
Package ‘rasterly’
June 8, 2020

Title Easily and Rapidly Generate Raster Image Data with Support for
'Plotly.js'

Version 0.2.0

Description
It aims to easily and rapidly generate raster data in R, even for very large datasets, with an aes-
thetics-based mapping syntax that should be familiar to users of the 'ggplot2' pack-
age. While 'rasterly' does not attempt to reproduce the full functional-
ity of the 'Datashader' graphics pipeline system for Python, the 'rasterly' API has several core ele-
ments in common with that software package.

LinkingTo Rcpp

License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

KeepSource true

BugReports https://github.com/plotly/rasterly/issues

Depends R (>= 3.4.0), methods, Rcpp

Imports data.table, rlang, plotly, ggplot2, magrittr, grid, stats

Suggests covr, testthat, knitr, rmarkdown, lubridate

LazyData true

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation yes

Author Zehao Xu [aut, cre],
Ryan Patrick Kyle [ctb] (<https://orcid.org/0000-0001-5829-9867>),
Plotly Technologies [cph]

Maintainer Zehao Xu <z267xu@uwaterloo.ca>

Repository CRAN

Date/Publication 2020-06-08 13:00:07 UTC

1

https://github.com/plotly/rasterly/issues

2 add_rasterly

R topics documented:
add_rasterly . 2
color_map . 4
extract . 5
ggRasterly . 6
image2data . 8
is.rasterly . 9
is.rasterlyBuild . 10
plotRasterly . 10
rasterize_points . 12
rasterly . 14
rasterly_build . 16
rasterly_guides . 17
rasterly_points . 18
rplot . 20
static . 22
%<-% . 25

Index 27

add_rasterly Add "rasterly" trace to a Plotly visualization

Description

Add trace to a Plotly visualization.

Usage

add_rasterly_heatmap(
p,
x = NULL,
y = NULL,
z = NULL,
...,
data = NULL,
inherit = TRUE,
on = NULL,
size = NULL,
scaling = NULL

)

add_rasterly_image(
p,
x = NULL,
y = NULL,
z = NULL,

add_rasterly 3

...,
data = NULL,
inherit = TRUE,
color = NULL,
on = NULL,
size = NULL

)

Arguments

p A plotly object

x Numeric vector or expression. The x variable, to be passed on to aes().

y Numeric or expression. The y variable, to be passed on to aes().

z Numeric. A numeric matrix (optional), to be processed with add_heatmap.

... Arguments (i.e., attributes) passed along to the trace type or rasterly.

data A data.frame or SharedData object (optional).

inherit Logical. Inherit attributes from plotly?

on Numeric vector or expression. Provides the data on which to reduce, to be
passed on to aes().

size Numeric vector or expression. Pixel size for each observation, to be passed on
to aes().

scaling Character string or function. The scaling method to be used for the trace.

color Numeric vector or expression. Pixel color for each observation, to be passed on
to aes().

Examples

Not run:
if(requireNamespace("plotly") && requireNamespace("data.table") &&

requireNamespace("lubridate")) {
Load data
url1 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data1.csv"
ridesRaw_1 <- url1 %>%

data.table::fread(stringsAsFactors = FALSE)
url2 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data2.csv"
ridesRaw_2 <- url2 %>%

data.table::fread(stringsAsFactors = FALSE)
url3 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data3.csv"
ridesRaw_3 <- url3 %>%

data.table::fread(stringsAsFactors = FALSE)
ridesDf <- list(ridesRaw_1, ridesRaw_2, ridesRaw_3) %>%

data.table::rbindlist()
time <- lubridate::ymd_hms(ridesDf$`Date/Time`)
ridesDf <- ridesDf[, 'Date/Time':=NULL][, list(Lat,

Lon,
hour = lubridate::hour(time),
month = lubridate::month(time),
day = lubridate::day(time))]

4 color_map

############################# add_rasterly_heatmap #############################
quick start
p <- plot_ly(data = ridesDf) %>%

add_rasterly_heatmap(x = ~Lat, y = ~Lon)
p
set artificial scaling function
zeroOneTransform <- function(z) {

minz <- min(z)
maxz <- max(z)
M <- matrix((z - minz)/(maxz - minz), nrow = dim(z)[1])
return(M)

}
plot_ly(data = ridesDf) %>%

add_rasterly_heatmap(x = ~Lat,
y = ~Lon,
on = ~-Lat,
reduction_func = "max",
scaling = zeroOneTransform) %>%

plotly::layout(
xaxis = list(

title = "x"
),
yaxis = list(

title = "y"
)

)
############################# add_rasterly_image #############################
p <- plot_ly(data = ridesDf) %>%

add_rasterly_image(x = ~Lat, y = ~Lon, color = ~hour,
even `color_map` is deprecated,
it is still a good way to specify the color mapping
color_map = hourColors_map,
plot_width = 400, plot_height = 400)

p
}

End(Not run)

color_map Supplemental color maps for rasterly

Description

Hex codes for the color map. Used in setting argument color in rasterly or rasterly layers.

