Package 'rbvs'

August 29, 2016

Type Package

Title Ranking-Based Variable Selection

Version 1.0.2

Date 2015-12-08

Author Rafal Baranowski, Patrick Breheny, Isaac Turner

Maintainer Rafal Baranowski <r.baranowski@lse.ac.uk>

Depends stats

Description Implements the Ranking-Based Variable Selection algorithm for variable selection in high-dimensional data.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-12-11 19:53:09

R topics documented:

rbvs-package	2
distance.cor	2
factor.model.design	3
lasso.coef	3
mcplus.coef	4
pearson.cor	5
rankings	6
rbvs	7
s.est.quotient	9
standardise	9
subsample	10
top.ranked.sets	11

Index

12

rbvs-package

Description

The package implements the Ranking-Based Variable Selection algorithm proposed in Baranowski and Fryzlewicz (2015) for variable selection in high-dimensional data.

Details

The main routine of the package is rbvs.

References

R. Baranowski, P. Fryzlewicz (2015), Ranking-Based Variable Selection, in submission (http://personal.lse.ac.uk/baranows/rbvs.pdf)).

distance.cor	Measure an impact of the covariates on the response using the dis-
	tance correlation This function evaluates the distance correlation be-
	tween the response y and each column in the design matrix x over
	subsamples in subsamples.

Description

Measure an impact of the covariates on the response using the distance correlation This function evaluates the distance correlation between the response y and each column in the design matrix x over subsamples in subsamples.

Usage

distance.cor(x, y, subsamples, index = 1, ...)

Arguments

Х	Matrix with n observations of p covariates in each row.
У	Response vector with n observations.
subsamples	Matrix with ${\tt m}$ indices of N subsamples in each column.
index	Positive scalar.
	Not in use.

Value

Numeric p by N matrix with distance correlations evaluated for each subsample.

References

Maria L. Rizzo and Gabor J. Szekely (2014). energy: E-statistics (energy statistics). R package version 1.6.1 (http://CRAN.R-project.org/package=energy).

factor.model.design Generate factor model design matrix.

Description

This function enables a quick generation of random design matrices (see details).

Usage

```
factor.model.design(n, p, n.factors, sigma = 1)
```

Arguments

n	Number of independent realisations of the factor model.
р	Number of covariates.
n.factors	Number of factors.
sigma	Standard deviation for the normal distribution (see details).

Details

The elements of the matrix returned by this routine satisfy $X_{ij} = \sum_{l=1}^{n.factors} f_{ijl}\varphi_{il} + \theta_{ij}$ with $f_{ijl}, \varphi_{il}, \theta_{ij}, \varepsilon_i$ i.i.d. $\mathcal{N}(0, (sigma)^2)$.

Value

n by p matrix with independent rows following factor model (see details).

lasso.coef	Measure an impact of the covariates on the response using Lasso This
	function evaluates the Lasso coefficients regressing y onto the design
	matrix x over subsamples in subsamples.

Description

Measure an impact of the covariates on the response using Lasso This function evaluates the Lasso coefficients regressing y onto the design matrix x over subsamples in subsamples.

Usage

```
lasso.coef(x, y, subsamples, nonzero = NULL, family = c("gaussian",
  "binomial"), alpha = 1, maxit = 500, tol = 0.01, lambda.ratio = 1e-06,
  nlam = 25, ...)
```

Arguments

х	Matrix with n observations of p covariates in each row.
У	Response vector with n observations.
subsamples	Matrix with m indices of N subsamples in each column.
nonzero	Number of non-zero coefficients estimated for each subsample.
family	Determines the likelihood optimised in the estimation procedure.
alpha	Scalar between 0 and 1 determining 12 penalty (see details).
maxit	Maximum number of itarations when computing the lasso coefficients
tol	Scalar determining convergence of the lasso algorithm used.
lambda.ratio	Scalar being a fraction of 1. Used in the lasso algorithm
nlam	Number of penalty parameters used in the lasso algorithm.
	Not in use.

Details

To solve the Lasso problem, we implement the coordinate descent algorithm as in Breheny Jian (2011).

Author(s)

Rafal Baranowski, Patrick Breheny

References

Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statistical Society. Series B (Methodological) (1996): 267-288.

Breheny, Patrick, and Jian Huang. "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." The Annals of Applied Statistics 5.1 (2011): 232.

<pre>mcplus.coef</pre>	Measure an impact of the covariates on the response using $MC+$. This
	function evaluates the MC+ coefficients regressing y onto the design
	matrix x over subsamples in subsamples.

