Package 'rcompanion'

February 9, 2020

Version 2.3.25

Date 2020-02-09

Title Functions to Support Extension Education Program Evaluation

Description Functions and datasets to support ``Summary and Analysis of Extension Program Evaluation in R" and ``An R Companion for the Handbook of Biological Statistics". Vignettes are available at <http://rcompanion.org>.

URL http://rcompanion.org/

Depends R (>= 3.3.0)

Imports stats (>= 3.3.0), graphics (>= 3.3.0), boot (>= 1.3-18), DescTools (>= 0.99.17), multcompView (>= 0.1-7), plyr (>= 1.8.4), EMT (>= 1.1), coin (>= 1.1-2), lmtest (>= 0.9-34), nortest (>= 1.0-4)

Suggests FSA (>= 0.8.9)

Maintainer Salvatore Mangiafico <mangiafico@njaes.rutgers.edu>

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

NeedsCompilation no

Author Salvatore Mangiafico [aut, cre] (<https://orcid.org/0000-0003-4668-6821>)

Repository CRAN

Date/Publication 2020-02-09 17:30:02 UTC

R topics documented:

accuracy		3
Anderson		5
AndersonBias	• •	6

AndersonRainGarden7blom7blom7BobBelcher9Breakfast10BrendonSmall10BullyHill11Catbus11Catbus12cldList14CiffDelta16cohenG18cohenG20cohenH20cohenH21compareGLM23compareGLM24cramerV25cramerVFit27epsilonSquared29freemanTheta31fullPTable33groupwiseGeometric36groupwiseGeometric37groupwiseGeometric37groupwiseGeometric37groupwisePercentile43groupwisePercentile43multiVDA45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerke55ordinalEtaSquared56pairwiseOndinaltrix60pairwiseOndinaltrix60pairwiseOndinaltrix66pairwiseOndinaltrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix69pairwiseOrdinalMatrix69pairwiseOrdinalMatrix69pairwiseOrdinalMatrix69pairwiseOrdinalM	ndersonRainBarrel	. 6
BobBelcher 9 Breakfast 10 BrendonSmall 10 BullyHill 11 Catbus 11 cateNelson 12 cidList 14 cohenG 18 cohenH 20 cohenW 21 compareGLM 23 compareGLM 24 caramerV 25 cramerV 25 cramerV 25 cramerV 25 groupwiseGemetric 33 groupwiseGemetric 33 groupwiseGMH 33 groupwiseGemetric 36 groupwiseMedian 31 groupwiseBedmedian 31 groupwiseBedmedian 31 groupwiseBedmedian 31 groupwiseBedmedian 31 groupwiseBedmedian 31 groupwiseBedian 31 groupwiseBedian 31 groupwiseBedian 31 groupwiseBedian 31 groupwiseBedian 31	ndersonRainGarden	. 7
Breakfast10BrendonSmall10BullyHill11Catbus11cateNelson12cldList14clftDelta16cohenG18cohenH20compareGLM21compareLM23compareLM23cramerVFit27epsilonSquared29freemanTheta31fullPTable33groupwiseCMH34groupwiseCMH34groupwiseCenetric36groupwiseMean39groupwiseMean39groupwiseMean51hayleySmith47kendallW47Monarchs49unlitVDA50nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke56pairwiseOninalItafta60pairwiseOninalItafta60pairwiseMedianMatrix60pairwiseMedianMatrix60pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseModianMatrix67pairwiseOninalIndependence64pairwiseOninalIndependence64pairwiseOninalIndependence64pairwiseOninalIndependence67pairwiseOninalIndependence67pairwiseOninalInderitx<	om	. 7
Breakfast10BrendonSmall10BullyHill11Catbus11cateNelson12cldList14clftDelta16cohenG18cohenH20compareGLM21compareLM23compareLM23cramerVFit27epsilonSquared29freemanTheta31fullPTable33groupwiseCMH34groupwiseCMH34groupwiseCenetric36groupwiseMean39groupwiseMean39groupwiseMean51hayleySmith47kendallW47Monarchs49unlitVDA50nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke51nagelkerke56pairwiseOninalItafta60pairwiseOninalItafta60pairwiseMedianMatrix60pairwiseMedianMatrix60pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseMedianMatrix66pairwiseModianMatrix67pairwiseOninalIndependence64pairwiseOninalIndependence64pairwiseOninalIndependence64pairwiseOninalIndependence67pairwiseOninalIndependence67pairwiseOninalInderitx<	bBelcher	. 9
BrendonSmall 10 BullyHill 11 Catbus 11 Catbus 12 cldList 14 clifDelta 16 cohenG 18 cohenH 20 cohenW 21 compareGLM 23 compareILM 24 cramerV 25 cramerVit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseCMH 34 groupwiseMedan 39 groupwiseMedian 41 groupwiseSum 45 HayleySmith 47 kendallW 47 kendallEtaSquared 50 nagelkerke 51 nagelkerke 51 nagelkerke 51 nagelkerke 51 pairwiseOdelAnova 60 pairwiseMedianMatrix 60 pairwiseMedianMatrix 60 pairwiseOdelAnova 63		. 10
BullyHill 11 Catbus 11 cateNelson 12 cildList 14 clifTDelta 16 cohenG 18 cohenH 20 cohenW 21 compareGLM 23 compareILM 23 compareILM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseMean 39 groupwiseMean 39 groupwiseMean 39 groupwiseMedian 41 groupwiseMedian 41 groupwiseMean 39 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 nutiVDA 50 nagelkerke 51 nagelkerke 51 pairwiseOrdinalEtaSquared 56 pairwiseMoninalIndependence		. 10
Catbus 11 cateVelson 12 cldList 14 clfTDelta 16 cohenG 18 cohenH 20 compareGLM 21 compareGLM 23 compareGLM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseGeometric 36 groupwiseGeometric 36 groupwiseGeometric 37 groupwiseMean 39 groupwisePercentile 43 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 pairwiseOfiferences 58 pairwiseModelAnova 60 pairwiseModelAnova 61 pairwiseModelAnova 63 pairwiseModelAnova 64		
cateNelson 12 cldList 14 cliffDelta 16 cohenG 18 cohenH 20 compareGLM 21 compareGLM 23 compareGLM 24 cramerV 25 cramerV 25 cramerV 25 groupwiseGuared 29 freemanTheta 31 fullPTable 33 groupwiseGeometric 36 groupwiseGeometric 36 groupwiseGemetric 37 groupwiseMean 39 groupwisePercentile 43 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 51 pairwiseOdelanMatrix 60 pairwiseMedianTest 58 pairwiseMedianMatrix 60 pairwi		. 11
cldList 14 clifTDelta 16 cohenG 18 cohenH 20 compareGLM 21 compareGLM 23 compareIM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 36 groupwiseMedian 41 groupwiseMedian 41 groupwiseMedian 47 Monarchs 49 mult/VDA 50 nagelkerke 51 nagelkerke 53 ordinalEtaSquared 56 pairwiseModianTest 56 pairwiseModelAnova 58 pairwiseModelAnova 58 pairwiseModelAnova 60 pairwiseModelAnova 61 pairwiseModelAnova 63 proupwiseMedianTest 61 pairwiseModelAnova 63		. 12
cliffDelta 16 cohenG 18 cohenH 20 cohenW 21 compareGLM 23 comparefLM 24 cramerV 25 cramerVFit 27 psilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseGometric 36 groupwiseGeometric 36 groupwiseMedian 41 groupwiseMedian 41 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 56 pairwiseModianTest 58 pairwiseModianTest 58 pairwiseMedianCest 56 pairwiseMedianCest 51 nagelkerke 53 nominalSymmetryTest 54 Nurseries 55 pairwiseModelanOva 66 pa		. 14
cohenG18cohenH20compareGLM21compareGLM23compareIM24cramerV25cramerVFit27psilonSquared29freemarTheta31fullPTable33groupwiseCMH34groupwiseGeometric36groupwiseHuber37groupwiseHuber39groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerke55ordinalEtaSquared56pairwiseMidianTix60pairwiseMedianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTix66pairwiseModianTest61pairwiseModianTest61pairwiseModianTest66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdin		
cohenH 20 cohenW 21 compareGLM 23 compareLM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 36 groupwiseMedian 39 groupwisePercentile 43 groupwisePercentile 53		
cohenW 21 compareGLM 23 compareLM 24 cramerV 25 cramerVFit 29 freemanTheta 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseHuber 37 groupwiseMedian 41 groupwiseBercentile 43 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 untiVDA 50 nagelkerkeHermite 51 nagelkerkeHermite 53 ordinalEtaSquared 56 pairwiseMedianTest 66 pairwiseMedianTest 61 pairwiseMode		
compareGLM 23 compareLM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseMean 39 groupwiseMedian 41 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 53 pairwiseMinemar 58 pairwiseMedianTest 61 pairwiseMedianTest 61 pairwiseMedianTest 61 pairwiseMedianTest 61 pairwiseMedianTest 61 pairwiseMedianNetrix 60 pairwiseMedianNetrix 60 pairwiseMedianNetrix 60 pairwiseMedianNetrix 61 pairwiseMedianNetrix 66 pairwiseMedia		
compareLM 24 cramerV 25 cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 36 groupwiseMedian 39 groupwiseMedian 41 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerkeHermite 53 nominalSymmetryTest 54 Nurseries 55 ordinalEtaSquared 56 pairwiseMedianTest 61 pairwiseModelAnova 63 pairwiseOrdinalIndependence 67 pairwiseOrdinalIdatrix 66 pairwiseOrdinalMatrix 66 pairwiseOrdinalIndependence 67 pairwiseOrdinalIndependen		
cramerV25cramerVFit27epsilonSquared29freemanTheta31fullPTable33groupwiseCMH34groupwiseGeometric36groupwiseMean39groupwiseMedian41groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerke51nagelkerke51pairwiseDifferences58pairwiseMedianTest60pairwiseMedianTest61pairwiseMedianTest61pairwiseMedianTest61pairwiseMedianTest61pairwiseMedianTest61pairwiseMedianTest61pairwiseMedianTest61pairwiseOrdinalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69		
cramerVFit 27 epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 37 groupwiseMedian 39 groupwiseMedian 41 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 53 ordinalEtaSquared 56 pairwiseDifferences 58 pairwiseMedianMatrix 60 pairwiseModianTest 61 pairwiseNominalIMatrix 66 pairwiseOrdinalIndependence 64		
epsilonSquared 29 freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 37 groupwiseMean 39 groupwiseMedian 39 groupwiseMedian 41 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nominalSymmetryTest 54 Nurseries 55 ordinalEtaSquared 56 pairwiseMedianTest 61 pairwiseMedianTest 61 pairwiseNominalIndependence 64 pairwiseNominalIndependence 64 pairwiseOrdinalMatrix 66 pairwiseOrdinalMatrix 66 pairwiseOrdinalPairedMatrix 69		
freemanTheta 31 fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseGeometric 37 groupwiseMean 39 groupwiseMedian 41 groupwiseMedian 41 groupwiseWestum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 53 ordinalEtaSquared 56 pairwiseMedianTest 58 pairwiseMedianMatrix 60 pairwiseNominalIndependence 64 pairwiseOrdinalIndependence 67 pairwiseOrdinalIndependence <		
fullPTable 33 groupwiseCMH 34 groupwiseGeometric 36 groupwiseHuber 37 groupwiseMean 39 groupwiseMedian 41 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 51 nagelkerke 53 nominalSymmetryTest 54 Nurseries 55 ordinalEtaSquared 56 pairwiseMedianMatrix 60 pairwiseNominalIndependence 64 pairwiseNominalIndependence 64 pairwiseNominalIndependence 64 pairwiseNominalIndependence 67 pairwiseOrdinalIndependence 67 pairwiseOrdinalIndependence 67 pairwiseOrdinalIndependence 67 pairwiseOrdinalIndependence 67 pairwiseOrdinalInalirix 69 <td>1</td> <td></td>	1	
groupwiseCMH 34 groupwiseGeometric 36 groupwiseHuber 37 groupwiseMean 39 groupwiseMedian 41 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 53 nominalSymmetryTest 54 Nurseries 55 ordinalEtaSquared 56 pairwiseMedianTest 60 pairwiseMedianTest 61 pairwiseNominalIndependence 64 pairwiseOrdinalMatrix 66 pairwiseOrdinalMatrix 66 pairwiseOrdinalMatrix 66 pairwiseOrdinalMatrix 67 pairwiseOrdinalPairedMatrix 69		
groupwiseGeometric36groupwiseHuber37groupwiseMean39groupwiseMedian41groupwisePercentile43groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerke53nominalSymmetryTest54Nurseries55ordinalEtaSquared58pairwiseMedianTest61pairwiseMedianTest61pairwiseNominalIndependence64pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69		
groupwiseHuber37groupwiseMean39groupwiseMedian41groupwisePercentile43groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseMedianMatrix60pairwiseMedianMatrix61pairwiseMedianMatrix61pairwiseNominalIndependence64pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69	1	
groupwiseMean39groupwiseMedian41groupwisePercentile43groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared58pairwiseMedianTest60pairwiseMedianTest61pairwiseNominalIndependence64pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69	-	
groupwiseMedian 41 groupwisePercentile 43 groupwiseSum 45 HayleySmith 47 kendallW 47 Monarchs 49 multiVDA 50 nagelkerke 51 nagelkerke 51 nagelkerke 53 nominalSymmetryTest 54 Nurseries 55 ordinalEtaSquared 56 pairwiseMcnemar 58 pairwiseMedianMatrix 60 pairwiseNominalIndependence 64 pairwiseOrdinalIndependence 67 pairwiseOrdinalMatrix 69 pairwiseOrdinalPairedMatrix 69	-	
groupwisePercentile43groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseMcnemar58pairwiseMedianMatrix60pairwiseModelAnova61pairwiseNominalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69	-	
groupwiseSum45HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseMcnemar58pairwiseMedianMatrix60pairwiseModelAnova61pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	-	
HayleySmith47kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMedianMatrix60pairwiseModelAnova61pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	-	
kendallW47Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMedianMatrix60pairwiseNominalIndependence61pairwiseNominalMatrix64pairwiseOrdinalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalMatrix69	-	
Monarchs49multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69		
multiVDA50nagelkerke51nagelkerkeHermite53nominalSymmetryTest53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalMatrix66pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69		
nagelkerke51nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMenemar58pairwiseMedianMatrix60pairwiseModelAnova61pairwiseNominalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalPairedMatrix69		
nagelkerkeHermite53nominalSymmetryTest54Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseNominalIndependence63pairwiseOrdinalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalPairedMatrix69pairwiseOrdinalPairedMatrix69		
nominalSymmetryTest54Nurseries55ordinalEtaSquared55ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalIndependence67pairwiseOrdinalIndependence67pairwiseOrdinalPairedMatrix69		
Nurseries55ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalPairedMatrix69	gelkerkeHermite	. 53
ordinalEtaSquared56pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	minalSymmetryTest	. 54
pairwiseDifferences58pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseOrdinalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	urseries	. 55
pairwiseMcnemar58pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseNominalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	dinalEtaSquared	. 56
pairwiseMedianMatrix60pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseNominalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	irwiseDifferences	. 58
pairwiseMedianTest61pairwiseModelAnova63pairwiseNominalIndependence64pairwiseNominalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	irwiseMcnemar	. 58
pairwiseModelAnova63pairwiseNominalIndependence64pairwiseNominalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	irwiseMedianMatrix	. 60
pairwiseNominalIndependence 64 pairwiseNominalMatrix 66 pairwiseOrdinalIndependence 67 pairwiseOrdinalMatrix 69 pairwiseOrdinalPairedMatrix 69	irwiseMedianTest	. 61
pairwiseNominalMatrix66pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	irwiseModelAnova	. 63
pairwiseOrdinalIndependence67pairwiseOrdinalMatrix69pairwiseOrdinalPairedMatrix69	irwiseNominalIndependence	. 64
pairwiseOrdinalMatrix	irwiseNominalMatrix	. 66
pairwiseOrdinalMatrix		. 67
pairwiseOrdinalPairedMatrix	1	. 69
1		
	irwiseOrdinalPairedTest	

pairwiseOrdinalTest	70
pairwisePercentileTest	70
pairwisePermutationMatrix	73
pairwisePermutationSymmetry	74
pairwisePermutationSymmetryMatrix	76
pairwisePermutationTest	78
pairwiseRobustMatrix	79
pairwiseRobustTest	80
pairwiseSignMatrix	80
pairwiseSignTest	80
Pennsylvania18	81
percentileTest	81
phi	83
plotDensityHistogram	85
plotNormalDensity	86
plotNormalHistogram	88
plotPredy	89
PMCMRTable	92
Pooh	93
PoohPiglet	93
quantileCI	94
rcompanion	95
Religion	96
scheirerRayHare	97
spearmanRho	98
transformTukey	100
vda	101
wilcoxonOneSampleR	103
wilcoxonOneSampleRC	105
wilcoxonPairedR	106
wilcoxonPairedRC	108
wilcoxonR	110
wilcoxonRG	112
wilcoxonZ	114
	116

Index

accuracy

Minimum maximum accuracy, mean absolute percent error, root mean square error, coefficient of variation, and Efron's pseudo r-squared

Description

Produces a table of fit statistics for multiple models.