Usage

fire_map

viridis_map

extract 5

hourColors_map

Format

An object of class character of length 256.

An object of class character of length 256.

An object of class character of length 24.

extract Extract or replace parts of a rasterly object

Description

The extract function provides functionality for updating existing rasterly objects.

Usage

S3 method for class 'rasterly'
x[name]

S3 replacement method for class 'rasterly'
x[name, ...] <- value

Arguments

x Object from which to extract element(s) or in which to replace element(s).

name Character. A literal string to be extracted from x. See details for more informa-
tion.

... (missing) or NULL.

value values to replace; typically an array-like R object of a similar class as x.

Details

Available names:

• Aggregation: "data", "mapping", "plot_width", "plot_height", "range", "x_range", "y_range",
"xlim", "ylim", "aesthetics", "reduction_func", "glyph", "max_size", "group_by_data_table",
"drop_data", "variable_check"

• Display: "background", "color", "alpha", "span", "show_raster", "layout"

Set level in level is numeric used for specifing level of ‘rasterly‘ object to modify; default
is 1 for the parent layer (rasterly()).

6 ggRasterly

Examples

library(rasterly)
r <- rasterly(

data = data.frame(x = 1:1e4, y = runif(1e4), category = sample(1:4, 1e4, replace = TRUE)),
mapping = aes(x = x, y = y)

) %>%
rasterly_points(xlim = c(1, 5000)) %>%
rasterly_points(
mapping = aes(x = x, y = y, color = category),
xlim = c(5001, 1e4)

)
r["mapping"]
r["xlim"]

reassign parent `rasterly()` mapping
r["mapping"] <- aes(x = x, y = y, color = category)
r["mapping"]

reassign all mapping systems
r["mapping", level = 1:length(r)] <- aes(x = x, y = y)
r["mapping"]

ggRasterly ggRasterly

Description

Display large data set in ggplot.

Usage

ggRasterly(
data = NULL,
mapping = aes(),
...,
plot_width = 600,
plot_height = 600,
x_range = NULL,
y_range = NULL,
background = "white",
color = NULL,
show_raster = TRUE,
drop_data = FALSE,
variable_check = FALSE,
alpha = 0.5,
shape = 15,
point_size = 0.5

)

ggRasterly 7

Arguments

data Dataset to use for generating the plot. If not provided, data must be supplied in
each layer of the plot. For best performance, particularly when processing large
datasets, use of data.table is recommended.

mapping Default list of aesthetic mappings to use for plot. The same with ggplot2 aes.
See details.

... Other arguments which will be passed through to layers.

plot_width Integer. The width of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

plot_height Integer. The height of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

x_range Vector of type numeric. The range of x; it can be used to clip the image. For
larger datasets, providing x_range may result in improved performance.

y_range Vector of type numeric. The range of y; it can be used to clip the image. For
larger datasets, providing y_range may result in improved performance.

background Character. The background color of the image to plot.

color Vector of type character. It will determine this color vector is a color_map or
color_key automatically.

• color_map: It has Color(s) used to draw each pixel. The color_map is
extended by linear interpolation independently for RGB. The darkness of
the mapped color depends upon the values of the aggregation matrix.

• color_key: Vector of type character. The color_key is used for categorical
variables; it is passed when the color aesthetic is provided.

show_raster Logical. Should the raster be displayed?

drop_data Logical. When working with large datasets, drops the original data once pro-
cessed according to the provided aes() parameters, using the remove() func-
tion. See details for additional information.

variable_check Logical. If TRUE, drops unused columns to save memory; may result in reduced
performance.

alpha The transparency of points, from 0 to 1.

shape The shape of points, see pch.

point_size The size of points.

