Tutorial: Interplay between functions related to
desirability indices within randomizeR.

David Schindler, Diane Uschner, Thi Mui Pham
November 25, 2019

1 Introduction

randomizeR is a user-friendly package that allows the user to assess and com-
pare randomization procedures according to certain criteria (called issues in this
package). This tutorial focuses on the comparison of randomization sequences
and procedures on the basis of desirability functions. In this context, there are
certain criteria and requirements given which have to be met by a randomiza-
tion procedure. Desirability scores are a kind of linked optimization criteria
that establish the connection between the given requirements and thereby allow
a comparison between them.

Currently, randomizeR encompasses the class of desirability functions intro-
duced by Derringer and Suich (1980) and corresponding functions to evaluate
and compare randomization sequences which have been assessed on the basis of
desirability indices of specific issues.

For each value x of the corresponding criterion, a desirability function d
assigns numbers between 0 and 1 to the possible values of z with d(z) = 0 rep-
resenting a completely undesirable value and d(z) = 1 representing a completely
desirable or ideal value. Therefore, values with different domains are mapped
to a common scale [0, 1], making them comparable.

The Derringer-Suich approach expects a lower and upper specified border
and an optimal desired value called the target value. There are three different
kinds of desirability functions: The (left-)one-sided Derringer-Suich desirabil-
ity function, the (right-)one-sided Derringer-Suich desirability function and the
two-sided Derringer-Suich desirability function. All three options are supported
within the randomizeR package. Whenever an argument x is smaller/greater
than a lower/upper specified border it is mapped to zero by the desirability
function. If the value of z corresponds (or even exceeds) its target value the
desirability function d(z) is one. The upper specified border is called upper spec-
ification limit (USL) and the lower specified border is called lower specification
limit (LSL).

The functions realizing the idea described above are given by

derFunc
getDesScores
evaluate
probUnDes
plotDes
plotEv

In order to use the functions mentioned above, we have to load the randomizeR
package into the library:

library(randomizeR)

2 Working example

Assume we would like to assess the full set of randomization sequences of sample
size 4 generated by the Random Allocation Rule and based on specific issues.
The behavior of randomization sequences with respect to these issues can be
evaluated by the assess function:

sequences <- getAllSeq(rarPar(4))

issuel <- corGuess("CS")

issue2 <- chronBias("1inT", 0.25, "exact")

endp <- normEndp(mu = c(0,0), sigma = c(1,1))

A <- assess(sequences, issuel, issue2, endp = endp)
A

##

Assessment of a randomization procedure
##

design
N = 4

K = 2

groups =
##

##

The first 3 rows of 6 rows of D:

##

Sequence Probability propCG(CS) P(rej) (1inT)
1 BBAA 0.167 0.625 0.051
2 BABA 0.167 0.750 0.050
3 ABBA 0.167 0.750 0.049
##H ...

RAR

|
=
(o8}

However, the assessment output of different issues usually have different
domains making the comparison difficult. By using desirability functions the

assessment output is scaled to [0,1]. In this package derFunc represents both
the one and two-sided desirability functions according to Derringer and Suich.

dl <- derFunc(0.5, 0.75, 1)
di

##

Object of class "derringerRs"

#i#

desirability function = derringerRs(0.5, 0.75, 1)
SLs = 0.75

#b=1

TV = 0.5

d2 <- derFunc(0.05, 0.1, 1)

d2

##

Object of class "derringerRs"

#it

desirability function = derringerRs(0.05, 0.1, 1)
SLs = 0.1

b =1

TV = 0.05

The desirability functions defined above are right- and left-sided respectively.
By applying the getDesScores function to the assessment output together with
the specified desirability functions the behavior of randomization sequences is
evaluated and scaled to [0,1]. By combining the individual desirabilities val-
ues of the issues using the geometric mean, the overall desirability of a given
randomization sequence is computed.

D1 <- getDesScores(A, di, d2)
print (D1$D, digits = 3)

Sequence Probability d(propCG(CS)) d(P(rej)(1inT)) geometricMean

1 BBAA 0.167 0.5 0.977 0.699
2 BABA 0.167 0.0 1.000 0.000
3 ABBA 0.167 0.0 1.000 0.000
4 BAAB 0.167 0.0 1.000 0.000
5 ABAB 0.167 0.0 1.000 0.000
6 AABB 0.167 0.5 0.977 0.699

Notice that regarding the expected proportion of correct guesses and with
respect to the right-sided desirability function d1 only two of six sequences are
not mapped to zero. Thus, the values of correct guesses of sequences 2 — 5

are undesirable. On the other hand, regarding linear time trend (chronological
bias) and with respect to the desirability function d2 the respective sequences are
completely desirable as they are all mapped to 1. The last column displays the
overall desirability. Notice that if the value of any considered issue is completely
undesirable, then the corresponding overall desirability is zero.

The getDesScore function also allows specifying weights in order to adjust
the computation of the overall desirability, i.e. the geometric mean. If; like
in the case above, the weights are not specified, then the issues are equally
weighted.

getDesScores(A, d1, d2, weights

#it
##
##
##
##
Ht
#i#t
##
##
##t
Hit
#i#t
##
##
##
#t
#it

"desScores"

c(5/6, 1/6))

B
derringerRs (0.5, 0.75, 1) derringerRs(0.05, 0.1, 1)

Sequence Probability d(propCG(CS)) d(P(rej)(1inT)) geometricMean

0.5
0.0

Object of class

design = RAR

N =4

K=2

groups = A

desFuncs =

weights = 0.833 0.167
The first 3 rows of 6 rows of D:
1 BBAA 0.167
2 BABA 0.167
3 ABBA 0.167

#H# ...

domization procedure.