Usage

accuracy(fits, plotit = TRUE, digits = 3, ...)

Arguments

fits	A series of model object names. Must be a list.
plotit	If TRUE, produces plots of the predicted values vs. the actual values for each model.
digits	The number of significant digits in the output.
	Other arguments passed to plot.

Details

Produces a table of fit statistics for multiple models: minimum maximum accuracy, mean absolute percentage error, root mean square error, normalized root mean square error, accuracy based on normalized root mean square error, Efron's pseudo r-squared, and coefficient of variation.

For minimum maximum accuracy, larger indicates a better fit, and a perfect fit is equal to 1.

For mean absolute error (MAE), smaller indicates a better fit, and a perfect fit is equal to 0. It has the same units as the dependent variable. Note that here, MAE is simply the mean of the absolute values of the differences of predicted values and the observed values (MAE = mean(abs(predy -actual))). There are other definitions of MAE and similar-sounding terms.

For mean absolute percent error (MAPE), smaller indicates a better fit, and a perfect fit is equal to 0.

Root mean square error (RMSE) has the same units as the predicted values.

Normalized root mean square error (NRMSE) is RMSE divided by the mean or the median of the values of the dependent variable.

NRMSE accuracy values are calculated as 1 minus NRMSE. Larger indicates a better fit, and a perfect fit is equal to 1.

Efron's pseudo r-squared is calculated as 1 minus the residual sum of squares divided by the total sum of squares. For linear models (1m model objects), Efron's pseudo r-squared will be equal to r-squared. For other models, it should not be interpreted as r-squared, but can still be useful as a relative measure.

CV.prcnt is the coefficient of variation for the model. Here it is expressed as a percent.

Model objects currently supported: lm, glm, nls, betareg, gls, lme, lmer, lmerTest, rq, loess, gam, glm.nb, glmRob.

Value

A list of two objects: The series of model calls, and a data frame of statistics for each model.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/G_14.html

Anderson

See Also

compareLM, compareGLM, nagelkerke

Examples

```
data(BrendonSmall)
BrendonSmall$Calories = as.numeric(BrendonSmall$Calories)
BrendonSmall$Calories2 = BrendonSmall$Calories ^ 2
model.1 = lm(Sodium ~ Calories, data = BrendonSmall)
model.2 = lm(Sodium ~ Calories + Calories2, data = BrendonSmall)
model.3 = glm(Sodium ~ Calories, data = BrendonSmall, family="Gamma")
quadplat = function(x, a, b, clx) {
          ifelse(x < clx, a + b * x + (-0.5*b/clx) * x * x,
                           a + b * clx + (-0.5*b/clx) * clx * clx)}
model.4 = nls(Sodium ~ quadplat(Calories, a, b, clx),
              data = BrendonSmall,
              start = list(a=519, b=0.359, clx = 2300))
accuracy(list(model.1, model.2, model.3, model.4), plotit=FALSE)
### Perfect and poor model fits
X = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
Y = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
Z = c(1, 12, 13, 6, 10, 13, 4, 3, 5, 6, 10, 14)
perfect = lm(Y \sim X)
poor
       = lm(Z \sim X)
accuracy(list(perfect, poor), plotit=FALSE)
```

Anderson

Hypothetical data for Alexander Anderson

Description

A matrix of counts for students passing or failing a pesticide training course across four counties. Hypothetical data.

Usage

Anderson

Format

An object of class matrix with 4 rows and 2 columns.

Source

http://rcompanion.org/handbook/H_04.html

AndersonBias

Description

A data frame of counts for students passing or failing a pesticicde training course across four counties, with sex of students. Hypothetical data.

Usage

AndersonBias

Format

An object of class data. frame with 16 rows and 4 columns.

Source

http://rcompanion.org/handbook/H_06.html

AndersonRainBarrel Hypothetical data for Alexander Anderson on rain barrel installation

Description

A matrix of paired counts for students planning to install rain barrels before and after a class. Hypothetical data.

Usage

```
AndersonRainBarrel
```

Format

An object of class matrix with 2 rows and 2 columns.

Source

http://rcompanion.org/handbook/H_05.html

AndersonRainGarden Hypothetical data for Alexander Anderson on rain garden installation

Description

A matrix of paired counts for students planning to install rain gardens before and after a class. Hypothetical data.

Usage

AndersonRainGarden

Format

An object of class matrix with 3 rows and 3 columns.

Source

http://rcompanion.org/handbook/H_05.html

blom

Normal scores transformation

Description

Normal scores transformation (Inverse normal transformation) by Elfving, Blom, van der Waerden, Tukey, and rankit methods, as well as z score transformation (standardization) and scaling to a range (normalization).

Usage

```
blom(
    x,
    method = "general",
    alpha = pi/8,
    complete = FALSE,
    na.last = "keep",
    na.rm = TRUE,
    adjustN = TRUE,
    min = 1,
    max = 10,
    ...
)
```

Arguments

x	A vector of numeric values.
method	Any one "general" (the default), "blom", vdw, "tukey", "elfving", "rankit", zscore, or scale.
alpha	A value used in the "general" method. If alpha=pi/8 (the default), the "general" method reduces to the "elfving" method. If alpha=3/8, the "general" method reduces to the "blom" method. If alpha=1/2, the "general" method reduces to the "rankit" method. If alpha=1/3, the "general" method reduces to the "tukey" method. If alpha=0, the "general" method reduces to the "vdw" method.
complete	If TRUE, NA values are removed before transformation. The default is FALSE.
na.last	Passed to rank in the normal scores methods. See the documentation for the rank function. The default is "keep".
na.rm	Used in the "zscore" and "scale" methods. Passed to mean, min, and max functions in those methods. The default is TRUE.
adjustN	If TRUE, the default, the normal scores methods use only non-NA values to deter- mine the sample size, N. This seems to work well under default conditions where NA values are retained, even if there are a high percentage of NA values.
min	For the "scale" method, the minimum value of the transformed values.
max	For the "scale" method, the maximum value of the transformed values.
	additional arguments passed to rank.

Details

By default, NA values are retained in the output. This behavior can be changed with the na.rm argument for "zscore" and "scale" methods, or with na.last for the normal scores methods. Or NA values can be removed from the input with complete=TRUE.

For normal scores methods, if there are NA values or tied values, it is helpful to look up the documentation for rank.

In general, for normal scores methods, either of the arguments method or alpha can be used. With the current algorithms, there is no need to use both.

Normal scores transformation will return a normal distribution with a mean of 0 and a standard deviation of 1.

The "scale" method coverts values to the range specified in max and min without transforming the distribution of values. By default, the "scale" method converts values to a 1 to 10 range. Using the "scale" method with min = 0 and max = 1 is sometimes called "normalization".

The "zscore" method converts values by the usual method for z scores: (x - mean(x)) / sd(x). The transformed values with have a mean of 0 and a standard deviation of 1 but won't be coerced into a normal distribution. Sometimes this method is called "standardization".

Value

A vector of numeric values.

BobBelcher

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

Conover, 1995, Practical Nonparametric Statistics, 3rd.

Solomon & Sawilowsky, 2009, Impact of rank-based normalizing transformations on the accuracy of test scores.

Beasley and Erickson, 2009, Rank-based inverse normal transformations are increasingly used, but are they merited?

Examples

```
set.seed(12345)
A = rlnorm(100)
## Not run: hist(A)
### Convert data to normal scores by Elfving method
B = blom(A)
## Not run: hist(B)
### Convert data to z scores
C = blom(A, method="zscore")
## Not run: hist(C)
### Convert data to a scale of 1 to 10
D = blom(A, method="scale")
## Not run: hist(D)
### Data from Sokal and Rohlf, 1995,
### Biometry: The Principles and Practice of Statistics
### in Biological Research
Value = c(709,679,699,657,594,677,592,538,476,508,505,539)
Sex = c(rep("Male",3), rep("Female",3), rep("Male",3), rep("Female",3))
Fat = c(rep("Fresh", 6), rep("Rancid", 6))
ValueBlom = blom(Value)
Sokal = data.frame(ValueBlom, Sex, Fat)
model = lm(ValueBlom ~ Sex * Fat, data=Sokal)
anova(model)
## Not run:
hist(residuals(model))
plot(predict(model), residuals(model))
## End(Not run)
```

BobBelcher

Hypothetical data for ratings of instructors in unreplicated CBD

Description

A data frame of Likert responses for five instructors for each of 8 respondents. Arranged in unreplicated complete block design. Hypothetical data.

Usage

BobBelcher

Format

An object of class data. frame with 40 rows and 3 columns.

Source

http://rcompanion.org/handbook/F_10.html

Breakfast

Hypothetical data for students' breakfast habits and travel to school

Description

A two-dimensional contingency table, in which Breakfast is an ordered nominal variable, and Travel is a non-ordered nominal variable. Hypothetical data.

Usage

Breakfast

Format

An object of class table with 3 rows and 5 columns.

Source

http://rcompanion.org/handbook/H_09.html

BrendonSmall

Hypothetical data for Brendon Small and company

Description

A data frame of the intake of calories and sodium for students in five classes. Hypothetical data.

Usage

BrendonSmall

Format

An object of class data. frame with 45 rows and 6 columns.

Source

http://rcompanion.org/handbook/I_10.html

10

BullyHill

Description

A data frame of counts of students passing and failing. Hypothetical data.

Usage

BullyHill

Format

An object of class data. frame with 12 rows and 5 columns.

Source

http://rcompanion.org/handbook/J_02.html

Catbus

Hypothetical data for Catbus and company

Description

A data frame of the number of steps taken by students in three classes. Hypothetical data.

Usage

Catbus

Format

An object of class data. frame with 26 rows and 5 columns.

Source

http://rcompanion.org/handbook/C_03.html

cateNelson

Description

Produces critical-x and critical-y values for bivariate data according to a Cate-Nelson analysis.

Usage

```
cateNelson(
    x,
    y,
    plotit = TRUE,
    hollow = TRUE,
    xlab = "X",
    ylab = "Y",
    trend = "positive",
    clx = 1,
    cly = 1,
    xthreshold = 0.1,
    ythreshold = 0.1,
    progress = TRUE,
    verbose = TRUE,
    listout = FALSE
)
```

Arguments

Х	A vector of values for the x variable.
У	A vector of values for the y variable.
plotit	If TRUE, produces plots of the output.
hollow	If TRUE, uses hollow circles on the plot to indicate data not fitting the model.
xlab	The label for the x-axis.
ylab	The label for the y-axis.
trend	"postive" if the trend of y vs. x is generally positive. "negative" if negative.
clx	Indicates which of the listed critical x values should be chosen as the critical x value for the final model.
cly	Indicates which of the listed critical y values should be chosen as the critical y value for the final model.
xthreshold	Indicates the proportion of potential critical x values to display in the output. A value of 1 would display all of them.
ythreshold	Indicates the proportion of potential critical y values to display in the output. A value of 1 would display all of them.
progress	If TRUE, prints an indicator of progress as for loops progress.

cateNelson

verbose	If FALSE, suppresses printed output of tables.
listout	If TRUE, outputs a list of data frames instead of a single data frame. This allows a data frame of critical values and associated statistics to be extracted, for example if one would want to sort by Cramer's V.

Details

Cate-Nelson analysis divides bivariate data into two groups. For data with a positive trend, one group has a large x value associated with a large y value, and the other group has a small x value associated with a small y value. For a negative trend, a small x is associated with a large y, and so on.

The analysis is useful for bivariate data which don't conform well to linear, curvilinear, or plateau models.

This function will fail if either of the largest two or smallest two x values are identical.

Value

A data frame of statistics from the analysis: number of observations, critical level for x, sum of squares, critical value for y, the number of observations in each of the quadrants (I, II, III, IV), the number of observations that conform with the model, the proportion of observations that conform with the model, the number of observations that do not conform to the model, the proportion of observations that do not conform to the model, a p-value for the Fisher exact test for the data divided into the groups indicated by the model, and Cramer's V for the data divided into the groups indicated by the model.

Output also includes printed lists of critical values, explanation of the values in the data frame, and plots: y vs. x; sum of squares vs. critical x value; the number of observations that do not conform to the model vs. critical y value; and y vs. x with the critical values shown as lines on the plot, and the quadrants labeled.

Note

The method in this function follows Cate, R. B., & Nelson, L.A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Proceedings 35, 658-660.

An earlier version of this function was published in *Mangiafico*, S.S. 2013. Cate-Nelson Analysis for Bivariate Data Using R-project. J.of Extension 51:5, 5TOT1.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/rcompanion/h_02.html

cldList

Examples

```
data(Nurseries)
cateNelson(x
                   = Nurseries$Size,
                   = Nurseries$Proportion,
          у
          plotit = TRUE,
          hollow = TRUE,
                    = "Nursery size in hectares",
          xlab
                    = "Proportion of good practices adopted",
          ylab
                    = "positive",
          trend
          clx
                    = 1,
          xthreshold = 0.10,
          ythreshold = 0.15)
```

cldList

Compact letter display for lists of comparisons

Description

Produces a compact letter display (cld) from pairwise comparisons that were summarized in a table of comparisons

Usage

```
cldList(
  formula = NULL,
  data = NULL,
  comparison = NULL,
  p.value = NULL,
  threshold = 0.05,
  print.comp = FALSE,
  remove.space = TRUE,
  remove.equal = TRUE,
  remove.zero = TRUE,
  swap.colon = TRUE,
  swap.vs = FALSE,
  ...
```

)

Arguments

formula	A formula indicating the variable holding p-values and the variable holding the comparisons. e.g. P.adj ~ Comparison.
data	The data frame to use.
comparison	A vector of text describing comparisons, with each element in a form similar to "Treat.A - Treat.B = 0". Spaces and "=" and "0" are removed by default

14

cldList

p.value	A vector of p-values corresponding to the comparisons in the comparison argument
threshold	The alpha value. That is, the p-value below which the comparison will be con- sidered significant
print.comp	If TRUE, prints out a data frame of the modified text of the comparisons. Useful for debugging
remove.space	If TRUE, removes spaces from the text of the comparisons
remove.equal	If TRUE, removes "=" from the text of the comparisons
remove.zero	If TRUE, removes "0" from the text of the comparisons
swap.colon	If TRUE, swaps ":" with "-" in the text of the comparisons
swap.vs	If TRUE, swaps "vs" with "-" in the text of the comparisons
	Additional arguments passed to multcompLetters

Details

The input should include either formula and data; or comparison and p.value.