Value

a ‘ggplot‘ object

See Also

plotRasterly, plot.rasterly

8 image2data

Examples

Not run:
if(requireNamespace("ggplot2") && requireNamespace("data.table") &&

requireNamespace("lubridate")) {
Load data
url1 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data1.csv"
ridesRaw_1 <- url1 %>%
data.table::fread(stringsAsFactors = FALSE)

url2 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data2.csv"
ridesRaw_2 <- url2 %>%
data.table::fread(stringsAsFactors = FALSE)

url3 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data3.csv"
ridesRaw_3 <- url3 %>%
data.table::fread(stringsAsFactors = FALSE)

ridesDf <- list(ridesRaw_1, ridesRaw_2, ridesRaw_3) %>%
data.table::rbindlist()

time <- lubridate::ymd_hms(ridesDf$`Date/Time`)
ridesDf <- ridesDf[, 'Date/Time':=NULL][, list(Lat,

Lon,
hour = lubridate::hour(time),
month = lubridate::month(time),
day = lubridate::day(time))]

continuous variable legend
ggRasterly(data = ridesDf,

mapping = aes(x = Lat, y = Lon),
color = fire_map

)
discreate variable legend
ggRasterly(data = ridesDf,

mapping = aes(x = Lat, y = Lon, color = hour),
color = hourColors_map

) +
ggplot2::labs(title = "New York Uber",

subtitle = "Apr to Sept, 2014",
caption =

"https://raw.githubusercontent.com/plotly/datasets/master")
}

End(Not run)

image2data Image raster to data frame.

Description

Transform a image raster to a data frame.

is.rasterly 9

Usage

image2data(x, background = "white", x_range = NULL, y_range = NULL)

Arguments

x It could be a rasterly object or a raster image.

background The background of image raster.

x_range The range represents image width.

y_range The range represents image height.

Value

a data.table object

See Also

ggRasterly

Examples

x <- rnorm(1000, mean = 10)
y <- rnorm(1000, mean = 20)
color <- sample(1:5, 1000, replace = TRUE)
rastObj <- data.frame(x = x, y = y, color = color) %>%

rasterly(mapping = aes(x = x, y = y, color = color)) %>%
rasterly_points()

p <- rasterly_build(rastObj)
dt <- image2data(p)
if(requireNamespace("ggplot2")) {

Note that each point represents a single pixel in the image
ggplot2::ggplot(dt, mapping = aes(x = x, y = y)) +
ggplot2::geom_point(color = dt$color, size = 0.5)

}

is.rasterly Is rasterly

Description

Reports whether x is a rasterly object.

Usage

is.rasterly(x)

Arguments

x a rasterly object

10 plotRasterly

is.rasterlyBuild Is rasterlyBuild

Description

Reports whether x is a rasterlyBuild object. In other word, it helps to define whether this object
has been passed through ‘rasterly_build‘

Usage

is.rasterlyBuild(x)

Arguments

x a rasterly object

plotRasterly plotRasterly

Description

Display large data set in plotly

Usage

plotRasterly(
data = NULL,
mapping = aes(),
...,
plot_width = 400,
plot_height = 400,
x_range = NULL,
y_range = NULL,
background = "white",
color = NULL,
show_raster = TRUE,
drop_data = FALSE,
variable_check = FALSE,
alpha = 0.5,
shape = 19,
point_size = 0.5,
as_image = FALSE,
sizing = c("stretch", "fill", "contain")

)

plotRasterly 11

Arguments

data Dataset to use for generating the plot. If not provided, data must be supplied in
each layer of the plot. For best performance, particularly when processing large
datasets, use of data.table is recommended.

mapping Default list of aesthetic mappings to use for plot. The same with ggplot2 aes.
See details.

... Other arguments which will be passed through to layers.

plot_width Integer. The width of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

plot_height Integer. The height of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

x_range Vector of type numeric. The range of x; it can be used to clip the image. For
larger datasets, providing x_range may result in improved performance.

y_range Vector of type numeric. The range of y; it can be used to clip the image. For
larger datasets, providing y_range may result in improved performance.

background Character. The background color of the image to plot.

color Vector of type character. It will determine this color vector is a color_map or
color_key automatically.

• color_map: It has Color(s) used to draw each pixel. The color_map is
extended by linear interpolation independently for RGB. The darkness of
the mapped color depends upon the values of the aggregation matrix.

