 6 = detailed info about processing the Y values when DIF is in use (huge

output!).
In cases where an error is about to stop execution, you get additional information
regardless of the debug value.

Value

A list, as follows:

• The first element is a data frame summarizing the pieces of the imported file.
• The second element is the file metadata.
• The third element is a integer vector giving the comment lines found (exclusive of the metdata,

which typically contains many comments).

Additional elements contain the extracted data as follows:

• If the file contains multiple spectra (not currently supported), there will be one data frame for
each spectrum.

• If the file contains the real and imaginary parts of a 1D NMR spectrum, there will be two data
frames, one containing the real portion and the other the imaginary portion.

• If the file contains one non-NMR spectrum, a single data frame will be returned.
• In all cases above, the data frame has elements x and y.
• In the case of 2D NMR data, additional list elements are returned including the F2 frequency

values, the F1 frequency values, and a matrix containing the 2D data.

Included Data Files

The examples make use of data files included with the package. File SBO.jdx is an IR spectrum
of Smart Balance Original spread (a butter substitute). The spectrum is presented in transmission
format, and was recorded on a ThermoFisher instrument. The file uses AFFN compression, and
was written with the JCAMP-DX 5.01 standard. Note that even though the Y-axis was recorded in
percent transmission, in the JDX file it is stored on [0. . . 1]. File PCRF.jdx is a 1H NMR spectrum
of a hexane extract of a reduced fat potato chip. The spectrum was recorded on a JEOL instrument.
The file uses SQZ DIF DUP compression, and was written with the JCAMP-DX 6.00 standard.
File PCRF_line265.jdx has a deliberate error in it. File isasspc1.jdx is a 2D NMR file recorded
on a JEOL GX 400 instrument. The file is freely available at http://www.jcamp-dx.org/. File
MiniDIFDUP.JDX is a small demonstration file, used in the vignettes to illustrate the decompression
process. It is derived from a freely available file.

http://www.jcamp-dx.org/

readJDX 5

Precision

Internally, this package uses a tolerance factor when comparing values during certain checks. This
is desirable because the original values in the files are text strings of varying lengths which get
converted to numerical values by R. Occasionally values in the file, such as FIRSTY, are stored with
low precision, and the computation of the value to be compared occurs with much greater precision.
In these cases the check can fail even when the tolerance is pretty loose. In these cases one might
consider setting SOFC = FALSE to allow the calculation to proceed. If you do this, be certain to check
the results carefully as described under SOFC.

Y Value Check

The standard requires a "Y Value Check" when in DIF mode. Extra Y values have been appended
to each line to use in the check, and the last Y value on a line must equal the first Y value on the
next line IFF one is in DIF mode. After a successful check, the extra Y value must be removed. In
actual practice, some vendors, at least some of the time, seem to differ as to the definition of "being
in DIF mode". In turn, this determines how the Y value check should proceed.

• The standard says "When, and only when, the last ordinate of a line is in DIF form ... The first
ordinate of the next line ... is always an actual value, equal to the last calculated ordinate of
the previous line". See section 5.8.3 of the 1988 publication.

• Taking this definition literally, the Y value check (and removal of the extra value), should
occur when one sees e.g. ... DIF DIF DIF (end of line). Let’s call this "literal DIF". A literal
DIF is easy to detect and act on.

• In other cases, something like ... DIF DUP DUP (end of line) is considered to be in DIF mode
for Y value check purposes. In these cases we have look backwards to see if we are in DIF
mode. Let’s call this "relayed DIF".

• However, some vendors may treat ... DIF DUP DUP (end of line) as not in DIF mode, and
hence one should not do the Y value check and not remove any values, since this vendor would
not have added an extra Y value.

• In addition to these three possibilities, readJDX through versions 0.3.xx used a different defini-
tion, namely if there were any DIF entries anywhere on the line, then DIF mode was assumed
and the Y value check carried out. This worked for many files, but not all.

• In the 0.4.xx series, readJDX detects both the literal and relayed definitions and tries to keep
moving forward as much as possible.

Performance

readJDX is not particularly fast. Priority has been given to assuring correct answers, helpful debug-
ging messages and understandable code.

See Also

Do browseVignettes("readJDX") for background information, references, supported formats,
and details about the roles of each function.

6 sinkall

Examples

IR spectrum
sbo <- system.file("extdata", "SBO.jdx", package = "readJDX")
chk <- readJDX(sbo)
plot(chk[[4]]$x, chk[[4]]$y / 100,

type = "l", main = "Original Smart Balance Spread",
xlab = "wavenumber", ylab = "Percent Transmission"

)

1H NMR spectrum
pcrf <- system.file("extdata", "PCRF.jdx", package = "readJDX")
chk <- readJDX(pcrf)
plot(chk[[4]]$x, chk[[4]]$y,

type = "l", main = "Reduced Fat Potato Chip Extract",
xlab = "ppm", ylab = "Intensity"

)

Capturing processing for troubleshooting
mdd <- system.file("extdata", "MiniDIFDUP.JDX", package = "readJDX")
tf <- tempfile(pattern = "Troubleshooting", fileext = "txt")
chk <- readJDX(mdd, debug = 6)
sinkall() # close the file connection
file.show(tf)

2D HETCORR spectrum
Not run:
nmr2d <- system.file("extdata", "isasspc1.dx", package = "readJDX")
chk <- readJDX(nmr2d)
contour(chk$Matrix, drawlabels = FALSE) # default contours not optimal

End(Not run)

Not run:
Line 265 has an N -> G error. Try with various levels of debug.
Even with debug = 0 you get useful diagnostic info.
problem <- system.file("extdata", "PCRF_line265.jdx", package = "readJDX")
chk <- readJDX(problem)

End(Not run)

sinkall Divert stdout and stderr to a File

Description

This is a simple utility function to direct the output of stdout and stderr to a file. stdout is the
information normally printed in the console, for instance the results of print(rnorm(5)). stderr
is the output created by functions message, warning and stop. The purpose of this function is to
allow one to direct all this output into a single file where the results can be studied, for instance, for

sinkall 7

troubleshooting purposes. Works exactly like the base sink() function: you have to call it a second
time with no arguments to close the file.

Usage

sinkall(filename = NULL)

Arguments

filename Character. A path to a filename where the results will be captured.

Value

NULL, invisibly.

Examples

Not run:
tf <- tempfile(pattern = "SinkDemo", fileext = "txt")
sinkall(tf)
print("Hello")
print(rnorm(2))
print(normr(2)) # typo, so it errors
message("A message from message()")
warning("A warning from warning()")
cat("Information via cat\\n")
sinkall() # one must close the file connection
file.show(tf)

End(Not run)

Index

decompLines, 2

readJDX, 2, 3

sinkall, 4, 6

8

	decompLines
	readJDX
	sinkall
	Index