This function relies upon the multcompLetters function in the multcompView package. The text for the comparisons passed to multcompLetters should be in the form "Treat.A-Treat.B". Currently cldList removes spaces, equal signs, and zeros, by default, and so can use text in the form e.g. "Treat.A - Treat.B = 0". It also changes ":" to "-", and so can use text in the form e.g. "Treat.A : Treat.B".

Value

A data frame of group names, group separation letters, and monospaced separtions letters

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_08.html

Examples

```
DT = DT$res
DT
cldList(P.adj ~ Comparison,
data = DT,
threshold = 0.05)
```

cliffDelta

Description

Calculates Cliff's delta with confidence intervals by bootstrap

Cliff's delta

Usage

```
cliffDelta(
  formula = NULL,
  data = NULL,
  x = NULL,
  y = NULL,
  ci = FALSE,
  conf = 0.95,
  type = "perc",
  R = 1000,
  histogram = FALSE,
  digits = 3,
  reportIncomplete = FALSE,
  ...
)
```

Arguments

formula	A formula indicating the response variable and the independent variable. e.g. $y \sim \text{group}$.
data	The data frame to use.
x	If no formula is given, the response variable for one group.
У	The response variable for the other group.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.

16

cliffDelta

reportIncomple	ete
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.
	Additional arguments passed to the wilcox.test function.

Details

Cliff's delta is an effect size statistic appropriate in cases where a Wilcoxon-Mann-Whitney test might be used. It ranges from -1 to 1, with 0 indicating stochastic equality, and 1 indicating that the first group dominates the second. It is linearly related to Vargha and Delaney's A.

The function calculates Cliff's delta from the "W" U statistic from the wilcox.test function. Specifically, VDA = U/(n1*n2); CD = (VDA-0.5)*2.

The input should include either formula and data; or x, and y. If there are more than two groups, only the first two groups are used.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, Cliff's delta is positive. When the data in the second group are greater than in the first group, Cliff's delta is negative. Be cautious with this interpretation, as R will alphabetize groups in the formula interface if the grouping variable is not already a factor.

When Cliff's delta is close to 1 or close to -1, or with small sample size, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, Cliff's delta. Or a small data frame consisting of Cliff's delta, and the lower and upper confidence limits.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_04.html

See Also

vda, multiVDA

cohenG

Examples

```
data(Catbus)
cliffDelta(Steps ~ Sex, data=Catbus)
```

cohenG

Cohen's g and odds ratio for paired contingency tables

Description

Calculates Cohen's g and odds ratio for paired contingency tables, such as those that might be analyzed with McNemar or McNemar-Bowker tests.

Usage

```
cohenG(
    x,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

x	A two-way contingency table. It must be square. It can have two or more levels for each dimension.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
reportIncomplete	
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.
	Additional arguments (ignored).

18

cohenG

Details

For a 2 x 2 table, where a and d are the concordant cells and b and c are discordant cells: Odds ratio is b/c; P is b/(b+c); and Cohen's g is P - 0.5.

In the 2 x 2 case, the statistics are directional. That is, when cell [1, 2] in the table is greater than cell [2, 1], OR is greater than 1, P is greater than 0.5, and g is positive.

In the opposite case, OR is less than 1, P is less than 0.5, and g is negative.

In the 2 x 2 case, when the effect is small, the confidence interval for OR can pass through 1, for g can pass through 0, and for P can pass through 0.5.

For tables larger than 2 x 2, the statistics are not directional. That is, OR is always ≥ 1 , P is always ≥ 0.5 , and g is always positive. Because of this, if type="perc", the confidence interval will never cross the values for no effect (OR = 1, P = 0.5, or g = 0). Because of this, the confidence interval range in this case should not be used for statistical inference. However, if type="norm", the confidence interval may cross the values for no effect.

When the reported statistics are close to their extremes, or with small counts, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A list containing: a data frame of results of the global statistics; and a data frame of results of the pairwise statistics.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_05.html

See Also

nominalSymmetryTest

Examples

2 x 2 repeated matrix example data(AndersonRainBarrel) cohenG(AndersonRainBarrel)

```
### 3 x 3 repeated matrix
data(AndersonRainGarden)
cohenG(AndersonRainGarden)
```

cohenH

Description

Calculates Cohen's h for 2 x 2 contingency tables, such as those that might be analyzed with a chi-square test of association.

Usage

cohenH(x, observation = "row", verbose = TRUE, digits = 3)

Arguments

х	A 2 x 2 contingency table.
observation	If "row", the row constitutes an observation. That is, the sum of each row is 100 percent. If "column", the column constitutes an observation. That is, the sum of each column is 100 percent.
verbose	If TRUE, prints the proportions for each observation.
digits	The number of significant digits in the output.

Details

Cohen's h is an effect size to compare two proportions. For a 2 x 2 table: Cohen's h equals Phi2 - Phi1, where, If observations are in rows, P1 = a/(a+b) and P2 = c/(c+d). If observations are in columns, P1 = a/(a+c) and P2 = b/(b+d). Phi = 2 * asin(sqrt(P))

Value

A single statistic.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_05.html

See Also

cohenG

Examples

```
data(Pennsylvania18)
Pennsylvania18
cohenH(Pennsylvania18, observation="row")
```

cohenW

Description

Calculates Cohen's w for a table of nominal variables.

Usage

```
cohenW(
    x,
    y = NULL,
    p = NULL,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 4,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

x	Either a two-way table or a two-way matrix. Can also be a vector of observations for one dimension of a two-way table.	
У	If x is a vector, y is the vector of observations for the second dimension of a two-way table.	
р	If x is a vector of observed counts, p can be given as a vector of theoretical probabilities, as in a chi-square goodness of fit test.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure. In the case of the goodness-of-fit scenario, setting this to TRUE will have no effect.	
	Additional arguments passed to chisq.test.	

Details

Cohen's w is used as a measure of association between two nominal variables, or as an effect size for a chi-square test of association. For a 2 x 2 table, the absolute value of the phi statistic is the same as Cohen's w. The value of Cohen's w is not bound by 1 on the upper end.

Cohen's w is "naturally nondirectional". That is, the value will always be zero or positive. Because of this, if type="perc", the confidence interval will never cross zero. The confidence interval range should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When w is close to 0 or very large, or with small counts, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, Cohen's w. Or a small data frame consisting of Cohen's w, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_10.html

See Also

cramerV cramerVFit

Examples

```
### Example with table
data(Anderson)
fisher.test(Anderson)
cohenW(Anderson)
### Example for goodness-of-fit
### Bird foraging example, Handbook of Biological Statistics
observed = c(70, 79, 3,
                              4)
expected = c(0.54, 0.40, 0.05, 0.01)
chisq.test(observed, p = expected)
cohenW(observed, p = expected)
### Example with two vectors
Species = c(rep("Species1", 16), rep("Species2", 16))
Color = c(rep(c("blue", "blue", "blue", "green"),4),
           rep(c("green", "green", "green", "blue"),4))
fisher.test(Species, Color)
cohenW(Species, Color)
```

22

compareGLM

Description

Produces a table of fit statistics for multiple glm models.

Usage

```
compareGLM(fits, ...)
```

Arguments

fits	A series of model object names, separated by commas.
	Other arguments passed to list.

Details

Produces a table of fit statistics for multiple glm models: AIC, AICc, BIC, p-value, pseudo R-squared (McFadden, Cox and Snell, Nagelkerke).

Smaller values for AIC, AICc, and BIC indicate a better balance of goodness-of-fit of the model and the complexity of the model. The goal is to find a model that adequately explains the data without having too many terms.

BIC tends to choose models with fewer parameters relative to AIC. For comparisons with AIC, etc., to be valid, both models must have the same data, without transformations, use the same dependent variable, and be fit with the same method. They do not need to be nested.

The function will fail if a model formula is longer than 500 characters.

Value

A list of two objects: The series of model calls, and a data frame of statistics for each model.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/rcompanion/e_07.html

See Also

compareLM, pairwiseModelAnova, accuracy

Examples

compareLM

Compare fit statistics for lm models

Description

Produces a table of fit statistics for multiple lm models.

Usage

```
compareLM(fits, ...)
```

Arguments

fits	A series of model object names, separated by commas.
	Other arguments passed to list.

Details

Produces a table of fit statistics for multiple lm models: AIC, AICc, BIC, p-value, R-squared, and adjusted R-squared.

Smaller values for AIC, AICc, and BIC indicate a better balance of goodness-of-fit of the model and the complexity of the model. The goal is to find a model that adequately explains the data without having too many terms.

BIC tends to choose models with fewer parameters relative to AIC.

In the table, Shapiro.W and Shapiro.p are the W statistic and p-value for the Shapiro-Wilks test on the residuals of the model.

For comparisons with AIC, etc., to be valid, both models must have the same data, without transformations, use the same dependent variable, and be fit with the same method. They do not need to be nested.

The function will fail if a model formula is longer than 500 characters.

cramerV

Value

A list of two objects: The series of model calls, and a data frame of statistics for each model.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_10.html http://rcompanion.org/rcompanion/e_05.html

See Also

compareGLM, pairwiseModelAnova, , accuracy

Examples

cramerV

Cramer's V(phi)

Description

Calculates Cramer's V for a table of nominal variables; confidence intervals by bootstrap.

Usage

```
cramerV(
    x,
    y = NULL,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
```

```
R = 1000,
histogram = FALSE,
digits = 4,
bias.correct = FALSE,
reportIncomplete = FALSE,
verbose = FALSE,
...
```

Arguments

x	Either a two-way table or a two-way matrix. Can also be a vector of observations for one dimension of a two-way table.	
У	If x is a vector, y is the vector of observations for the second dimension of a two-way table.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
bias.correct	If TRUE, a bias correction is applied.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
verbose	If TRUE, prints additional statistics.	
	Additional arguments passed to chisq.test.	

Details

Cramer's V is used as a measure of association between two nominal variables, or as an effect size for a chi-square test of association. For a 2 x 2 table, the absolute value of the phi statistic is the same as Cramer's V.

Because V is always positive, if type="perc", the confidence interval will never cross zero. In this case, the confidence interval range should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When V is close to 0 or very large, or with small counts, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, Cramer's V. Or a small data frame consisting of Cramer's V, and the lower and upper confidence limits.

26

cramerVFit

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_10.html

See Also

cohenW

Examples

cramerVFit

Cramer's V for chi-square goodness-of-fit tests

Description

Calculates Cramer's V for a vector of counts and expected counts; confidence intervals by bootstrap.

Usage

```
cramerVFit(
    x,
    p = rep(1/length(x), length(x)),
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 4,
    reportIncomplete = FALSE,
    verbose = FALSE,
    ...
)
```

Arguments

х	A vector of observed counts.	
р	A vector of expected or default probabilities.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
verbose	If TRUE, prints additional statistics.	
	Additional arguments passed to chisq.test.	

Details

This modification of Cramer's V could be used to indicate an effect size in cases where a chi-square goodness-of-fit test might be used. It indicates the degree of deviation of observed counts from the expected probabilities.

In the case of equally-distributed expected frequencies, Cramer's V will be equal to 1 when all counts are in one category, and it will be equal to 0 when the counts are equally distributed across categories. This does not hold if the expected frequencies are not equally-distributed.

Because V is always positive, if type="perc", the confidence interval will never cross zero, and should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When V is close to 0 or 1, or with small counts, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

In addition, the function will not return a confidence interval if there are zeros in any cell.

Value

A single statistic, Cramer's V. Or a small data frame consisting of Cramer's V, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_03.html

epsilonSquared

See Also

cramerV

Examples

```
### Equal probabilities example
### From http://rcompanion.org/handbook/H_03.html
nail.color = c("Red", "None", "White", "Green", "Purple", "Blue")
                                       1,
observed = c( 19, 3, 1,
expected = c( 1/6, 1/6, 1/6,
                                                 2,
                                                           2
                                                                )
                                        1/6,
                                                1/6,
                                                          1/6)
chisq.test(x = observed, p = expected)
cramerVFit(x = observed, p = expected)
### Unequal probabilities example
### From http://rcompanion.org/handbook/H_03.html
race = c("White", "Black", "American Indian", "Asian", "Pacific Islander",
          "Two or more races")
observed = c(20, 9, 9, 1, 1, 1)
expected = c(0.775, 0.132, 0.012, 0.054, 0.002, 0.025)
chisq.test(x = observed, p = expected)
cramerVFit(x = observed, p = expected)
### Examples of perfect and zero fits
cramerVFit(c(100, 0, 0, 0, 0))
cramerVFit(c(10, 10, 10, 10, 10))
```

epsilonSquared Epsilon-squared

Description

Calculates epsilon-squared as an effect size statistic, following a Kruskal-Wallis test, or for a table with one ordinal variable and one nominal variable; confidence intervals by bootstrap

Usage

```
epsilonSquared(
    x,
    g = NULL,
    group = "row",
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

х	Either a two-way table or a two-way matrix. Can also be a vector of observations of an ordinal variable.	
g	If x is a vector, g is the vector of observations for the grouping, nominal variable.	
group	If x is a table or matrix, group indicates whether the "row" or the "column" variable is the nominal, grouping variable.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
	Additional arguments passed to the kruskal.test function.	

Details

Epsilon-squared is used as a measure of association for the Kruskal-Wallis test or for a two-way table with one ordinal and one nominal variable.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

Because epsilon-squared is always positive, if type="perc", the confidence interval will never cross zero, and should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When epsilon-squared is close to 0 or very large, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, epsilon-squared. Or a small data frame consisting of epsilon-squared, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_11.html

See Also

freemanTheta

freemanTheta

Examples

```
data(Breakfast)
library(coin)
chisq_test(Breakfast, scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
epsilonSquared(Breakfast)

data(PoohPiglet)
kruskal.test(Likert ~ Speaker, data = PoohPiglet)
epsilonSquared(x = PoohPiglet$Likert, g = PoohPiglet$Speaker)
### Same data, as matrix of counts
data(PoohPiglet)
XT = xtabs( ~ Speaker + Likert , data = PoohPiglet)
epsilonSquared(XT)
```

freemanTheta Freeman's theta

Description

Calculates Freeman's theta for a table with one ordinal variable and one nominal variable; confidence intervals by bootstrap.

Usage