• color_key: Vector of type character. The color_key is used for categorical
variables; it is passed when the color aesthetic is provided.

show_raster Logical. Should the raster be displayed?

drop_data Logical. When working with large datasets, drops the original data once pro-
cessed according to the provided aes() parameters, using the remove() func-
tion. See details for additional information.

variable_check Logical. If TRUE, drops unused columns to save memory; may result in reduced
performance.

alpha The transparency of points, from 0 to 1.

shape The shape of points, see pch.

point_size The size of points.

as_image Logical value. If FALSE, image raster will be transformed into a data frame,
hence a points layer would be pipped on plotly; conversely, a raster layer will
be added.

sizing It affects only with as_image = TRUE. Specifies which dimension of the image to
constrain. One of "stretch" "fill", "contain". see https://plot.ly/r/reference/#Layout_and_layout_style_objects

Value

a plotly widget

12 rasterize_points

See Also

ggRasterly, plot.rasterly

Examples

Not run:
library(rasterly)
if(requireNamespace("plotly") &&

requireNamespace("data.table") &&
requireNamespace("lubridate")) {
Load data

url1 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data1.csv"
ridesRaw_1 <- url1 %>%
data.table::fread(stringsAsFactors = FALSE)

url2 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data2.csv"
ridesRaw_2 <- url2 %>%
data.table::fread(stringsAsFactors = FALSE)

url3 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data3.csv"
ridesRaw_3 <- url3 %>%
data.table::fread(stringsAsFactors = FALSE)

ridesDf <- list(ridesRaw_1, ridesRaw_2, ridesRaw_3) %>%
data.table::rbindlist()

time <- lubridate::ymd_hms(ridesDf$`Date/Time`)
ridesDf <-

ridesDf[, 'Date/Time':=NULL][, list(Lat,
Lon,
hour = lubridate::hour(time),
month = lubridate::month(time),
day = lubridate::day(time))]

A point layer is added
plotRasterly(data = ridesDf,

mapping = aes(x = Lat, y = Lon, color = hour),
color = hourColors_map,
as_image = FALSE)

An image layer is added
plotRasterly(data = ridesDf,

mapping = aes(x = Lat, y = Lon, color = hour),
color = hourColors_map,
as_image = TRUE)

}

End(Not run)

rasterize_points rasterize_points

Description

Points layer for "rasterly". Deprecated now, please use rasterly_points instead.

rasterize_points 13

Usage

rasterize_points(
rastObj,
data = NULL,
mapping = aes(),
...,
xlim = NULL,
ylim = NULL,
max_size = NULL,
reduction_func = NULL,
layout = NULL,
glyph = NULL,
group_by_data_table = NULL,
inherit.aes = TRUE

)

Arguments

rastObj A rasterly object.
data A data.frame or function with an argument x, specifying the dataset to use

for plotting. If data is NULL, the data argument provided to rasterly may be
passed through.

mapping Default list of aesthetic mappings to use for plot. If provided and inherit.aes
= TRUE, it will be stacked on top of the mappings passed to rasterly.

... Pass-through arguments provided by rasterly.
xlim Vector of type numeric. X limits in this layer.
ylim Vector of type numeric. Y limits in this layer.
max_size Numeric. When size changes, the upper bound of the number of pixels over

which to spread a single observation.
reduction_func Function. A reduction function is used to aggregate data points into their pixel

representations. Currently supported reduction operators are sum, any, mean, m2,
first, last, min and max. Default is sum. See details.

layout Character. The method used to generate layouts for multiple images. The default
is weighted. Useful for categorical data (i.e. "color" is provided via aes()).
weighted specifies that the final raster should be a weighted combination of
each (categorical) aggregation matrix. Conversely, cover indicates that the af-
terwards objects will be drawn on top of the previous ones.

glyph Character. Currently, only "circle" and "square" are supported; as the size of
the pixels increases, how should they spread out – should the pattern be circular
or square? Other glyphs may be added in the future.

group_by_data_table

Logical. Default is TRUE; when "color" is provided via aes(), the "group by"
operation may be perfromed within data.table or natively within rasterly.
Generally, group_by_data_table = TRUE is faster, but for very large datasets
grouping within rasterly may offer better performance.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

14 rasterly

See Also

rasterly_points

rasterly Easily and rapidly generate raster image data with support for
Plotly.js

Description

Create a rasterly object, to which aggregation layers may be added. This function is the first step in
the process to generate raster image data using the rasterly package.

Usage

rasterly(
data = NULL,
mapping = aes(),
...,
plot_width = 600,
plot_height = 600,
x_range = NULL,
y_range = NULL,
background = "white",
color = NULL,
show_raster = TRUE,
drop_data = FALSE,
variable_check = FALSE

)

Arguments

data Dataset to use for generating the plot. If not provided, data must be supplied in
each layer of the plot. For best performance, particularly when processing large
datasets, use of data.table is recommended.

mapping Default list of aesthetic mappings to use for plot. The same with ggplot2 aes.
See details.