Description

Measure an impact of the covariates on the response using MC+. This function evaluates the MC+ coefficients regressing y onto the design matrix x over subsamples in subsamples.

Usage

```
mcplus.coef(x, y, subsamples, nonzero = NULL, family = c("gaussian",
  "binomial"), alpha = 1, gamma = 3, maxit = 500, tol = 0.01,
  lambda.ratio = 1e-06, nlam = 25, ...)
```

4

pearson.cor

Arguments

х	Matrix with n observations of p covariates in each row.
У	Response vector with n observations.
subsamples	Matrix with m indices of N subsamples in each column.
nonzero	Number of non-zero coefficients estimated for each subsample.
family	Determines the likelihood optimised in the estimation procedure.
alpha	Scalar between 0 and 1 determining 12 penalty (see details).
gamma	Scalar greater than 1. The concacivity parameter (see details).
maxit	Maximum number of itarations when computing the MC+ coefficients
tol	Scalar determining convergence of the MC+ algorithm used.
lambda.ratio	Scalar being a fraction of 1. Used in the MC+ algorithm
nlam	Number of penalty parameters used in the MC+ algorithm.
	Not in use.

Details

To solve the MC+ problem, we implement the coordinate descent algorithm as in Breheny Jian (2011).

Author(s)

Rafal Baranowski, Patrick Breheny

References

Zhang, Cun-Hui. "Nearly unbiased variable selection under minimax concave penalty." The Annals of Statistics (2010): 894-942.

Breheny, Patrick, and Jian Huang. "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." The Annals of Applied Statistics 5.1 (2011): 232.

pearson.cor	Measure an impact of the covariates on the response using Pearson correlatio. This function evaluates the Pearson correlation coefficient between the response y and each column in the design matrix x over
	subsamples in subsamples.

Description

Measure an impact of the covariates on the response using Pearson correlatio. This function evaluates the Pearson correlation coefficient between the response y and each column in the design matrix x over subsamples in subsamples.

rankings

Usage

```
pearson.cor(x, y, subsamples, ...)
```

Arguments

х	Matrix with n observations of p covariates in each row.
У	Response vector with n observations.
subsamples	Matrix with m indices of N subsamples in each column.
	Not in use.

Value

Numeric p by N matrix with Pearson correlations evaluated for each subsample.

rankings	Evaluate rankings

Description

Returns the non-increasing order of the values in the columns of x. Ties are solved at random.

Usage

rankings(x, k.max)

Arguments

х	Numeric matrix.
k.max	Integer. Indices of k.max largest elements are returned.

Value

Matrix with the indices corresponding to the k.max largest values in x.

Examples

```
omega <- abs(matrix(rnorm(100*5), nrow = 10, ncol = 5))
rankings(omega, k.max = 10)</pre>
```

Description

Performs Rankings-Based Variable Selection using various measures of the dependence between the predictors and the response.

Usage

```
rbvs(x, y, ...)
## Default S3 method:
rbvs(x, y, m, B = 500, measure = c("pc", "dc", "lasso",
    "mcplus", "user"), fun = NULL, s.est = s.est.quotient, iterative = TRUE,
    use.residuals = TRUE, k.max, min.max.freq = 0, max.iter = 10,
    verbose = TRUE, ...)
```

Arguments

Х	Matrix with n observations of p covariates in each row.
У	Response vector with n observations.
	Other parameters that may be passed to fun ands.est.
m	Subsample size used in the RBVS algorithm.
В	Number of sample splits.
measure	Character with the name of the method used to measure the association between the response and the covariates. See Details below.
fun	Function used to evaluate the measure given in measure. It is required when method=="user". Must have at least three arguments: x (covariates matrix), .y (response vector), subsamples (a matrix, each row contains indices of the observations to be used); return a vector of the same length as the number of covariates in .x. See for example pearson.cor or lasso.coef.
s.est	Function used to estimate the number of important covariates based on the RBVS path. Must accept probs (a vector with probabilities) as an argument. See s.est.quotient and Details below.
iterative	Logical variable indicating the type of the procedure. If TRUE, an iterative extension of the RBVS algorithm is launched.
use.residuals	Logical. If true, the impact of the previously detected variables is removed from the response in the IRBVS procedure.
k.max	Maximum size of the subset of important variables
min.max.freq	Positive integer. Optional parameter - the algorithm stops searching for the most frequent set when the frequencies reach this value.
max.iter	Maximum number of iterations fot the IRBVS algorithm.
verbose	Logical indicating wheter the progress of the algorithm should be reported.

rbvs

Details

Currently supported measures are: Pearson correlation coefficient (measure="pc"), Distance Correlation (measure="dc"), the regression coefficients estimated via Lasso (measure="lasso"), the regression coefficients estimated via MC+ (measure="mcplus").