```
freemanTheta(
    x,
    g = NULL,
    group = "row",
    verbose = FALSE,
    progress = FALSE,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE
}
```

)

Arguments

X	Either a two-way table or a two-way matrix. Can also be a vector of observations of an ordinal variable.
g	If x is a vector, g is the vector of observations for the grouping, nominal variable.
group	If x is a table or matrix, group indicates whether the "row" or the "column" variable is the nominal, grouping variable.

verbose	If TRUE, prints statistics for each comparison.	
progress	If TRUE, prints a message as each comparison is conducted.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	

Details

Freeman's coefficient of differentiation (theta) is used as a measure of association for a two-way table with one ordinal and one nominal variable. See Freeman (1965).

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

Because theta is always positive, if type="perc", the confidence interval will never cross zero, and should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When theta is close to 0 or very large, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, Freeman's theta. Or a small data frame consisting of Freeman's theta, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

Freeman, L.C. 1965. Elementary Applied Statistics for Students in Behavioral Science. Wiley. http://rcompanion.org/handbook/H_11.html

See Also

epsilonSquared

fullPTable

Examples

```
data(Breakfast)
library(coin)
chisq_test(Breakfast, scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
freemanTheta(Breakfast)
### Example from Freeman (1965), Table 10.6
Counts = c(1,2,5,2,0,10,5,5,0,0,0,0,2,2,1,0,0,0,2,3)
Matrix = matrix(Counts, byrow=TRUE, ncol=5,
               dimnames = list(Marital.status=c("Single","Married","Widowed",
                                                "Divorced"),
                               Social.adjustment = c("5","4","3","2","1")))
Matrix
freemanTheta(Matrix)
### Example after Kruskal Wallis test
data(PoohPiglet)
kruskal.test(Likert ~ Speaker, data = PoohPiglet)
freemanTheta(x = PoohPiglet$Likert, g = PoohPiglet$Speaker)
### Same data, as table of counts
data(PoohPiglet)
XT = xtabs( ~ Speaker + Likert , data = PoohPiglet)
freemanTheta(XT)
```

	fullPTable	<i>Convert a lower triangle matrix to a full matrix</i>
--	------------	---

Description

Converts a lower triangle matrix to a full matrix.

Usage

fullPTable(PT)

Arguments PT

A lower triangle matrix.

Details

This function is useful to convert a lower triangle matrix of p-values from a pairwise test to a full matrix. A full matrix can be passed to multcompLetters in the multcompView package to produce a compact letter display.

Value

A full matrix.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_08.html

Examples

groupwiseCMH Post-hoc tests for Cochran-N	Mantel-Haenszel test
---	----------------------

Description

Conducts groupwise tests of association on a three-way contingency table.

Usage

```
groupwiseCMH(
    x,
    group = 3,
    fisher = TRUE,
    gtest = FALSE,
    chisq = FALSE,
    method = "fdr",
    correct = "none",
    digits = 3,
    ...
)
```

groupwiseCMH

Arguments

х	A three-way contingency table.
group	The dimension of the table to use as the grouping variable. Will be 1, 2, or 3.
fisher	If TRUE, conducts Fisher exact test.
gtest	If TRUE, conducts G test of association.
chisq	If TRUE, conducts Chi-square test of association.
method	The method to use to adjust p-values. See ?p.adjust.
correct	The correction to apply to the G test. See GTest.
digits	The number of digits for numbers in the output.
•••	Other arguments passed to chisq.test or GTest.

Details

If more than one of fisher, gtest, or chisq is set to TRUE, only one type of test of association will be conducted.

Value

A data frame of groups, test used, p-values, and adjusted p-values.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_06.html

See Also

nominalSymmetryTest, pairwiseMcnemar, pairwiseNominalIndependence, pairwiseNominalMatrix

Examples

groupwiseGeometric Groupwise geometric means and confidence intervals

Description

Calculates geometric means and confidence intervals for groups.

Usage

```
groupwiseGeometric(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  conf = 0.95,
  na.rm = TRUE,
  digits = 3,
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	The measurement variable to use. The name is in double quotes.
group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
conf	The confidence interval to use.
na.rm	If TRUE, removes NA values in the measurement variable.
digits	The number of significant figures to use in output.
	Other arguments. Not currently useful.

Details

The input should include either formula and data; or data, var, and group. (See examples).

The function computes means, standard deviations, standard errors, and confidence intervals on log-transformed values. Confidence intervals are calculated in the traditional manner with the t-distribution. These statistics assume that the data are log-normally distributed. For data not meeting this assumption, medians and confidence intervals by bootstrap may be more appropriate.

Value

A data frame of geometric means, standard deviations, standard errors, and confidence intervals.

groupwiseHuber

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Results for ungrouped (one-sample) data can be obtained by either setting the right side of the formula to 1, e.g. $y \sim 1$, or by setting group=NULL.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/C_03.html

See Also

groupwiseMean, groupwiseMedian groupwiseHuber

Examples

groupwiseHuber Groupwise Huber M-estimators and confidence intervals

Description

Calculates Huber M-estimator and confidence intervals for groups.

Usage

```
groupwiseHuber(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  conf.level = 0.95,
  ci.type = "wald",
```

) ...

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	The measurement variable to use. The name is in double quotes.
group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
conf.level	The confidence interval to use.
ci.type	The type of confidence interval to use. Can be "wald" or "boot". See HuberM for details.
	Other arguments passed to the HuberM function.

Details

A wrapper for the DescTools::HuberM function to allow easy output for multiple groups.

The input should include either formula and data; or data, var, and group. (See examples).

Value

A data frame of requested statistics by group.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Results for ungrouped (one-sample) data can be obtained by either setting the right side of the formula to 1, e.g. $y \sim 1$, or by setting group=NULL.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/rcompanion/d_08a.html

See Also

groupwiseMean, groupwiseMedian groupwiseGeometric

groupwiseMean

Examples

groupwiseMean

Groupwise means and confidence intervals

Description

Calculates means and confidence intervals for groups.

Usage

```
groupwiseMean(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  conf = 0.95,
 R = 5000,
 boot = FALSE,
  traditional = TRUE,
  normal = FALSE,
  basic = FALSE,
  percentile = FALSE,
  bca = FALSE,
  digits = 3,
  . . .
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	The measurement variable to use. The name is in double quotes.

group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
conf	The confidence interval to use.
R	The number of bootstrap replicates to use for bootstrapped statistics.
boot	If TRUE, includes the mean of the bootstrapped means. This can be used as an estimate of the mean for the group.
traditional	If TRUE, includes the traditional confidence intervals for the group means, using the t-distribution.
normal	If TRUE, includes the normal confidence intervals for the group means by boot- strap. See boot.ci.
basic	If TRUE, includes the basic confidence intervals for the group means by boot- strap. See boot.ci.
percentile	If TRUE, includes the percentile confidence intervals for the group means by bootstrap. See boot.ci.
bca	If TRUE, includes the BCa confidence intervals for the group means by bootstrap. See boot.ci.
digits	The number of significant figures to use in output.
	Other arguments passed to the boot function.

Details

The input should include either formula and data; or data, var, and group. (See examples).

With some options, the function may not handle missing values well. This seems to happen particularly with bca = TRUE.

Value

A data frame of requested statistics by group.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Results for ungrouped (one-sample) data can be obtained by either setting the right side of the formula to 1, e.g. $y \sim 1$, or by setting group=NULL.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/C_03.html

See Also

groupwiseMedian, groupwiseHuber groupwiseGeometric

groupwiseMedian

Examples

```
### Example with formula notation
data(Catbus)
groupwiseMean(Steps ~ Teacher + Sex,
                    = Catbus,
             data
             traditional = FALSE,
             percentile = TRUE)
### Example with variable notation
data(Catbus)
groupwiseMean(data
                        = Catbus,
                        = "Steps",
             var
             group
                      = c("Teacher", "Sex"),
             traditional = FALSE,
             percentile = TRUE)
```

groupwiseMedian

Groupwise medians and confidence intervals

Description

Calculates medians and confidence intervals for groups.

Usage

```
groupwiseMedian(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  conf = 0.95,
  R = 5000,
  boot = FALSE,
  pseudo = FALSE,
  basic = FALSE,
  normal = FALSE,
  percentile = FALSE,
  bca = TRUE,
 wilcox = FALSE,
  exact = FALSE,
  digits = 3,
  . . .
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	The measurement variable to use. The name is in double quotes.
group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
conf	The confidence interval to use.
R	The number of bootstrap replicates to use for bootstrapped statistics.
boot	If TRUE, includes the mean of the bootstrapped medians. This can be used as an estimate of the median for the group.
pseudo	If TRUE, includes the pseudo median from wilcox.test.
basic	If TRUE, includes the basic confidence intervals for the group means by boot- strap. See boot::boot.ci.
normal	If TRUE, includes the normal confidence intervals for the group means by boot- strap. See boot::boot.ci.
percentile	If TRUE, includes the percentile confidence intervals for the group means by bootstrap. See boot::boot.ci.
bca	If TRUE, includes the BCa confidence intervals for the group means by bootstrap. See boot::boot.ci.
wilcox	If TRUE, includes the wilcox confidence intervals from stats::wilcox.test.
exact	If TRUE, includes the "exact" confidence intervals from DescTools::MedianCI.
digits	The number of significant figures to use in output.
	Other arguments passed to the boot function.

Details

The input should include either formula and data; or data, var, and group. (See examples).

With some options, the function may not handle missing values well. This seems to happen particularly with bca = TRUE.

Value

A data frame of requested statistics by group.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Results for ungrouped (one-sample) data can be obtained by either setting the right side of the formula to 1, e.g. $y \sim 1$, or by setting group=NULL.

groupwisePercentile

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/E_04.html

See Also

groupwiseMean, groupwiseHuber groupwiseGeometric

Examples

groupwisePercentile Groupwise percentiles and confidence intervals

Description

Calculates percentiles and confidence intervals for groups.

Usage

```
groupwisePercentile(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  conf = 0.95,
  tau = 0.5,
  type = 7,
```

```
R = 5000,
boot = FALSE,
basic = FALSE,
normal = FALSE,
percentile = FALSE,
bca = TRUE,
digits = 3,
...
```

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	If no formula is given, the measurement variable to use. The name is in double quotes.
group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
conf	The confidence interval to use.
tau	The percentile to use, expressed as a quantile, e.g. 0.5 for median, 0.25 for 25th percentile.
type	The type value passed to the quantile function.
R	The number of bootstrap replicates to use for bootstrapped statistics.
boot	If TRUE, includes the mean of the bootstrapped percentile. This can be used as an estimate of the percentile for the group.
basic	If TRUE, includes the basic confidence intervals for the group means by boot- strap. See boot.ci.
normal	If TRUE, includes the normal confidence intervals for the group means by boot- strap. See boot.ci.
percentile	If TRUE, includes the percentile confidence intervals for the group means by bootstrap. See boot.ci.
bca	If TRUE, includes the BCa confidence intervals for the group means by bootstrap. See boot.ci.
digits	The number of significant figures to use in output.
	Other arguments passed to the boot function.

Details

The input should include either formula and data; or data, var, and group. (See examples).

With some options, the function may not handle missing values well. This seems to happen particularly with bca = TRUE.

Value

A data frame of requested statistics by group

44

groupwiseSum

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Results for ungrouped (one-sample) data can be obtained by either setting the right side of the formula to 1, e.g. $y \sim 1$, or by setting group=NULL.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_15.html

See Also

groupwiseMean, groupwiseHuber, groupwiseGeometric, groupwiseMedian

Examples

```
### Example with formula notation
data(Catbus)
groupwisePercentile(Steps ~ Teacher + Sex,
                  data
                            = Catbus,
                  tau
                             = 0.25,
                  bca = FALSE,
                  percentile = TRUE,
                  R
                              = 1000)
### Example with variable notation
data(Catbus)
groupwisePercentile(data
                             = Catbus,
                            = "Steps",
                  var
                            = c("Teacher", "Sex"),
                  group
                  tau
                             = 0.25,
                  bca
                             = FALSE,
                  percentile = TRUE,
                  R
                            = 1000)
```

groupwiseSum

Groupwise sums

Description

Calculates sums for groups.

Usage

```
groupwiseSum(
  formula = NULL,
  data = NULL,
  var = NULL,
  group = NULL,
  digits = NULL,
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
var	The measurement variable to use. The name is in double quotes.
group	The grouping variable to use. The name is in double quotes. Multiple names are listed as a vector. (See example.)
digits	The number of significant figures to use in output. The default is NULL, which results in no rounding of values.
	Other arguments passed to the sum function

Details

The input should include either formula and data; or data, var, and group. (See examples).

Value

A data frame of statistics by group.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The variables on the right side are used for the grouping variables.

Beginning in version 2.0, there is no rounding of results by default. Rounding results can cause confusion if the user is expecting exact sums.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

See Also

groupwiseMean, groupwiseMedian, groupwiseHuber, groupwiseGeometric

46

HayleySmith

Examples

HayleySmith

Hypothetical data for responses about adopting lawn care practices

Description

A data frame in long form with yes/no responses for four lawn care practices for each of 14 respondents. Hypothetical data.

Usage

HayleySmith

Format

An object of class data. frame with 56 rows and 3 columns.

Source

http://rcompanion.org/handbook/H_05.html

kendallW

Kendall's W with bootstrapped confidence interval

Description

Calculates Kendall's W coefficient of concordance, which can be used as an effect size statistic for unreplicated complete block design such as where Friedman's test might be used. This function is a wrapper for the KendallW function in the DescTools package, with the addition of bootstrapped confidence intervals.

Usage

```
kendallW(
    x,
    correct = TRUE,
    na.rm = FALSE,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    ...
)
```

Arguments

x	A k x m matrix or table, with k treatments in rows and m raters or blocks in columns.
correct	Passed to KendallW.
na.rm	Passed to KendallW.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
	Additional arguments passed to the KendallW function.

Details

See the KendallW function in the DescTools package for details.

When W is close to 0 or very large, or with small sample size, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Because W is always positive, if type="perc", the confidence interval will never cross zero, and should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When producing confidence intervals by bootstrap, this function treats each rater or block as an observation. It is not clear to the author if this approach produces accurate confidence intervals, but it appears to be reasonable.

Value

A single statistic, W. Or a small data frame consisting of W, and the lower and upper confidence limits.

48

Monarchs

Acknowledgments

Thanks to Indrajeet Patil, author of ggstatsplot, and groupedstats for help in the inspiring and coding of this function.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_04.html

Examples

```
data(BobBelcher)
Table = xtabs(Likert ~ Instructor + Rater, data = BobBelcher)
kendallW(Table)
```

Monarchs

Hypothetical data for monarch butterflies in gardens

Description

A data frame of the number of monarch butterflies in three gardens. Hypothetical data.

Usage

Monarchs

Format

An object of class data. frame with 24 rows and 2 columns.

Source

http://rcompanion.org/handbook/J_01.html

```
multiVDA
```

Description

Calculates Vargha and Delaney's A (VDA), Cliff's delta (CD), and the Glass rank biserial coefficient, rg, for several groups in a pairwise manner.

Usage