... Other arguments which will be passed through to layers.

plot_width Integer. The width of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

plot_height Integer. The height of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

x_range Vector of type numeric. The range of x; it can be used to clip the image. For
larger datasets, providing x_range may result in improved performance.

y_range Vector of type numeric. The range of y; it can be used to clip the image. For
larger datasets, providing y_range may result in improved performance.

rasterly 15

background Character. The background color of the image to plot.

color Vector of type character. It will determine this color vector is a color_map or
color_key automatically.

• color_map: It has Color(s) used to draw each pixel. The color_map is
extended by linear interpolation independently for RGB. The darkness of
the mapped color depends upon the values of the aggregation matrix.

• color_key: Vector of type character. The color_key is used for categorical
variables; it is passed when the color aesthetic is provided.

show_raster Logical. Should the raster be displayed?

drop_data Logical. When working with large datasets, drops the original data once pro-
cessed according to the provided aes() parameters, using the remove() func-
tion. See details for additional information.

variable_check Logical. If TRUE, drops unused columns to save memory; may result in reduced
performance.

Details

• The rasterly package currently supports five aesthetics via aes(): x, y, on, color, and size.
The "on" aesthetic specifies the variable upon which the reduction function should be applied
to generate the raster data.

• drop_data can help save space, particularly when large datasets are used. However, dropping
the original dataset may result in errors when attempting to set or update aes() parameters
within rasterly layers.

Value

An environment wrapped by a list which defines the properties of the raster data to be generated.

Note

Calling rasterly() without providing rasterly_...() layers has no effect. More info can be
found in README.md

See Also

rasterly_points, rasterly_build, [.rasterly, [<-.rasterly ggRasterly, plotRasterly

Examples

Not run:
if(requireNamespace("data.table")) {
url1 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data1.csv"
ridesRaw_1 <- url1 %>%
data.table::fread(stringsAsFactors = FALSE)

url2 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data2.csv"
ridesRaw_2 <- url2 %>%
data.table::fread(stringsAsFactors = FALSE)

url3 <- "https://raw.githubusercontent.com/plotly/datasets/master/uber-rides-data3.csv"

https://github.com/plotly/rasterly/blob/master/README.md

16 rasterly_build

ridesRaw_3 <- url3 %>%
data.table::fread(stringsAsFactors = FALSE)

ridesDf <- list(ridesRaw_1, ridesRaw_2, ridesRaw_3) %>%
data.table::rbindlist()

ridesDf %>%
rasterly(mapping = aes(x = Lat, y = Lon)) %>%
rasterly_points()

}
End(Not run)

rasterly_build rasterly_build

Description

Produce a rasterly object and return the raster information required to produce an image

Usage

rasterly_build(rastObj)

Arguments

rastObj A rasterly object. It should be a list of environments composed of a rasterly()
and several rasterly_... layers.

Note

A rasterly object will never be produced until rasterly_build() is called.

See Also

rasterly, rasterly_points, [.rasterly, [<-.rasterly

Examples

r <- data.frame(x = rnorm(1e5), y = rnorm(1e5)) %>%
rasterly(mapping = aes(x = x, y = y)) %>%
rasterly_points(color = fire_map)

str(r)
p <- rasterly_build(r)
str(p)

rasterly_guides 17

rasterly_guides rasterly_guides

Description

Guides layer for "rasterly".

Usage

rasterly_guides(
rastObj,
x_pretty = NULL,
y_pretty = NULL,
panel_background = "grey92",
panel_line = "white"

)

Arguments

rastObj A "rasterly" object.

x_pretty The pretty on x. Compute a sequence of about n+1 equally spaced ’round’ values
which cover the range of the values in x. If it is not provided, x_pretty will be
generated by the x range

y_pretty The pretty on y.

panel_background

Panel background.

panel_line Panel line color

Details

When an image has a ’complicated’ background, the drawing time increases significantly. So it is
not recommended. A suggestion to draw grid guides is to transform image data to a data frame via
image2data, then use ggplot or plotly to display.

See Also

ggRasterly

18 rasterly_points

rasterly_points rasterly_points

Description

Points layer for rasterly.