Value

Object of class rbvs with the following fields

measure	Character indicating type of measure used.
score	List with scores at each iteration.
subsets	A list with subset candidates at each iteration.
frequencies	A list with observed frequencies at each iteration.
ranks	Rankings evaluated (for the last iteration iterative=TRUE)
s.hat	Vector with the number of the covariates selected at each iteration.
active	Vector with the selected covariates.
timings	Vector reporting the amount of time the (I)RBVS algorithm took at each iteration.

References

R. Baranowski, P. Fryzlewicz (2015), Ranking-Based Variable Selection, in submission (http://personal.lse.ac.uk/baranows/rbvs.pdf)).

Examples

```
set.seed(1)
```

```
x <- matrix(rnorm(200*1000),200,1000)
active <- 1:4
beta <- c(3,2.5,-1.7,-1)
y <- 1*rnorm(200) +x[,active]%*%beta
#RBVS algorithm
rbvs.object <- rbvs(x,y, iterative=FALSE)
rbvs.object$active
rbvs.object$subsets[[1]][[4]]
#IRBVS algorithm
rbvs.object <- rbvs(x,y)
rbvs.object$active</pre>
```

s.est.quotient

Description

Estimates the number of elements in the top-ranked set.

Usage

```
s.est.quotient(prob)
```

Arguments

prob Vector with probabilities.

Details

See Baranowski and Fryzlewicz (2015).

Value

A list with the following fields:

s.hat The estimate of the number of important covariates.

References

R. Baranowski, P. Fryzlewicz (2015), Ranking Based Variable Selection, in submission (http://personal.lse.ac.uk/baranows/rbvs/rbvs.pdf)).

standardise Standardise data

Description

Standardises the columns of a numeric matrix x (similar to R-function scale). If x is a vector, it is treated as a 1-column matrix.

Usage

standardise(x, scale = TRUE)

Arguments

х	A numeric matrix (or vector).
scale	A logical; if TRUE each column of x is divided by the square root of the sum of
	its centred squares.

Details

This function is much faster than scale.

Value

Matrix with centred (and optionally scaled) columns.

Examples

```
x <- matrix(rnorm(100*10), nrow = 100, ncol = 10)
x <- standardise(x)
standard.deviations <- apply(x,2,sd)
print(standard.deviations)
```

subsample

Generates subsamples.

Description

Generates subsamples.

Usage

subsample(n, m, B)

Arguments

n	The sample size.
m	Subsample size (an integer lower or equal than n).
В	Number of sample splits.

Details

Generates m-element subsamples drawn $\lfloor \frac{n}{m} \rfloor$ times from 1,...,n independently without replacement; such subsampling is repeated B times.

Value

Matrix with the indices of the subsamples drawn in each column.

top.ranked.sets

References

R. Baranowski, P. Fryzlewicz (2015), Ranking Based Variable Selection, in submission (http://personal.lse.ac.uk/baranows/rbvs.pdf)).

Examples

subsample(10,5,2)
subsample(10,3,10)

top.ranked.sets Find k-top-ranked sets

Description

Finds k-top-ranked sets defined in Baranowski and Fryzlewicz (2015). This routine is used inside rbvs; it typically will be not called directly by the user.

Usage

top.ranked.sets(rankings, k.max, min.max.freq = 1, active = NULL)

Arguments

rankings	Matrix with rankings in each column.
k.max	Positive integer.
min.max.freq	Maximum frequency.
active	A vector with previously found active variables.

Details

Uses Portable qsort_r / qsort_s library (Turner (2013)).

Value

List containing the following fields.

frequencies	Frequencies corresponding to the most frequent subsests at the top of the rank- ings.
subsets	The moost frequent subsets.

References

R. Baranowski, P. Fryzlewicz (2015), Ranking-Based Variable Selection, in submission (http: //personal.lse.ac.uk/baranows/rbvs/rbvs.pdf)). I. Turner (2013), Portable qsort_r/qsort_s, GitHub repository (https://github.com/noporpoise/ sort_r).

Index

distance.cor, 2 factor.model.design, 3 lasso.coef, 3, 7 mcplus.coef, 4 pearson.cor, 5, 7 rankings, 6 rbvs, 2, 7, 11 rbvs-package, 2 s.est.quotient, 7, 9 standardise, 9 subsample, 10 top.ranked.sets, 11