```
multiVDA(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  statistic = "VDA",
  digits = 3,
  ...
)
```

Arguments

formula	A formula indicating the response variable and the independent variable. e.g. y \sim group.
data	The data frame to use.
х	If no formula is given, the response variable.
g	If no formula is given, the grouping variable.
statistic	One of "VDA", "CD", or "rg". This determines which statistic will be evaluated to determine the comparison with the most divergent groups.
digits	The number of significant digits in the output.
	Additional arguments passed to the wilcox.test function.

Details

VDA and CD are effect size statistic appropriate in cases where a Wilcoxon-Mann-Whitney test might be used. Here, the pairwise approach would be used in cases where a Kruskal-Wallis test might be used. VDA ranges from 0 to 1, with 0.5 indicating stochastic equality, and 1 indicating that the first group dominates the second. CD ranges from -1 to 1, with 0 indicating stochastic equality, and 1 indicating that the first group dominates the second. rg ranges from -1 to 1, depending on sample size, with 0 indicating no effect, and a positive result indicating that values in the first group are greater than in the second.

Be cautious with this interpretation, as R will alphabetize groups in the formula interface if the grouping variable is not already a factor.

In the function output, VDA.m is the greater of VDA or 1-VDA. CD.m is the absolute value of CD. rg.m is the absolute value of rg.

nagelkerke

The function calculates VDA and Cliff's delta from the "W" U statistic from the wilcox.test function. Specifically, VDA = U/(n1*n2); CD = (VDA-0.5)*2.

rg is calculated as 2 times the difference of mean of ranks for each group divided by the total sample size. It appears that rg is equivalent to Cliff's delta.

The input should include either formula and data; or var, and group.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

Value

A list containing a data frame of pairwise statistics, and the comparison with the most extreme value of the chosen statistic.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_08.html

See Also

vda, cliffDelta

Examples

```
data(PoohPiglet)
multiVDA(Likert ~ Speaker, data=PoohPiglet)
```

nagelkerke

Pseudo r-squared measures for various models

Description

Produces McFadden, Cox and Snell, and Nagelkerke pseudo R-squared measures, along with p-values, for models.

Usage

```
nagelkerke(fit, null = NULL, restrictNobs = FALSE)
```

Arguments

fit	The fitted model object for which to determine pseudo r-squared.
null	The null model object against which to compare the fitted model object. The null model must be nested in the fitted model to be valid. Specifying the null is optional for some model object types and is required for others.
restrictNobs	If TRUE, limits the observations for the null model to those used in the fitted model. Works with only some model object types.

Details

Pseudo R-squared values are not directly comparable to the R-squared for OLS models. Nor can they be interpreted as the proportion of the variability in the dependent variable that is explained by model. Instead pseudo R-squared measures are relative measures among similar models indicating how well the model explains the data.

Cox and Snell is also referred to as ML. Nagelkerke is also referred to as Cragg and Uhler.

Model objects accepted are lm, glm, gls, lme, lmer, lmerTest, nls, clm, clmm, vglm, glmer, negbin, zeroinfl, betareg, and rq.

Model objects that require the null model to be defined are nls, lmer, glmer, and clmm. Other objects use the update function to define the null model.

Likelihoods are found using ML (REML = FALSE).

The fitted model and the null model should be properly nested. That is, the terms of one need to be a subset of the the other, and they should have the same set of observations. One issue arises when there are NA values in one variable but not another, and observations with NA are removed in the model fitting. The result may be fitted and null models with different sets of observations. Setting restrictNobs to TRUE ensures that only observations in the fit model are used in the null model. This appears to work for lm and some glm models, but causes the function to fail for other model object types.

Some pseudo R-squared measures may not be appropriate or useful for some model types.

Calculations are based on log likelihood values for models. Results may be different than those based on deviance.

Value

A list of six objects describing the models used, the pseudo r-squared values, the likelihood ratio test for the model, the number of obervaton for the models, messages, and any warnings.

Acknowledgements

My thanks to Jan-Herman Kuiper of Keele University for suggesting the restrictNobs fix.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/G_10.html

nagelkerkeHermite

See Also

accuracy

Examples

```
### Logistic regression example
data(AndersonBias)
model = glm(Result ~ County + Sex + County:Sex,
           weight = Count,
           data = AndersonBias,
           family = binomial(link="logit"))
nagelkerke(model)
### Quadratic plateau example
### With nls, the null needs to be defined
data(BrendonSmall)
quadplat = function(x, a, b, clx) {
         ifelse(x < clx, a + b * x</pre>
                                     + (-0.5*b/clx) * x * x,
                           a + b * clx + (-0.5*b/clx) * clx * clx)}
model = nls(Sodium ~ quadplat(Calories, a, b, clx),
            data = BrendonSmall,
            start = list(a = 519,
                        b = 0.359,
                        clx = 2304))
nullfunct = function(x, m){m}
null.model = nls(Sodium ~ nullfunct(Calories, m),
             data = BrendonSmall,
             start = list(m = 1346))
nagelkerke(model, null=null.model)
```

nagelkerkeHermite [Defunct]] Pseudo r-squared measures for hermite models

Description

Defunct. Produces McFadden, Cox and Snell, and Nagelkerke pseudo R-squared measures, along with p-value for the model, for hermite regression objects.

Usage

nagelkerkeHermite(...)

Arguments

... Anything.

nominalSymmetryTest Exact and Monte Carlo symmetry tests for paired contingency tables

Description

Conducts an omnibus symmetry test for a paired contingency table and then post-hoc pairwise tests. This is similar to McNemar and McNemar-Bowker tests in use.

Usage

```
nominalSymmetryTest(x, method = "fdr", digits = 3, ...)
```

Arguments

x	A two-way contingency table. It must be square. It can have two or more levels for each dimension.
method	The method to adjust multiple p-values. See stats::p.adjust.
digits	The number of significant digits in the output.
	Additional arguments, passed to EMT::multinomial.test.

Details

If Monte Carlo is not used, the test of symmetry uses an exact test by conducting either a binomial or multinomial goodness-of-fit test.

These are equivalent to uncorrected McNemar and McNemar-Bowker tests, but will not fail when there are zeros in critical cells, as will the mcnemar.test function.

Value

A list containing: a data frame of results of the global test; a data frame of results of the pairwise results; and a data frame mentioning the p-value adjustment method.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_05.html

See Also

pairwiseMcnemar, groupwiseCMH, pairwiseNominalIndependence, pairwiseNominalMatrix

Nurseries

Examples

Nurseries

Data for proportion of good practices followed by plant nuseries

Description

A data frame with two variables: size of plant nursery in hectares, and proportion of good practices followed by the nursery

Usage

Nurseries

Format

An object of class data. frame with 38 rows and 2 columns.

Source

Mangiafico, S.S., Newman, J.P., Mochizuki, M.J., and Zurawski, D. (2008). Adoption of sustainable practices to protect and conserve water resources in container nurseries with greenhouse facilities. Acta horticulturae 797, 367-372. ordinalEtaSquared *Eta-squared for ordinal variables*

Description

Calculates eta-squared as an effect size statistic, following a Kruskal-Wallis test, or for a table with one ordinal variable and one nominal variable; confidence intervals by bootstrap.

Usage

```
ordinalEtaSquared(
    x,
    g = NULL,
    group = "row",
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

x	Either a two-way table or a two-way matrix. Can also be a vector of observations of an ordinal variable.
g	If ${\sf x}$ is a vector, ${\sf g}$ is the vector of observations for the grouping, nominal variable.
group	If x is a table or matrix, group indicates whether the "row" or the "column" variable is the nominal, grouping variable.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
reportIncomplet	e
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.
	Additional arguments passed to the kruskal.test function.

Details

Eta-squared is used as a measure of association for the Kruskal-Wallis test or for a two-way table with one ordinal and one nominal variable.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

Because eta-squared is always positive, if type="perc", the confidence interval will never cross zero, and should not be used for statistical inference. However, if type="norm", the confidence interval may cross zero.

When eta-squared is close to 0 or very large, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, eta-squared. Or a small data frame consisting of eta-squared, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_11.html

See Also

freemanTheta, epsilonSquared

Examples

```
data(Breakfast)
library(coin)
chisq_test(Breakfast, scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
ordinalEtaSquared(Breakfast)

data(PoohPiglet)
kruskal.test(Likert ~ Speaker, data = PoohPiglet)
ordinalEtaSquared(x = PoohPiglet$Likert, g = PoohPiglet$Speaker)
```

```
### Same data, as matrix of counts
data(PoohPiglet)
XT = xtabs( ~ Speaker + Likert , data = PoohPiglet)
ordinalEtaSquared(XT)
```

pairwiseDifferences [Defunct!] Pairwise differences for unreplicated CBD

Description

Defunct. Calculates the differences in the response variable for each pair of levels of a grouping variable in an unreplicated complete block design.

Usage

```
pairwiseDifferences(...)
```

Arguments

... Anything.

pairwiseMcnemar Pairwise McNemar and related tests for Cochran Q test post-hoc

Description

Conducts pairwise McNemar, exact, and permutation tests as a post-hoc to Cochran Q test.

Usage

```
pairwiseMcnemar(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  block = NULL,
  test = "exact",
  method = "fdr",
  digits = 3,
  correct = FALSE
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g. $y \sim \text{group} \mid \text{block}$.
data	The data frame to use.
x	The response variable.
g	The grouping variable.

pairwiseMcnemar

block	The blocking variable.
test	If "exact", conducts an exact test of symmetry analogous to a McNemar test. If "mcnemar", conducts a McNemar test of symmetry. If "permutation", con- ducts a permutation test analogous to a McNemar test.
method	The method for adjusting multiple p-values. See p.adjust.
digits	The number of significant digits in the output.
correct	If TRUE, applies a continuity correction for the McNemar test.

Details

The component tables for the pairwise tests must be of size 2 x 2.

The input should include either formula and data; or x, g, and block.

Value

A list containing: a data frame of results of the global test; a data frame of results of the pairwise results; and a data frame mentioning the p-value adjustment method.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable. The second variable on the right side is used for the blocking variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_07.html

See Also

nominalSymmetryTest, groupwiseCMH, pairwiseNominalIndependence, pairwiseNominalMatrix

Examples

pairwiseMedianMatrix Pairwise Mood's median tests with matrix output

Description

Conducts pairwise Mood's median tests across groups.

Usage

```
pairwiseMedianMatrix(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  digits = 4,
  method = "fdr",
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g.
	y ~ group.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
digits	The number of significant digits to round output.
method	The p-value adjustment method to use for multiple tests. See stats::p.adjust.
	Additional arguments passed to coin::median_test.

Details

The input should include either formula and data; or x, and g.

Mood's median test compares medians among two or more groups. See http://rcompanion.org/handbook/F_09.html for futher discussion of this test.

The pairwiseMedianMatrix function can be used as a post-hoc method following an omnibus Mood's median test. The matrix output can be converted to a compact letter display.

Value

A list consisting of: a matrix of p-values; the p-value adjustment method; a matrix of adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_09.html

See Also

pairwiseMedianTest

Examples

pairwiseMedianTest Pairwise Mood's median tests

Description

Conducts pairwise Mood's median tests across groups.

Usage

```
pairwiseMedianTest(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  digits = 4,
  method = "fdr",
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g. y ~ group.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
digits	The number of significant digits to round output.
method	The p-value adjustment method to use for multiple tests. See <pre>stats::p.adjust</pre> .
	Additional arguments passed to codecoin::median_test.

Details

The input should include either formula and data; or x, and g.

Mood's median test compares medians among two or more groups. See http://rcompanion.org/handbook/F_09.html for futher discussion of this test.

The pairwiseMedianTest function can be used as a post-hoc method following an omnibus Mood's median test.

Value

A dataframe of the groups being compared, the p-values, and the adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_09.html

62

pairwiseModelAnova

See Also

pairwiseMedianMatrix

Examples

pairwiseModelAnova Compare model objects with F test and likelihood ratio test

Description

Compares a series of models with pairwise F tests and likelihood ratio tests.

Usage

```
pairwiseModelAnova(fits, ...)
```

Arguments

fits	A series of model object names, separated by commas.
	Other arguments passed to list.

Details

For comparisons to be valid, both models must have the same data, without transformations, use the same dependent variable, and be fit with the same method.

To be valid, models need to be nested.

Value

A list of: The calls of the models compared; a data frame of comparisons and F tests; and a data frame of comparisons and likelihood ratio tests.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

See Also

compareGLM, compareLM

Examples

pairwiseNominalIndependence

Pairwise tests of independence for nominal data

Description

Conducts pairwise tests for a 2-dimensional matrix, in which at at least one dimension has more than two levels, as a post-hoc test. Conducts Fisher exact, Chi-square, or G-test.

Usage

```
pairwiseNominalIndependence(
    x,
    compare = "row",
    fisher = TRUE,
    gtest = TRUE,
    chisq = TRUE,
    method = "fdr",
    correct = "none",
    cramer = FALSE,
    digits = 3,
    ...
)
```

64

Arguments

x	A two-way contingency table. At least one dimension should have more than two levels.
compare	If "row", treats the rows as the grouping variable. If "column", treats the columns as the grouping variable.
fisher	If "TRUE", conducts fisher exact test.
gtest	If "TRUE", conducts G-test.
chisq	If "TRUE", conducts Chi-square test of association.
method	The method to adjust multiple p-values. See stats::p.adjust.
correct	The correction method to pass to DescTools::GTest.
cramer	If "TRUE", includes and effect size, Cramer's V in the output.
digits	The number of significant digits in the output.
	Additional arguments, passed to stats::fisher.test, DescTools::GTest, or stats::chisq.test.

Value

A data frame of comparisons, p-values, and adjusted p-values.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_04.html

See Also

pairwiseMcnemar, groupwiseCMH, nominalSymmetryTest, pairwiseNominalMatrix

Examples

pairwiseNominalMatrix Pairwise tests of independence for nominal data with matrix output

Description

Conducts pairwise tests for a 2-dimensional matrix, in which at at least one dimension has more than two levels, as a post-hoc test. Conducts Fisher exact, Chi-square, or G-test.

Usage

```
pairwiseNominalMatrix(
    x,
    compare = "row",
    fisher = TRUE,
    gtest = FALSE,
    chisq = FALSE,
    method = "fdr",
    correct = "none",
    digits = 3,
    ...
)
```

Arguments

х	A two-way contingency table. At least one dimension should have more than two levels.
compare	If "row", treats the rows as the grouping variable. If "column", treats the columns as the grouping variable.
fisher	If "TRUE", conducts fisher exact test.
gtest	If "TRUE", conducts G-test.
chisq	If "TRUE", conducts Chi-square test of association.
method	The method to adjust multiple p-values. See p.adjust.
correct	The correction method to pass to DescTools::GTest.
digits	The number of significant digits in the output.
	Additional arguments, passed to stats::fisher.test, DescTools::GTest, or stats::chisq.test.

Value

A list consisting of: the test used, a matrix of unadjusted p-values, the p-value adjustment method used, and a matrix of adjusted p-values.

@seealso pairwiseMcnemar, groupwiseCMH, nominalSymmetryTest, pairwiseNominalIndependence

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_04.html

Examples

pairwiseOrdinalIndependence

Pairwise tests of independence for tables with one ordered nominal variable

Description

Conducts pairwise tests for a 2-dimensional table, in which one variable is ordered nominal and one variable is non-ordered nominal. The function relies on the coin package.

Usage

```
pairwiseOrdinalIndependence(
    x,
    compare = "row",
    scores = NULL,
    method = "fdr",
    digits = 3,
    ...
)
```

Arguments

```
Х
```

A two-way contingency table. One dimension is ordered and one is non-ordered nominal.

compare	If "row", treats the rows as the grouping variable. If "column", treats the columns as the grouping variable.
scores	Optional vector to specify the spacing of the ordered variable.
method	The method to adjust multiple p-values. See stats::p.adjust.
digits	The number of significant digits in the output.
• • •	Additional arguments, passed to stats::chisq_test.

Value

A data frame of comparisons, p-values, and adjusted p-values.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_09.html

See Also

pairwiseNominalIndependence

Examples

```
### Independence test for table with one ordered variable
data(Breakfast)
require(coin)
chisq_test(Breakfast,
           scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
PT = pairwiseOrdinalIndependence(Breakfast, compare = "row")
ΡT
cldList(comparison = PT$Comparison,
       p.value = PT$p.value,
        threshold = 0.05)
### Similar to Kruskal-Wallis test for Likert data
data(PoohPiglet)
XT = xtabs(~ Speaker + Likert, data = PoohPiglet)
XТ
require(coin)
chisq_test(XT,
           scores = list("Likert" = c(1, 2, 3, 4, 5)))
PT=pairwiseOrdinalIndependence(XT, compare = "row")
ΡT
cldList(comparison = PT$Comparison,
       p.value = PT$p.value,
       threshold = 0.05)
```

pairwiseOrdinalMatrix [Defunct!] Pairwise two-sample ordinal regression with matrix output

Description

Defunct. Performs pairwise two-sample ordinal regression across groups.

Usage

```
pairwiseOrdinalMatrix(...)
```

Arguments

... Anything.