Usage

rasterly_points(
rastObj,
data = NULL,
mapping = aes(),
...,
xlim = NULL,
ylim = NULL,
max_size = NULL,
reduction_func = NULL,
layout = NULL,
glyph = NULL,
group_by_data_table = NULL,
inherit.aes = TRUE

)

Arguments

rastObj A rasterly object.

data A data.frame or function with an argument x, specifying the dataset to use
for plotting. If data is NULL, the data argument provided to rasterly may be
passed through.

mapping Default list of aesthetic mappings to use for plot. If provided and inherit.aes
= TRUE, it will be stacked on top of the mappings passed to rasterly.

... Pass-through arguments provided by rasterly.

xlim Vector of type numeric. X limits in this layer.

ylim Vector of type numeric. Y limits in this layer.

max_size Numeric. When size changes, the upper bound of the number of pixels over
which to spread a single observation.

reduction_func Function. A reduction function is used to aggregate data points into their pixel
representations. Currently supported reduction operators are sum, any, mean, m2,
first, last, min and max. Default is sum. See details.

layout Character. The method used to generate layouts for multiple images. The default
is weighted. Useful for categorical data (i.e. "color" is provided via aes()).
weighted specifies that the final raster should be a weighted combination of
each (categorical) aggregation matrix. Conversely, cover indicates that the af-
terwards objects will be drawn on top of the previous ones.

rasterly_points 19

glyph Character. Currently, only "circle" and "square" are supported; as the size of
the pixels increases, how should they spread out – should the pattern be circular
or square? Other glyphs may be added in the future.

group_by_data_table

Logical. Default is TRUE; when "color" is provided via aes(), the "group by"
operation may be perfromed within data.table or natively within rasterly.
Generally, group_by_data_table = TRUE is faster, but for very large datasets
grouping within rasterly may offer better performance.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

Details

Reduction functions

• sum: If on is not provided within aes(), the default is to take the sum within each bin. When
on is specified, the function reduces by taking the sum of all elements within the variable
named in on.

• any: When on is provided within aes(), the any reduction function specifies whether any
elements in on should be mapped to each bin.

• mean: If on is not provided in mapping aes(), on would be set as variable "y" by default.
When on is given, the mean reduction function takes the mean of all elements within the
variable specified by on.

• m2: Requires that on is specified within aes(). The m2 function computes the sum of square
differences from the mean of all elements in the variable specified by on.

• var: Requires that on is specified within aes(). The var function computes the variance over
all elements in the vector specified by on.

• sd: Requires that on is specified within aes(). The sd function computes the standard devia-
tion over all elements in the vector specified by on.

• first: Requires that on is specified within aes(). The first function returns the first element
in the vector specified by on.

• last: Requires that on is specified within aes(). The last function returns the last element
in the vector specified by on.

• min: Requires that on is specified within aes(). The min function returns the minimum value
in the vector specified by on.

• max: Requires that on is specified within aes(). The min function returns the maximum value
in the vector specified by on.

Value

A list of environments.

See Also

rasterly, rasterly_build, [.rasterly, [<-.rasterly

20 rplot

Examples

Not run:
library(rasterly)
if(requireNamespace("grid") && requireNamespace("gridExtra")) {

x <- rnorm(1e7)
y <- rnorm(1e7)
category <- sample(1:5, 1e7, replace = TRUE)
data.frame(x = x, y = y, category = category) %>%

rasterly(mapping = aes(x = x, y = y, color = category)) %>%
rasterly_points(layout = "weighted") -> ds1

ds1
layout with cover
data.frame(x = x, y = y, category = category) %>%

rasterly(mapping = aes(x = x, y = y, color = category)) %>%
rasterly_points(layout = "cover") -> ds2

ds2
display side by side
grid::grid.newpage()
gridExtra::grid.arrange(

grobs = list(rasterlyGrob(ds1), rasterlyGrob(ds2)),
ncol = 2,
top = "'weighted' layout versus 'cover' layout"

)
}

End(Not run)

rplot Rasterly plot

Description

rplot is created to generate rasterly plot quickly but with base plot design. It is convenient but
lacks flexibility and rasterly is highly recommended for a more versatile method.

Usage

rplot(x, y = NULL, ...)

Default S3 method:
rplot(
x,
y = NULL,
...,
plot_width = 600,
plot_height = 600,
x_range = NULL,
y_range = NULL,

rplot 21

background = "white",
reduction_func = NULL,
layout = NULL,
glyph = NULL

)

Arguments

x, y Coordinates x, y for the plot.