0.0

0.977 0.559
1.000 0.000
1.000 0.000

By applying the summary function to this object it summarizes the results
by means of statistics like mean, median, min, max etc. Therefore, the third
column of the summary output represents the overall desirability of a given ran-

summary (D1)

##
##t
Ht
#i#t
##
##
##
#Hit

d(propCG(CS)) d(P(rej) (1inT)) geometricMean

mean
sd
max
min
x05
x25
x50

0.
.258
.500
.000
.000
.000
.000

O O O O O O

167

0.
.012
.000
977
977
97T
.000

= O O O = O

992

0.
.361
.699
.000
.000
.000
.000

O O O O O O

233

x75 0.500 1.000 0.699
x95 0.500 1.000 0.699

The randomizeR package also offers the option of visualization by plotting
an desScore object. Moreover, by specifying the variable quantiles, the user
can decide whether the quantiles should be depicted in the plot or not. This
allows a visualization of the summarized results (see above).

plotDes(D1, quantiles = TRUE)

RAR
geometricMean Mean
— Median
Y0.05: Y0.95

= = UQo.zs Yo75

d(propCG(CS)) d(P(rej)(linT))

Now, suppose we would like to perform a comparison of sequences from dif-
ferent randomization procedures. Then this can be done by using the evaluate
function. It expects a number of objects resulting from getDesScores and sum-
marizes their results according to a given statistic. The user can choose between
mean, median, min or max. If no statistic is specified then it is set to mean.

issuel <- corGuess("CS")

issue2 <- chronBias(type = "1linT", theta = 1/4, method = "exact")
RAR <- getAllSeq(rarPar(4))

BSD <- getAllSeq(bsdPar(4, mti = 2))

A1l <- assess(RAR, issuel, issue2, endp = normEndp(c(0,0), c(1,1)))
A2 <- assess(BSD, issuel, issue2, endp = normEndp(c(0,0), c(1,1)))

d1l <- derFunc(TV = 0.5, 0.75, 2)

d2 <- derFunc(0.05, c(0, 0.1), c(1, 1))

DesScore <- getDesScores(Al, dl, d2, weights = c(5/6, 1/6))
DesScore2 <- getDesScores(A2, d1, d2, weights = c(5/6, 1/6))

evaluate (DesScore, DesScore2)

##

Object of class "evaluation"

#it

desFuncs = derringerRs(0.5, 0.75, 2) derringerTs(0.05, 0, 0.1, 1, 1)
weights = 0.833 0.167

statistic = mean

#it

RandProc d(propCG(CS)) d(P(rej) (1inT)) geometricMean
1 RAR 0.083 0.985 0.105
2 BSD(2) 0.562 0.985 0.577

Looking at the corresponding output of getDesScores, we recognize that
the desirability functions map a lot of values to zero, i.e. a lot of undesired
sequences are among the assessed ones:

print (DesScore$D, digits = 3)

Sequence Probability d(propCG(CS)) d(P(rej) (1inT)) geometricMean

1 BBAA 0.167 0.25 0.977 0.314
2 BABA 0.167 0.00 0.994 0.000
3 ABBA 0.167 0.00 0.984 0.000
4 BAAB 0.167 0.00 0.984 0.000
5 ABAB 0.167 0.00 0.994 0.000
6 AABB 0.167 0.25 0.977 0.314

print (DesScore2$D, digits = 3)

Sequence Probability d(propCG(CS)) d(P(rej)(1inT)) geometricMean

1 BAAA 0.0625 1.00 0.987 0.998
2 ABAA 0.0625 1.00 0.987 0.998
3 BBAA 0.1250 0.25 0.977 0.314
4 AABA 0.1250 1.00 0.987 0.998

5 BABA 0.0625 0.00 0.994 0.000
6 ABBA 0.0625 0.00 0.984 0.000
7 BAAB 0.0625 0.00 0.984 0.000
8 ABAB 0.0625 0.00 0.994 0.000
9 BBAB 0.1250 1.00 0.987 0.998
10 AABB 0.1250 0.25 0.977 0.314
11 BABB 0.0625 1.00 0.987 0.998
12 ABBB 0.0625 1.00 0.987 0.998

This observation raises the question which randomization procedure pro-
duces more undesired randomization sequences with respect to certain issues
and desirability functions? The function probUnDes computes the probability
of having desirability scores of zero for each desirability function applied to an
issue:

probUnDes (DesScore)

#it

Object of class "probUnDesirable"
#i#

design = RAR

N =4

K =2

desFuncs = derringerRs(0.5, 0.75, 2) derringerTs(0.05, 0, 0.1, 1, 1)
weights = 0.833 0.167

##

P(d(propCG(CS))=0) P(d(P(rej)(1inT))=0) P(geometricMean=0)
1 0.667 0 0.667
probUnDes (DesScore2)

##

Object of class "probUnDesirable"

##

design = BSD(2)

N = 4

K = 2

desFuncs = derringerRs(0.5, 0.75, 2) derringerTs(0.05, 0, 0.1, 1, 1)
weights = 0.833 0.167

##
P(d(propCG(CS))=0) P(d(P(rej)(1inT))=0) P(geometricMean=0)
1 0.25 0 0.25

Thus, the probability of having undesired sequences is more than twice as
high for the Random Allocation Rule than for the Big Stick design. A graphical
method of displaying the comparison of randomization procedures is given by

the plotEv function. It can be applied to an evaluation object which results
from the evaluate function.

plotEv(evaluate (DesScore, DesScore2))

geometricMean RAR
——— BSD(2)

d(P(rej)(linT))