```
pairwiseOrdinalPairedMatrix
```

[Defunct!] Pairwise two-sample ordinal regression for paired data with matrix output

Description

Defunct. Performs pairwise two-sample ordinal regression across groups for paired data with matrix output.

Usage

```
pairwiseOrdinalPairedMatrix(...)
```

Arguments

... Anything.

```
pairwiseOrdinalPairedTest
```

[Defunct!] Pairwise two-sample ordinal regression for paired data

Description

Defunct. Performs pairwise two-sample ordinal regression across groups for paired data.

Usage

```
pairwiseOrdinalPairedTest(...)
```

Arguments

... Anything.

pairwiseOrdinalTest [Defunct!] Pairwise two-sample ordinal regression

Description

Defunct. Performs pairwise two-sample ordinal regression across groups.

Usage

```
pairwiseOrdinalTest(...)
```

Arguments

... Anything.

pairwisePercentileTest

Pairwise permutation tests for percentiles

Description

Conducts pairwise permutation tests across groups for percentiles, medians, and proportion below a threshold value.

Usage

```
pairwisePercentileTest(
  formula = NULL,
  data = NULL,
  x = NULL,
  y = NULL,
  test = "median",
  tau = 0.5,
  type = 7,
  threshold = NA,
  comparison = "<",
  r = 1000,
  digits = 4,
  progress = "TRUE",
  method = "fdr"</pre>
```

)

Arguments

formula	A formula indicating the response variable and the independent variable. e.g. y ~ group.
data	The data frame to use.
х	If no formula is given, the response variable for one group.
У	The response variable for the other group.
test	The statistic to compare between groups. Can be "median", "percentile", "iqr", "proportion", "mean", or "variance".
tau	If "percentile" is chosen as the test, tau indicates the percentile to test. Expressed as a quantile. That is, 0.5 indicates a test for medians. 0.75 indicates a test for 75th percentiles.
type	The type value passed to the quantile function.
threshold	If "proportion" is chosen as the test, threshold indicates the value of the dependent variable to use as the threshold. For example, to test if there is a different in the proportion of observations below \$10,000, threshold = 10000 would be used.
comparison	If "proportion" is chosen as the test, comparison indicates the inequality to use. Options are "<", "<=", ">", ">=", or, "=="
r	The number of replicates in the permutation test.
digits	The number of significant digits in the output.
progress	If TRUE, prints a dot for every 1 percent of the progress while conducting the test.
method	The p-value adjustment method to use for multiple tests. See stats::p.adjust.

Details

The function conducts pairwise tests using the percentileTest function. The user can consult the documentation for that function for additional details.

The input should include either formula and data; or x, and y.

Value

A dataframe of the groups being compared, the p-values, and the adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_15.html

See Also

percentileTest, groupwisePercentile

Examples

```
## Not run:
data(BrendonSmall)
PT = pairwisePercentileTest(Sodium ~ Instructor,
                            data = BrendonSmall,
                             test = "percentile",
                             tau = 0.75)
ΡТ
cldList(p.adjust ~ Comparison,
        data
                   = PT,
        threshold = 0.05)
data(BrendonSmall)
PT = pairwisePercentileTest(Sodium ~ Instructor,
                             data = BrendonSmall,
test = "proportion",
                             threshold = 1300)
ΡT
cldList(p.adjust ~ Comparison,
                  = PT,
        data
        threshold = 0.05)
```

pairwisePermutationMatrix

Pairwise two-sample permutation tests with matrix output

Description

Conducts pairwise two-sample permutation tests across groups.

Usage

```
pairwisePermutationMatrix(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  method = "fdr",
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g. y ~ group.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
method	The p-value adjustment method to use for multiple tests. See <pre>stats::p.adjust.</pre>
	Additional arguments passed to coin::independence_test.

Details

The input should include either formula and data; or x, and g.

Permutation tests are non-parametric tests that do not assume normally-distributed errors. See http://rcompanion.org/rcompanion/d_06a.html for futher discussion of this test.

The pairwisePermutationTest function can be used as a post-hoc method following an omnibus permutation test analogous to a one-way analysis of variance. The matrix output can be converted to a compact letter display.

Value

A list consisting of: A matrix of p-values; the p-value adjustment method; a matrix of adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/K_02.html

See Also

pairwisePermutationTest

Examples

pairwisePermutationSymmetry

Pairwise two-sample permutation symmetry tests

Description

Conducts pairwise two-sample permutation tests of symmetry across groups.

Usage

```
pairwisePermutationSymmetry(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
```

```
b = NULL,
method = "fdr",
...
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g. y ~ group block.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
b	The blocking variable as a vector.
method	The p-value adjustment method to use for multiple tests. See <pre>stats::p.adjust</pre> .
	Additional arguments passed to coin::symmetry_test.

Details

The input should include either formula and data; or x, g, and b.

Permutation tests are non-parametric tests that do not assume normally-distributed errors. See http://rcompanion.org/rcompanion/d_06a.html for futher discussion of this test.

The pairwisePermutationSymmetry function can be used as a post-hoc method following an omnibus permutation test analogous to a paired one-way analysis of variance.

Value

A dataframe of the groups being compared, the p-values, and the adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable. The second variable on the right side is used for the blocking variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/K_03.html

See Also

pairwisePermutationSymmetryMatrix

Examples

pairwisePermutationSymmetryMatrix

Pairwise two-sample permutation symmetry tests with matrix output

Description

Conducts pairwise two-sample permutation tests for symmetry across groups.

Usage

```
pairwisePermutationSymmetryMatrix(
  formula = NULL,
  data = NULL,
    x = NULL,
    g = NULL,
    b = NULL,
    method = "fdr",
    ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g. y ~ group.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
b	The blocking variable as a vector.
method	The p-value adjustment method to use for multiple tests. See stats::p.adjust.
	Additional arguments passed to coin::symmetry_test.

76

Details

The input should include either formula and data; or x, g, and b.

Permutation tests are non-parametric tests that do not assume normally-distributed errors. See http://rcompanion.org/rcompanion/d_06a.html for futher discussion of this test.

The pairwisePermutationSymmetryMatrix function can be used as a post-hoc method following an omnibus permutation test analogous to a paired one-way analysis of variance. The matrix output can be converted to a compact letter display.

Value

A list consisting of: A matrix of p-values; the p-value adjustment method; a matrix of adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable. The second variable on the right side is used for the blocking variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/K_03.html

See Also

pairwisePermutationSymmetry

Examples

```
pairwisePermutationTest
```

Pairwise two-sample permutation tests

Description

Conducts pairwise two-sample permutation tests across groups.

Usage

```
pairwisePermutationTest(
  formula = NULL,
  data = NULL,
  x = NULL,
  g = NULL,
  method = "fdr",
  ...
)
```

Arguments

formula	A formula indicating the measurement variable and the grouping variable. e.g.
	y ~ group.
data	The data frame to use.
x	The response variable as a vector.
g	The grouping variable as a vector.
method	The p-value adjustment method to use for multiple tests. See stats::p.adjust.
	Additional arguments passed to coin::independence_test.

Details

The input should include either formula and data; or x, and g.

Permutation tests are non-parametric tests that do not assume normally-distributed errors. See http://rcompanion.org/rcompanion/d_06a.html for futher discussion of this test.

The pairwisePermutationTest function can be used as a post-hoc method following an omnibus permutation test analogous to a one-way analysis of variance.

Value

A dataframe of the groups being compared, the p-values, and the adjusted p-values.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

pairwiseRobustMatrix

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/K_02.html

See Also

pairwisePermutationMatrix

Examples

pairwiseRobustMatrix [Defunct]] Pairwise two-sample robust tests with matrix output

Description

Defunct. Performs pairwise two-sample robust tests across groups with matrix output.

Usage

pairwiseRobustMatrix(...)

Arguments

... Anything.

pairwiseRobustTest [Defunct!] Pairwise two-sample robust tests

Description

Defunct. Performs pairwise two-sample robust tests across groups.

Usage

```
pairwiseRobustTest(...)
```

Arguments

...

pairwiseSignMatrix

[Defunct!] Pairwise sign tests with matrix output

Description

Defunct. Performs pairwise sign tests.

Anything.

Usage

```
pairwiseSignMatrix(...)
```

Arguments

... Anything.

pairwiseSignTest [Defunct!] Pairwise sign tests

Description

Defunct. Performs pairwise sign tests.

Usage

pairwiseSignTest(...)

Arguments

... Anything.

Pennsylvania18 Votes for

Description

A two-by-two matrix with the proportion of votes for the Democratic candidate in two races, in 2016 and 2018. 2016 is the Presidential election with Hilary Clinton as the Democratic candidate. 2018 is a House of Representatives election with Conor Lamb. These data are for Pennsylvania's 18th Congressional District.

Usage

Pennsylvania18

Format

An object of class matrix with 2 rows and 2 columns.

Source

http://rcompanion.org/handbook/H_10.html

percentileTest Test of percentiles by permutation test

Description

Conducts a permutation test to compare two groups for medians, percentiles, or proportion below a threshold value.

Usage

```
percentileTest(
  formula = NULL,
  data = NULL,
  x = NULL,
  y = NULL,
  test = "median",
  tau = 0.5,
  type = 7,
  threshold = NA,
  comparison = "<",
  r = 1000,
  digits = 4,
  progress = "TRUE"
)
```

Arguments

formula	A formula indicating the response variable and the independent variable. e.g. y \sim group.
data	The data frame to use.
x	If no formula is given, the response variable for one group.
У	The response variable for the other group.
test	The statistic to compare between groups. Can be "median", "percentile", "iqr", "proportion", "mean", or "variance".
tau	If "percentile" is chosen as the test, tau indicates the percentile to test. Expressed as a quantile. That is, 0.5 indicates a test for medians. 0.75 indicates a test for 75th percentiles.
type	The type value passed to the quantile function.
threshold	If "proportion" is chosen as the test, threshold indicates the value of the dependent variable to use as the threshold. For example, to test if there is a different in the proportion of observations below \$10,000, threshold = 10000 would be used.
comparison	If "proportion" is chosen as the test, comparison indicates the inequality to use. Options are "<", "<=", ">", ">=", or, "=="
r	The number of replicates in the permutation test.
digits	The number of significant digits in the output.
progress	If TRUE, prints a dot for every 1 percent of progress while conducting the test.

Details

The function will test for a difference in medians, percentiles, interquartile ranges, proportion of observations above or below some threshold value, means, or variances between two groups by permutation test.

The input should include either formula and data; or x and y.

The function removes cases with NA in any of the variables.

If the independent variable has more than two groups, only the first two levels of the factor variable will be used.

The p-value returned is a two-sided test.

Value

A list of three data frames with the data used, a summary for each group, and the p-value from the test.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the independent variable.

phi

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_15.html

Examples

Description

Calculates phi for a 2 x 2 table of nominal variables; confidence intervals by bootstrap.

Usage

```
phi(
    x,
    y = NULL,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    verbose = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

x	Either a 2 x 2 table or a 2 x 2 matrix. Can also be a vector of observations for one dimension of a 2 x 2 table.
У	If x is a vector, y is the vector of observations for the second dimension of a 2 x^2 table.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
verbose	If TRUE, prints the table of counts.
digits	The number of significant digits in the output.
reportIncomplete	
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.
	Additional arguments. (Ignored.)

Details

phi is used as a measure of association between two binomial variables, or as an effect size for a chi-square test of association for a 2 x 2 table. The absolute value of the phi statistic is the same as Cramer's V for a 2 x 2 table.

Unlike Cramer's V, phi can be positive or negative (or zero), and ranges from -1 to 1.

When phi is close to its extremes, or with small counts, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, phi. Or a small data frame consisting of phi, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/H_10.html

See Also

cramerV

plotDensityHistogram

Examples

plotDensityHistogram *Histogram with a density curve*

Description

Produces a histogram for a vector of values and adds a density curve of the distribution.

Usage

```
plotDensityHistogram(
    x,
    prob = FALSE,
    col = "gray",
    main = "",
    linecol = "black",
    lwd = 2,
    adjust = 1,
    bw = "nrd0",
    kernel = "gaussian",
    ...
)
```

Arguments

x	A vector of values.
prob	If FALSE, then counts are displayed in the histogram. If TRUE, then the density is shown.
col	The color of the histogram bars.
main	The title displayed for the plot.
linecol	The color of the line in the plot.
lwd	The width of the line in the plot.
adjust	Passed to density. A lower value makes the density plot smoother.
bw	Passed to density.
kernel	Passed to density.
	Other arguments passed to hist.

Details

The function relies on the hist function. The density curve relies on the density function.

Value

Produces a plot. Returns nothing.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/C_04.html

See Also

plotNormalHistogram plotNormalDensity

Examples

plotNormalDensity Density plot with a normal curve

Description

Produces a density plot for a vector of values and adds a normal curve with the same mean and standard deviation. The plot can be used to quickly compare the distribution of data to a normal distribution.

Usage

```
plotNormalDensity(
    x,
    col1 = "white",
    col2 = "gray",
    col3 = "blue",
    border = NA,
    main = "",
    lwd = 2,
    length = 1000,
```

plotNormalDensity

```
adjust = 1,
bw = "nrd0",
kernel = "gaussian",
...
```

Arguments

x	A vector of values.
col1	The color of the density plot. Usually not visible.
col2	The color of the density polygon.
col3	The color of the normal line.
border	The color of the border around the density polygon.
main	The title displayed for the plot.
lwd	The width of the line in the plot.
length	The number of points in the line in the plot.
adjust	Passed to density. A lower value makes the density plot smoother.
bw	Passed to density.
kernel	Passed to density.
	Other arguments passed to plot.

Details

The function plots a polygon based on the density function. The normal curve has the same mean and standard deviation as the values in the vector.

Value

Produces a plot. Returns nothing.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_01.html

See Also

plotNormalHistogram plotDensityHistogram

Examples

plotNormalHistogram *Histogram with a normal curve*

Description

Produces a histogram for a vector of values and adds a normal curve with the same mean and standard deviation. The plot can be used to quickly compare the distribution of data to a normal distribution.

Usage

```
plotNormalHistogram(
    x,
    prob = FALSE,
    col = "gray",
    main = "",
    linecol = "blue",
    lwd = 2,
    length = 1000,
    ...
)
```

Arguments

х	A vector of values.
prob	If FALSE, then counts are displayed in the histogram. If TRUE, then the density is shown.
col	The color of the histogram bars.
main	The title displayed for the plot.
linecol	The color of the line in the plot.
lwd	The width of the line in the plot.
length	The number of points in the line in the plot.
	Other arguments passed to hist.

Details

The function relies on the hist function. The normal curve has the same mean and standard deviation as the values in the vector.

88

plotPredy

Value

Produces a plot. Returns nothing.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_01.html

See Also

plotNormalDensity plotDensityHistogram

Examples

plotPredy

Plot a predicted line from a bivariate model

Description

Plots the best fit line for a model with one y variable and one x variable, or with one y variable and polynomial x variables.

Usage