... Other rasterly arguments to pass through.

plot_width Integer. The width of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

plot_height Integer. The height of the image to plot; must be a positive integer. A higher
value indicates a higher resolution.

x_range Vector of type numeric. The range of x; it can be used to clip the image. For
larger datasets, providing x_range may result in improved performance.

y_range Vector of type numeric. The range of y; it can be used to clip the image. For
larger datasets, providing y_range may result in improved performance.

background Character. The background color of the image to plot.

reduction_func Function. A reduction function is used to aggregate data points into their pixel
representations. Currently supported reduction operators are sum, any, mean, m2,
first, last, min and max. Default is sum. See details.

layout Character. The method used to generate layouts for multiple images. The default
is weighted. Useful for categorical data (i.e. "color" is provided via aes()).
weighted specifies that the final raster should be a weighted combination of
each (categorical) aggregation matrix. Conversely, cover indicates that the af-
terwards objects will be drawn on top of the previous ones.

glyph Character. Currently, only "circle" and "square" are supported; as the size of
the pixels increases, how should they spread out – should the pattern be circular
or square? Other glyphs may be added in the future.

Details

rasterly arguments are passed through via But some of them are noticeable.

• size: Size can be either a specified size (1, 2, 3, etc) or a mapping variable. Since rasterly
does not provide point to point display, if the length of input size is the same with the length
of x (or y). It will be treated as a mapping variable.

• color: Color can be either a color map vector or a mapping variable. If the length of color
is equal to the length of x (or y). It will be treated as a mapping variable.

• on: On is always treated as a mapping variable.

See Also

rasterly rasterly_points

22 static

Examples

if(requireNamespace("ggplot2")) {
library(ggplot2)
`color` represents a variable here
with(diamonds,

rplot(x = carat, y = price, color = color)
)
`color` represents an actual color vector
with(diamonds,

rplot(x = carat, y = price, color = fire_map)
)

}

static Annotate and customize rasterly figures

Description

Create a static plot based on rasterly object. This function allows users to add axes, legends and
other descriptive details when generating ‘rasterly‘ objects.

Usage

rasterlyGrob(
rasterlyObj,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
interpolate = FALSE,
axes = TRUE,
legend = TRUE,
legend_label = NULL,
legend_layer = 1,
legend_main = NULL,
axes_gpar = grid::gpar(col = "black", cex = 1),
label_gpar = grid::gpar(col = "black", cex = 1),
main_gpar = grid::gpar(col = "black", cex = 1.5),
legend_gpar = grid::gpar(col = "black", cex = 1.5),
name = NULL,
gp = NULL,
vp = NULL

)

grid.rasterly(

static 23

rasterlyObj,
interpolate = FALSE,
axes = TRUE,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
legend = TRUE,
legend_label = NULL,
legend_layer = 1,
legend_main = NULL,
axes_gpar = grid::gpar(col = "black", cex = 1),
label_gpar = grid::gpar(col = "black", cex = 1),
main_gpar = grid::gpar(col = "black", cex = 1.5),
legend_gpar = grid::gpar(col = "black", cex = 1.5),
name = NULL,
gp = NULL,
vp = NULL,
...

)

S3 method for class 'rasterly'
plot(
x,
y = NULL,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
main = NULL,
legend_main = NULL,
sub = NULL,
interpolate = FALSE,
axes = TRUE,
legend = TRUE,
legend_label = NULL,
legend_layer = 1,
new.page = TRUE,
...

)

S3 method for class 'rasterly'
print(x, ...)

Arguments

rasterlyObj A rasterly object.

24 static

xlim Numeric; the x limits (x1, x2) of the plot. Default is NULL.

ylim Numeric; the y limits (y1, y2) of the plot. Default is NULL.

xlab Character; the label to be used for the x axis. Default is NULL.

ylab Character; the label to be used for the y axis. Default is NULL.

main Character; the title to be used for the plot. Default is NULL.

sub sub Character; a subtitle for the plot. Default is NULL.

interpolate Logical. Linearly interpolates the image if TRUE. Default is FALSE.

axes Logical; should axes be drawn? Default is TRUE, set to FALSE to hide axes.

legend Logical. Show a figure legend? Default is TRUE; set to FALSE to hide the legend.

legend_label Character. The label to apply to the figure legend. Default is NULL, which omits
the figure legend label.

legend_layer Numeric. Specify the layer level within the rasterly object. The default layer
level is ‘1‘, which represents the uppermost layer.

legend_main Character. The main title to use within the figure legend. The default is NULL,
which omits the figure legend title.

axes_gpar Object of class gpar. This graphical parameter (gpar) controls axis color, size,
and other aesthetics.

label_gpar Object of class gpar. This graphical parameter (gpar) controls label color, size,
and other aesthetics.

main_gpar Object of class gpar. This graphical parameter (gpar) controls the main title’s
color, size, and other aesthetics.

legend_gpar Object of class gpar. This graphical parameter (gpar) controls the legend’s
color, size, and other aesthetics.

name Character. An identifier used to locate the grob within the display list and/or as
a child of another grob.

gp A gpar object, typically the output from a call to the function grid::gpar. This
argument represents a list of graphical parameter settings.

vp Object of class viewport. If provided, rasterlyGrob will pass this argument
through to grob. Default is NULL.