```
plotPredy(
    data,
        X,
        y,
        model,
        order = 1,
        x2 = NULL,
        x3 = NULL,
        x4 = NULL,
        x5 = NULL,
        pch = 16,
        xlab = "X",
        ylab = "Y",
        length = 1000,
    }
}
```

```
lty = 1,
lwd = 2,
col = "blue",
type = NULL,
...
```

Arguments

data	The name of the data frame.
х	The name of the x variable.
У	The name of the y variable.
model	The name of the model object.
order	If plotting a polynomial function, the order of the polynomial. Otherwise can be left as 1.
x2	If applicable, the name of the second order polynomial x variable.
x3	If applicable, the name of the third order polynomial x variable.
x4	If applicable, the name of the fourth order polynomial x variable.
x5	If applicable, the name of the fifth order polynomial x variable.
pch	The shape of the plotted data points.
xlab	The label for the x-axis.
ylab	The label for the y-axis.
length	The number of points used to draw the line.
lty	The style of the plotted line.
lwd	The width of the plotted line.
col	The col of the plotted line.
type	Passed to predict. Required for certain models.
	Other arguments passed to plot.

Details

Any model for which predict() is defined can be used.

Value

Produces a plot. Returns nothing.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_10.html

90

plotPredy

Examples

```
### Plot of linear model fit with lm
data(BrendonSmall)
model = lm(Weight ~ Calories, data = BrendonSmall)
plotPredy(data = BrendonSmall,
            = Weight,
= Calories,
         У
         х
         model = model,
         xlab = "Calories per day",
         ylab = "Weight in kilograms")
### Plot of polynomial model fit with lm
data(BrendonSmall)
BrendonSmall$Calories2 = BrendonSmall$Calories * BrendonSmall$Calories
model = lm(Sodium ~ Calories + Calories2, data = BrendonSmall)
plotPredy(data = BrendonSmall,
               = Sodium,
         У
             = Calories,
         Х
         x2 = Calories2,
         model = model,
         order = 2,
         xlab = "Calories per day",
         ylab = "Sodium intake per day")
### Plot of quadratic plateau model fit with nls
data(BrendonSmall)
quadplat = function(x, a, b, clx) {
         ifelse(x < clx, a + b * x + (-0.5*b/clx) * x * x,
                          a + b + clx + (-0.5 + b/clx) + clx + clx)
model = nls(Sodium ~ quadplat(Calories, a, b, clx),
           data = BrendonSmall,
           start = list(a = 519,
                        b = 0.359,
                        clx = 2304))
plotPredy(data = BrendonSmall,
         y = Sodium,
x = Calories,
         model = model,
         xlab = "Calories per day",
         ylab = "Sodium intake per day")
### Logistic regression example requires type option
data(BullyHill)
Trials = cbind(BullyHill$Pass, BullyHill$Fail)
model.log = glm(Trials ~ Grade, data = BullyHill,
               family = binomial(link="logit"))
plotPredy(data = BullyHill,
               = Percent,
         У
         x = Grade,
         model = model.log,
         type = "response",
         xlab = "Grade",
```

```
ylab = "Proportion passing")
```

PMCMRTable

Convert PMCMR Objects to a Data Frame

Description

Extracts a data frame of comparisons and p-values from an PMCMR object from the PMCMRplus package

Usage

```
PMCMRTable(PMCMR, reverse = TRUE, digits = 3)
```

Arguments

PMCMR	A PMCMR object
reverse	If TRUE, reports the comparison as e.g. $(B - A = 0)$. This will more closely match the output of PMCMRplus::summary.PMCMR for all-pairs comparisons. If FALSE, reports the comparison as e.g. $(A - B = 0)$. This will result in the output from rcompanion::cldList matching the output of PMCMRplus::summaryGroup
digits	The significant digits in the output

Details

Should produce meaningful output for all-pairs and many-to-one comparisons.

Value

A data frame of comparisons and p-values

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_08.html

Pooh

Description

A data frame of Likert responses for instructor Pooh Bear for each of 10 respondents, paired before and after. Hypothetical data.

Usage

Pooh

Format

An object of class data.frame with 20 rows and 4 columns.

Source

http://rcompanion.org/handbook/F_06.html

PoohPiglet

Hypothetical data for ratings of Pooh, Piglet, and Tigger

Description

A data frame of Likert responses for instructors Pooh Bear, Piglet, and Tigger. Hypothetical data.

Usage

PoohPiglet

Format

An object of class data. frame with 30 rows and 2 columns.

Source

http://rcompanion.org/handbook/F_08.html

quantileCI

Description

Calculates an estimate for a quantile and confidence intervals for a vector of discrete or continuous values

Usage

```
quantileCI(
    x,
    tau = 0.5,
    level = 0.95,
    method = "binomial",
    type = 3,
    digits = 3,
    ...
)
```

Arguments

x	The vector of observations. Can be an ordered factor as long as type is 1 or 3.
tau	The quantile to use, e.g. 0.5 for median, 0.25 for 25th percentile.
level	The confidence interval to use, e.g. 0.95 for 95 percent confidence interval.
method	If "binomial", uses the binomial distribution the confidence limits. If "normal", uses the normal approximation to the binomial distribution.
type	The type value passed to the quantile function.
digits	The number of significant figures to use in output.
	Other arguments, ignored.

Details

Conover recommends the "binomial" method for sample sizes less than or equal to 20. With the current implementation, this method can be used also for larger sample sizes.

Value

A data frame of summary statistics, quantile estimate, and confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

rcompanion

References

http://rcompanion.org/handbook/E_04.html, Conover, W.J., Practical Nonparametric Statistics, 3rd.

See Also

groupwisePercentile, groupwiseMedian

Examples

rcompanion

Functions to Support Extension Education Program Evaluation

Description

Functions and datasets to support Summary and Analysis of Extension Program Evaluation in R and An R Companion for the Handbook of Biological Statistics.

Useful functions

There are several functions that provide summary statistics for grouped data. These function titles tend to start with "groupwise". They provide means, medians, geometric means, and Huber M-estimators for groups, along with confidence intervals by traditional methods and bootstrap.

Functions to produce effect size statistics, some with bootstrapped confidence intervals, include those for Cramer's V, Cohen's g and odds ratio for paired tables, Cohen's h, Cohen's w, Vargha and Delaney's A, Cliff's delta, r for one-sample, two-sample, and paired Wilcoxon and Mann-Whitney tests, epsilon-squared, and Freeman's theta.

There are also functions that are useful for comparing models. compareLM, compareGLM, and pairwiseModelAnova. These use goodness-of-fit measures like AIC, BIC, and BICc, or likelihood ratio tests. The accuracy function reports statistics for models including minimum maximum accuracy, MAPE, RMSE, Efron's pseudo r-squared, and coefficient of variation.

Functions for nominal data include post-hoc tests for Cochran-Mantel-Haenszel test (groupwiseCMH), for McNemar-Bowker test (pairwiseMcnemar), and for tests of association like Chi-square, Fisher exact, and G-test (pairwiseNominalIndependence).

There are a few useful plotting functions, including plotNormalHistogram that plots a histogram of values and overlays a normal curve, and plotPredy which plots of line for predicted values for a bivariate model. Other plotting functions include producing density plots.

The function nagelkerke provides pseudo R-squared values for a variety of model types, as well as a likelihood ratio test for the model as a whole.

A function close to my heart is (cateNelson), which performs Cate-Nelson analysis for bivariate data.

Vignettes and examples

The functions in this package are used in "Extension Education Program Evaluation in R" which is available at http://rcompanion.org/handbook/ and "An R Companion for the Handbook of Biological Statistics" which is available at http://rcompanion.org/handbook/ and "An R Companion for the Handbook of Biological Statistics" which is available at http://rcompanion.org/handbook/ and "An R Companion for the Handbook of Biological Statistics" which is available at http://rcompanion.org/handbook/ and "An R Companion for the Handbook of Biological Statistics" which is available at http://rcompanion.org/rcompanion/.

The documentation for each function includes an example as well.

Version notes

Version 2.0 is not entirely back-compatable as several functions have been removed. These include some of the pairwise methods that can be replaced with better methods. Also, some functions have been removed or modified in order to import fewer packages.

Removed packages are indicated with 'Defunct' in their titles.

Religion Hypothetical data for change in religion after a caucusing event

Description

A matrix of paired counts for religion of people before and after an event. Hypothetical data.

Usage

Religion

Format

An object of class matrix with 4 rows and 4 columns.

Source

http://rcompanion.org/handbook/H_05.html

96

scheirerRayHare Scheirer Ray Hare test

Description

Conducts Scheirer Ray Hare test.

Usage

```
scheirerRayHare(
  formula = NULL,
  data = NULL,
  y = NULL,
  x1 = NULL,
  x2 = NULL,
  tie.correct = TRUE,
  ss = TRUE,
  verbose = TRUE
)
```

Arguments

formula	A formula indicating the response variable and two independent variables. e.g. $y \sim x1 + x2$.
data	The data frame to use.
У	If no formula is given, the response variable.
x1	If no formula is given, the first independent variable.
x2	If no formula is given, the second independent variable.
tie.correct	If "TRUE", applies a correction for ties in the response variable.
SS	If "TRUE", includes the sums of squares in the output.
verbose	If "TRUE", outputs statistics used in the analysis by direct print.

Details

The Scheirer Ray Hare test is a nonparametric test used for a two-way factorial experiment. It is described by Sokal and Rohlf (1995). It is sometimes recommended that the design should be balanced, and that there should be at least five observations for each cell in the interaction. One might consider using aligned ranks transformation anova instead of the Scheirer Ray Hare test.

The input should include either formula and data; or y, x1, and x2.

The function removes cases with NA in any of the variables.

Value

A data frame of results similar to an anova table. Output from the verbose option is printed directly and not returned with the data frame.

98

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the first independent variable. The second variable on the right side is used for the second independent variable.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

Sokal, R.R. and F.J. Rohlf. 1995. Biometry. 3rd ed. W.H. Freeman, New York. http://rcompanion.org/handbook/F_14.html

Examples

```
### Example from Sokal and Rohlf, 1995.
Value = c(709,679,699,657,594,677,592,538,476,508,505,539)
Sex = c(rep("Male",3), rep("Female",3), rep("Male",3), rep("Female",3))
Fat = c(rep("Fresh", 6), rep("Rancid", 6))
Sokal = data.frame(Value, Sex, Fat)
```

scheirerRayHare(Value ~ Sex + Fat, data=Sokal)

spearmanRho Spearman's rho, Kendall's tau, Pearson's r

Description

Calculates Spearmans's rho, Kendall's tau, or Pearson's r with confidence intervals by bootstrap

Usage

```
spearmanRho(
  formula = NULL,
  data = NULL,
  x = NULL,
  y = NULL,
  method = "spearman",
  ci = FALSE,
  conf = 0.95,
  type = "perc",
  R = 1000,
  histogram = FALSE,
  digits = 3,
  reportIncomplete = FALSE,
  ...
)
```

spearmanRho

Arguments

formula	A formula indicating the two paired variables, e.g. $\sim x + y$. The variables should be vectors of the same length.	
data	The data frame to use.	
x	If no formula is given, the values for one variable.	
У	The values for the other variable.	
method	One of "spearman", "kendall", or "pearson". Passed to cor.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
	Additional arguments passed to the cor function.	

Details

This function is a wrapper for stats::cor with the addition of confidence intervals.

The input should include either formula and data; or x, and y.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the returned statistic is close to -1 or close to 1, or with small sample size, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, rho, tau, or r. Or a small data frame consisting of rho, tau, or r, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_10.html

Examples

```
data(Catbus)
spearmanRho( ~ Steps + Rating, data=Catbus)
```

transformTukey

Description

Conducts Tukey's Ladder of Powers on a vector of values to produce a more-normally distributed vector of values.

Usage

```
transformTukey(
    x,
    start = -10,
    end = 10,
    int = 0.025,
    plotit = TRUE,
    verbose = FALSE,
    quiet = FALSE,
    statistic = 1,
    returnLambda = FALSE
)
```

Arguments

x	A vector of values.
start	The starting value of lambda to try.
end	The ending value of lambda to try.
int	The interval between lambda values to try.
plotit	If TRUE, produces plots of Shapiro-Wilks W or Anderson-Darling A vs. lambda, a histogram of transformed values, and a quantile-quantile plot of transformed values.
verbose	If TRUE, prints extra output for Shapiro-Wilks W or Anderson-Darling A vs. lambda.
quiet	If TRUE, doesn't print any output to the screen.
statistic	If 1, uses Shapiro-Wilks test. If 2, uses Anderson-Darling test.
returnLambda	If TRUE, returns only the lambda value, not the vector of transformed values.

Details

The function simply loops through lamdba values from start to end at an interval of int.

The function then chooses the lambda which maximizes the Shapiro-Wilks W statistic or minimizes the Anderson-Darling A statistic.

It may be beneficial to add a constant to the input vector so that all values are posititive. For leftskewed data, a (Constant - X) transformation may be helpful. Large values may need to be scaled. vda

Value

The transformed vector of values. The chosen lambda value is printed directly.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/I_12.html

Examples

Log-normal distribution example
Conc = rlnorm(100)
Conc.trans = transformTukey(Conc)

vda

Vargha and Delaney's A

Description

Calculates Vargha and Delaney's A (VDA) with confidence intervals by bootstrap

Usage

```
vda(
  formula = NULL,
  data = NULL,
  x = NULL,
  y = NULL,
  ci = FALSE,
  conf = 0.95,
  type = "perc",
  R = 1000,
  histogram = FALSE,
  digits = 3,
  reportIncomplete = FALSE,
  ...
)
```

Arguments

formula	A formula indicating the response variable and the independent variable. e.g. y ~ group.	
data	The data frame to use.	
x	If no formula is given, the response variable for one group.	
У	The response variable for the other group.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
	Additional arguments passed to the wilcox.test function.	

Details

VDA is an effect size statistic appropriate in cases where a Wilcoxon-Mann-Whitney test might be used. It ranges from 0 to 1, with 0.5 indicating stochastic equality, and 1 indicating that the first group dominates the second.

The function calculates VDA from the "W" U statistic from the wilcox.test function. Specifically, VDA = U/(n1*n2).

The input should include either formula and data; or x, and y. If there are more than two groups, only the first two groups are used.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, vda is greater than 0.5. When the data in the second group are greater than in the first group, vda is less than 0.5. Be cautious with this interpretation, as R will alphabetize groups in the formula interface if the grouping variable is not already a factor.

When VDA is close to 0 or close to 1, or with small sample size, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, VDA. Or a small data frame consisting of VDA, and the lower and upper confidence limits.

Note

The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable.

wilcoxonOneSampleR

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_04.html

See Also

cliffDelta, multiVDA

Examples

```
data(Catbus)
vda(Steps ~ Sex, data=Catbus)
```

wilcoxonOneSampleR r effect size for Wilcoxon one-sample signed-rank test

Description

Calculates r effect size for a Wilcoxon one-sample signed-rank test; confidence intervals by bootstrap.

Usage

```
wilcoxonOneSampleR(
    x,
    mu = NULL,
    coin = FALSE,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    ...
)
```

Arguments

х	A vector of observations.
mu	The value to compare x to, as in wilcox.test
coin	If FALSE, the default, the Z value is extracted from a function similar to the wilcox.test function in the stats package. If TRUE, the Z value is extracted from the wilcox_test function in the coin package. This method may be much slower, especially if a confidence interval is produced.

ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
	Additional arguments passed to the wilcoxsign_test function.

Details

r is calculated as Z divided by square root of the number of observations.

The calculated statistic is equivalent to the statistic returned by the wilcoxPairedR function with one group equal to a vector of mu. The author knows of no reference for this technique.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the data are greater than mu, r is positive. When the data are less than mu, r is negative.

When r is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, r. Or a small data frame consisting of r, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_02.html

Examples

```
data(Pooh)
Data = Pooh[Pooh$Time==2,]
wilcox.test(Data$Likert, mu=3, exact=FALSE)
wilcoxonOneSampleR(x = Data$Likert, mu=3)
```

wilcoxonOneSampleRC Rank biserial correlation coefficient for one-sample Wilcoxon test

Description

Calculates rank biserial correlation coefficient effect size for one-sample Wilcoxon signed-rank test; confidence intervals by bootstrap.

Usage

```
wilcoxonOneSampleRC(
    x,
    mu = NULL,
    zero.method = "Wilcoxon",
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    verbose = FALSE,
    ...
)
```

Arguments

х	A vector of observations.
mu	The value to compare x to, as in wilcox.test
zero.method	If "Wilcoxon", differences of zero are discarded and then ranks are determined. If "Pratt", ranks are determined, and then differences of zero are discarded. If "none", differences of zero are not discarded.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
verbose	If TRUE, prints information on sample size and ranks.
	Additional arguments passed to the wilcoxsign_test function.

Details

It is recommended that NAs be removed beforehand.

When rc is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, rc. Or a small data frame consisting of rc, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_02.html

See Also

wilcoxonPairedRC

Examples

```
### Example with one zero difference
A = c(11,12,13,14,15,16,17,18,19,20)
#' wilcoxonOneSampleRC(x = A, mu=15)
wilcoxonOneSampleRC(x = A, mu=15, verbose=TRUE, zero.method="Wilcoxon")
wilcoxonOneSampleRC(x = A, mu=15, verbose=TRUE, zero.method="Pratt")
wilcoxonOneSampleRC(x = A, mu=15, verbose=TRUE, zero.method="none")
```

wilcoxonPairedR r effect size for Wilcoxon two-sample paired signed-rank test

Description

Calculates r effect size for a Wilcoxon two-sample paired signed-rank test; confidence intervals by bootstrap.

Usage

```
wilcoxonPairedR(
    x,
    g = NULL,
    coin = FALSE,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    cases = TRUE,
    digits = 3,
    ...
)
```

106

Arguments

х	A vector of observations.
g	The vector of observations for the grouping, nominal variable. Only the first two levels of the nominal variable are used. The data must be ordered so that the first observation of the of the first group is paired with the first observation of the second group.
coin	If FALSE, the default, the Z value is extracted from a function similar to the wilcox.test function in the stats package. If TRUE, the Z value is extracted from the wilcox_test function in the coin package. This method may be much slower, especially if a confidence interval is produced.
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
cases	By default the N used in the formula for r is the number of pairs. If cases=FALSE, the N used in the formula for r is the total number of observations, as some sources suggest.
digits	The number of significant digits in the output.
	Additional arguments passed to the wilcoxsign_test function.
digits	the N used in the formula for r is the total number of observations, as some sources suggest. The number of significant digits in the output.

Details

r is calculated as Z divided by square root of the number of observations in one group. This results in a statistic that ranges from -1 to 1. This range doesn't hold if cases=FALSE.

This statistic reports a smaller effect size than does the matched-pairs rank biserial correlation coefficient (wilcoxonPairedRC), and won't reach a value of -1 or 1 unless there are ties in paired differences.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, r is positive. When the data in the second group are greater than in the first group, r is negative. Be cautious with this interpretation, as R will alphabetize groups if g is not already a factor.

When r is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, r. Or a small data frame consisting of r, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_06.html

See Also

wilcoxonPairedRC

Examples

```
data(Pooh)
wilcox.test(Likert ~ Time, data=Pooh, paired=TRUE, exact=FALSE)
wilcoxonPairedR(x = Pooh$Likert, g = Pooh$Time)
```

wilcoxonPairedRC Matched-pairs rank biserial correlation coefficient

Description

Calculates matched-pairs rank biserial correlation coefficient effect size for paired Wilcoxon signedrank test; confidence intervals by bootstrap.

Usage

```
wilcoxonPairedRC(
    x,
    g = NULL,
    zero.method = "Wilcoxon",
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    verbose = FALSE,
    ...
)
```

Arguments

х	A vector of observations.
g	The vector of observations for the grouping, nominal variable. Only the first two levels of the nominal variable are used.
zero.method	If "Wilcoxon", differences of zero are discarded and then ranks are determined. If "Pratt", ranks are determined, and then differences of zero are discarded. If "none", differences of zero are not discarded.

108

wilcoxonPairedRC

ci	If TRUE, returns confidence intervals by bootstrap. May be slow.
conf	The level for the confidence interval.
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.
R	The number of replications to use for bootstrap.
histogram	If TRUE, produces a histogram of bootstrapped values.
digits	The number of significant digits in the output.
verbose	If TRUE, prints information on sample size and ranks.
	Additional arguments passed to rank

Details

It is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, rc is positive. When the data in the second group are greater than in the first group, rc is negative. Be cautious with this interpretation, as R will alphabetize groups if g is not already a factor.

When rc is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, rc. Or a small data frame consisting of rc, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

King, B.M., P.J. Rosopa, and E.W. Minium. 2011. Statistical Reasoning in the Behavioral Sciences, 6th ed.

See Also

wilcoxonPairedR

Examples

```
data(Pooh)
wilcox.test(Likert ~ Time, data=Pooh, paired=TRUE, exact=FALSE)
wilcoxonPairedRC(x = Pooh$Likert, g = Pooh$Time)
### Example from King, Rosopa, and Minium
Placebo = c(24,39,29,28,25,32,31,33,31,22)
Drug = c(28,29,34,21,28,15,17,28,16,12)
Y = c(Placebo, Drug)
```

wilcoxonR

r effect size for Wilcoxon two-sample rank-sum test

Description

Calculates r effect size for Mann-Whitney two-sample rank-sum test, or a table with an ordinal variable and a nominal variable with two levels; confidence intervals by bootstrap.

Usage

```
wilcoxonR(
    x,
    g = NULL,
    group = "row",
    coin = FALSE,
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    ...
)
```

Arguments

x	Either a two-way table or a two-way matrix. Can also be a vector of observa- tions.
0	If x is a vector, g is the vector of observations for the grouping, nominal variable. Only the first two levels of the nominal variable are used.
group	If x is a table or matrix, group indicates whether the "row" or the "column" variable is the nominal, grouping variable.

wilcoxonR

coin	If FALSE, the default, the Z value is extracted from a function similar to the wilcox.test function in the stats package. If TRUE, the Z value is extracted from the wilcox_test function in the coin package. This method may be much slower, especially if a confidence interval is produced.	
ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	

Details

r is calculated as Z divided by square root of the total observations.

This statistic reports a smaller effect size than does Glass rank biserial correlation coefficient (wilcoxonRG), and cannot reach -1 or 1. This effect is exaserbated when sample sizes are not equal.

Currently, the function makes no provisions for NA values in the data. It is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, r is positive. When the data in the second group are greater than in the first group, r is negative. Be cautious with this interpretation, as R will alphabetize groups if g is not already a factor.

When r is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, r. Or a small data frame consisting of r, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

http://rcompanion.org/handbook/F_04.html

See Also

freemanTheta,wilcoxonRG

Examples

```
data(Breakfast)
Table = Breakfast[1:2,]
library(coin)
chisq_test(Table, scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
wilcoxonR(Table)
data(Catbus)
wilcox.test(Steps ~ Sex, data = Catbus)
wilcoxonR(x = Catbus$Steps, g = Catbus$Sex)
```

wilcoxonRG

Glass rank biserial correlation coefficient

Description

Calculates Glass rank biserial correlation coefficient effect size for Mann-Whitney two-sample rank-sum test, or a table with an ordinal variable and a nominal variable with two levels; confidence intervals by bootstrap.

Usage

```
wilcoxonRG(
    x,
    g = NULL,
    group = "row",
    ci = FALSE,
    conf = 0.95,
    type = "perc",
    R = 1000,
    histogram = FALSE,
    digits = 3,
    reportIncomplete = FALSE,
    verbose = FALSE,
    na.last = NA,
    ...
)
```

Arguments

x	Either a two-way table or a two-way matrix. Can also be a vector of observa- tions.
g	If x is a vector, g is the vector of observations for the grouping, nominal variable. Only the first two levels of the nominal variable are used.
group	If x is a table or matrix, group indicates whether the "row" or the "column" variable is the nominal, grouping variable.

112

wilcoxonRG

ci	If TRUE, returns confidence intervals by bootstrap. May be slow.	
conf	The level for the confidence interval.	
type	The type of confidence interval to use. Can be any of "norm", "basic", "perc", or "bca". Passed to boot.ci.	
R	The number of replications to use for bootstrap.	
histogram	If TRUE, produces a histogram of bootstrapped values.	
digits	The number of significant digits in the output.	
reportIncomplete		
	If FALSE (the default), NA will be reported in cases where there are instances of the calculation of the statistic failing during the bootstrap procedure.	
verbose	If TRUE, prints information on factor levels and ranks.	
na.last	Passed to rank. For example, can be set to TRUE to assign NA values a minimum rank.	
	Additional arguments passed to rank	

Details

rg is calculated as 2 times the difference of mean of ranks for each group divided by the total sample size. It appears that rg is equivalent to Cliff's delta.

NA values can be handled by the rank function. In this case, using verbose=TRUE is helpful to understand how the rg statistic is calculated. Otherwise, it is recommended that NAs be removed beforehand.

When the data in the first group are greater than in the second group, rg is positive. When the data in the second group are greater than in the first group, rg is negative. Be cautious with this interpretation, as R will alphabetize groups if g is not already a factor.

When rg is close to extremes, or with small counts in some cells, the confidence intervals determined by this method may not be reliable, or the procedure may fail.

Value

A single statistic, rg. Or a small data frame consisting of rg, and the lower and upper confidence limits.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>

References

King, B.M., P.J. Rosopa, and E.W. Minium. 2011. Statistical Reasoning in the Behavioral Sciences, 6th ed.

See Also

wilcoxonR

Examples

```
wilcoxonZ
```

Wilcoxon z statistic

Description

Calculates the z statistic for a Wilcoxon two-sample, paired, or one-sample test.

Usage

```
wilcoxonZ(
    x,
    y = NULL,
    mu = 0,
    paired = FALSE,
    exact = FALSE,
    correct = FALSE,
    digits = 3
)
```

Arguments

х	A vector of observations.
У	For the two-sample and paired cases, a second vector of observations.
mu	For the one-sample case, the value to compare x to, as in wilcox.test
paired	As used in wilcox.test.
exact	As used in wilcox.test, default here is FALSE.
correct	As used in wilcox.test, default here is FALSE.
digits	The number of significant digits in the output.

114

wilcoxonZ

Details

This function uses code from wilcox.test, and reports the z statistic, which is calculated by the original function but isn't returned.

The returned value will be NA if the function attempts an exact test.

For the paired case, the observations in x and and y should be ordered such that the first observation in x is paired with the first observation in y, and so on.

Value

A single statistic, z.

Author(s)

Salvatore Mangiafico, <mangiafico@njaes.rutgers.edu>, R Core Team

Examples

Index

*Topic datasets Anderson, 5 AndersonBias. 6 AndersonRainBarrel, 6 AndersonRainGarden, 7 BobBelcher.9 Breakfast, 10 BrendonSmall, 10 BullyHill, 11 Catbus, 11 HayleySmith, 47 Monarchs, 49 Nurseries, 55 Pennsylvania18, 81 Pooh, 93 PoohPiglet, 93 Religion, 96 accuracy, 3, 23, 25, 53, 95 Anderson, 5 AndersonBias, 6 AndersonRainBarrel, 6 AndersonRainGarden. 7 blom, 7 BobBelcher, 9 boot.ci, 40, 44 Breakfast, 10 BrendonSmall, 10 BullyHill, 11 Catbus. 11 cateNelson, 12, 96 cldList, 14 cliffDelta, 16, 51, 103 cohenG. 18. 20 cohenH, 20 cohenW, 21, 27 compareGLM, 5, 23, 25, 64, 95 compareLM, 5, 23, 24, 64, 95

cramerV, 22, 25, 29, 84 cramerVFit, 22, 27 density, 85, 87 epsilonSquared, 29, 32, 57 freemanTheta, 30, 31, 57, 111 fullPTable, 33 groupwiseCMH, 34, 54, 59, 65, 66, 95 groupwiseGeometric, 36, 38, 40, 43, 45, 46 groupwiseHuber, 37, 37, 40, 43, 45, 46 groupwiseMean, 37, 38, 39, 43, 45, 46 groupwiseMedian, 37, 38, 40, 41, 45, 46, 95 groupwisePercentile, 43, 72, 95 groupwiseSum, 45 HayleySmith, 47 hist, 85, 88 kendallW, 47 Monarchs, 49 multiVDA, 17, 50, 103 nagelkerke, 5, 51, 96 nagelkerkeHermite, 53 nominalSymmetryTest, 19, 35, 54, 59, 65, 66 Nurseries, 55 ordinalEtaSquared, 56 p.adjust, 59, 66 pairwiseDifferences, 58 pairwiseMcnemar, 35, 54, 58, 65, 66, 95 pairwiseMedianMatrix, 60, 63 pairwiseMedianTest, 61, 61 pairwiseModelAnova, 23, 25, 63, 95

pairwiseNominalIndependence, 35, 54, 59,

64, 66, 68, 95

INDEX

```
pairwiseNominalMatrix, 35, 54, 59, 65, 66
pairwiseOrdinalIndependence, 67
pairwiseOrdinalMatrix, 69
pairwiseOrdinalPairedMatrix, 69
pairwiseOrdinalPairedTest, 70
pairwiseOrdinalTest, 70
pairwisePercentileTest, 70
pairwisePermutationMatrix, 73, 79
pairwisePermutationSymmetry, 74, 77
pairwisePermutationSymmetryMatrix, 75,
        76
pairwisePermutationTest, 74, 78
pairwiseRobustMatrix, 79
pairwiseRobustTest, 80
pairwiseSignMatrix, 80
pairwiseSignTest, 80
Pennsylvania18, 81
percentileTest, 72, 81
phi, 83
plot. 87
plotDensityHistogram, 85, 87, 89
plotNormalDensity, 86, 86, 89
plotNormalHistogram, 86, 87, 88, 96
plotPredy, 89, 96
PMCMRTable, 92
Pooh. 93
PoohPiglet, 93
quantileCI, 94
rcompanion, 95
Religion, 96
scheirerRayHare, 97
spearmanRho, 98
transformTukey, 100
vda, 17, 51, 101
wilcoxonOneSampleR, 103
wilcoxonOneSampleRC, 105
wilcoxonPairedR, 106, 109
wilcoxonPairedRC, 106, 108, 108
wilcoxonR, 110, 113
wilcoxonRG, 111, 112
```

wilcoxonZ, 114