... Other arguments to modify the display.

x A rasterly object

y NULL, will be ignored.

new.page display on a new page or not.

Details

We provide three functions to produce static graphics, which is based on the API of grid, plot and
print.

• grid: The rasterlyGrob and grid.rasterly are the most flexible data structure. These
functions produce a **grob** object. Users can modify the existing display by the functions
provided by grid.

%<-% 25

• plot.rasterly: The usage of this S3 method is very similar to the classic plot function.
Users can set axis limits via xlim and ylim, as well as the corresponding labels using xlab
and ylab, among other attributes.

• print.rasterly: This S3 method returns only a basic image raster.

See Also

plotRasterly, ggRasterly

Examples

if(requireNamespace("grid")) {
data <- data.frame(x = rnorm(1e6),

y = rexp(1e6, 10))
a rasterly object
rasterlyObj <- data %>%

rasterly(mapping = aes(x = x, y = y)) %>%
rasterly_points()

Generate a grob
rg <- rasterlyGrob(rasterlyObj)
get the raster grob by `grid::getGrob()`
grid::getGrob(rg, "raster")
grid::grid.newpage()
grid::grid.draw(rg)
or
grid::grid.newpage()
grid.rasterly(rasterlyObj)
or `plot`
plot(rasterlyObj, xlab = "rnorm(1e6)",

ylab = "rexp(1e6, 10)",
main = "This is an arbitrary plot")

or simply print
rasterlyObj
it is equivalent to `print(rasterlyObj)`

}

%<-% Merge operator

Description

Merge two objects from right to left.

Usage

x %<-% y

26 %<-%

Arguments

x A named list or vector

y A named list or vector. Any duplicated names are detected in x will be covered
by y

Value

a list

Examples

two lists
x <- list(a = 1, b = "foo", c = 3)
y <- list(b = 2, d = 4)
x %<-% y
y %<-% x

one list and one vector
x <- c(foo = 1, bar = 2)
y <- list(foo = "foo")
x %<-% y
y %<-% x

two vectors
x <- c(a = 1, b = "foo", c = 3)
y <- c(b = 2, d = 4)
x %<-% y
y %<-% x

duplicated names in x
x <- list(a = 1, b = "foo", b = 3)
y <- list(b = 2, d = 4)
x %<-% y
y %<-% x # be careful, since "3" will cover on "foo" in x, then on "2" in y

Index

∗Topic datasets
color_map, 4

[.rasterly, 15, 16, 19
[.rasterly (extract), 5
[<-.rasterly, 15, 16, 19
[<-.rasterly (extract), 5
%<-%, 25

add_rasterly, 2
add_rasterly_heatmap (add_rasterly), 2
add_rasterly_image (add_rasterly), 2
aes, 7, 11, 14

color_map, 4

data.table, 7, 11, 14

extract, 5

fire_map (color_map), 4

ggRasterly, 6, 9, 12, 15, 17, 25
gpar, 24
grid.rasterly (static), 22
grob, 24

hourColors_map (color_map), 4

image2data, 8, 17
is.rasterly, 9
is.rasterlyBuild, 10

pch, 7, 11
plot, 20, 25
plot.rasterly, 7, 12
plot.rasterly (static), 22
plotly, 3
plotRasterly, 7, 10, 15, 25
print.rasterly (static), 22

rasterize_points, 12

rasterly, 14, 16, 19–21
rasterly_build, 15, 16, 19
rasterly_guides, 17
rasterly_points, 14–16, 18, 21
rasterlyGrob, 24
rasterlyGrob (static), 22
rplot, 20

SharedData, 3
static, 22

viewport, 24
viridis_map (color_map), 4

27

	add_rasterly
	color_map
	extract
	ggRasterly
	image2data
	is.rasterly
	is.rasterlyBuild
	plotRasterly
	rasterize_points
	rasterly
	rasterly_build
	rasterly_guides
	rasterly_points
	rplot
	static
	%<-%
	Index

