Package 'rSPDE'

March 8, 2020

Type Package

Title Rational Approximations of Fractional Stochastic Partial Differential Equations
Version 0.4.8
Maintainer David Bolin davidbolin@gmail.com
Description Functions that compute rational approximations of fractional elliptic stochastic partial differential equations. The package also contains functions for common statistical usage of these approximations. The main reference for the methods is Bolin and Kirchner (2019) arXiv:1711.04333, which can be generated by the citation function in R.
Depends R (>= 3.2.0), Matrix
Imports stats
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.0.2
Suggests knitr, rmarkdown, INLA (>= 0.0-1468840039), testthat
Additional_repositories https://inla.r-inla-download.org/R/stable
VignetteBuilder knitr
NeedsCompilation no
Author David Bolin [cre, aut]
Repository CRAN
Date/Publication 2020-03-08 17:20:16 UTC

R topics documented:

fractional.operators 2
matern.covariance 4
matern.loglike 5
matern.operators 6
operator.operations 8
predict.rSPDEobj 9
require.nowarnings 11
rSPDE 12
rSPDE.A1d 12
rSPDE.fem1d 13
rSPDE.loglike 14
simulate 15
spde.matern.loglike 16
spde.matern.operators 18
summary.rSPDEobj 20
Index 21
fractional.operators Rational approximations of fractional operators

Description

fractional. operators is used for computing an approximation, which can be used for inference and simulation, of the fractional SPDE

$$
L^{\beta}(\tau u(s))=W
$$

Here L is a differential operator, $\beta>0$ is the fractional power, τ is a positive scalar or vector that scales the variance of the solution u, and W is white noise.

Usage

fractional.operators(L, beta, C, scale.factor, $m=1$, tau $=1$)

Arguments

L
beta
C
scale.factor A constant c is a lower bound for the the smallest eigenvalue of the non-discretized operator L.
m
tau
A finite element discretization of the operator L.
The positive fractional power.
The mass matrix of the finite element discretization.

The order of the rational approximation, which needs to be a positive integer. The default value is 1 . Higer values gives a more accurate approximation, which are more computationally expensive to use for inference. Currently, the largest value of m that is implemented is 4 .

The constant or vector that scales the variance of the solution. The default value is 1 .

Details

The approximation is based on a rational approximation of the fractional operator, resulting in an approximate model on the form

$$
P_{l} u(s)=P_{r} W
$$

where $P_{j}=p_{j}(L)$ are non-fractional operators defined in terms of polynomials p_{j} for $j=l, r$. The order of p_{r} is given by m and the order of p_{l} is $m+m_{\beta}$ where m_{β} is the integer part of β if $\beta>1$ and $m_{\beta}=1$ otherwise.
The discrete approximation can be written as $u=P_{r} x$ where $x \sim N\left(0, Q^{-1}\right)$ and $Q=P_{l}^{T} C^{-1} P_{l}$. Note that the matrices P_{r} and Q may be be ill-conditioned for $m>1$. In this case, the metehods in operator. operations should be used for operations involving the matrices, since these methods are more numerically stable.

Value

fractional. operators returns an object of class "rSPDEobj". This object contains the following quantities:

Pl The operator P_{l}.
Pr The operator P_{r}.
$C \quad$ The mass lumped mass matrix.
$\mathrm{Ci} \quad$ The inverse of C .
$m \quad$ The order of the rational approximation.
beta The fractional power.
type String indicating the type of approximation.
Q The matrix $t(P l) \% * \% s o l v e(C, P l)$.
type \quad String indicating the type of approximation.
Pl.factors List with elements that can be used to assemble P_{l}.
Pr.factors List with elements that can be used to assemble P_{r}.

Author(s)

David Bolin davidbolin@gmail.com

See Also

matern.operators, spde.matern.operators

Examples

```
#Compute rational approximation of a Gaussian process with a
#Matern covariance function on R
kappa <- 10
sigma <- 1
nu <- 0.8
#create mass and stiffness matrices for a FEM discretization
```

```
    x <- seq(from = 0, to = 1, length.out = 101)
    fem <- rSPDE.fem1d(x)
    #compute rational approximation of covariance function at 0.5
    tau <- sqrt(gamma(nu) / (sigma^2 * kappa^(2*nu) * (4*pi)^(1/2) * gamma(nu+1/2)))
    op <- fractional.operators(L = fem$G + kappa^2*fem$C, beta = (nu + 1/2)/2,
    C=fem$C, scale.factor = kappa^2, tau = tau)
v = t(rSPDE.A1d(x,0.5))
c.approx = op$Pr %*% solve(op$Q, op$Pr %*% v)
#plot the result and compare with the true Matern covariance
plot(x, matern.covariance(abs(x - 0.5), kappa, nu, sigma), type = "l", ylab = "C(h)",
    xlab="h", main = "Matern covariance and rational approximations")
lines(x, c.approx, col = 2)
```

matern. covariance The Matern covariance function

Description

matern. covariance evaluates the Matern covariance function

$$
C(h)=\frac{\sigma^{2}}{2^{(\nu-1) \Gamma(\nu)}}(\kappa h)^{\nu} K_{\nu}(\kappa h)
$$

Usage

matern.covariance(h, kappa, nu, sigma)

Arguments

h	Distances to evaluate the covariance function at.
kappa	Range parameter.
nu	Shape parameter.
sigma	Standard deviation.

Value

A vector with the values $C(h)$.

Examples

```
x = seq(from = 0, to = 1, length.out = 101)
plot(x, matern.covariance(abs(x - 0.5), kappa = 10, nu = 1/5, sigma = 1),
    type = "l", ylab = "C(h)", xlab = "h")
```

```
matern.loglike
```

Log-likelihood for a latent Gaussian Matern model using a rational SPDE approximation

Description

This function evaluates the log-likelihood function for a Gaussian process with a Matern covariance function, that is observed under Gaussian measurement noise: $Y_{i}=u\left(s_{i}\right)+\epsilon_{i}$, where ϵ_{i} are iid mean-zero Gaussian variables. The latent model is approximated using a rational approximation of the fractional SPDE model corresponding to the Gaussian process.

Usage

matern.loglike(kappa, sigma, nu, sigma.e, Y, G, C, A, d = 2, m = 1)

Arguments

kappa Range parameter of the latent process.
sigma Standard deviation of the latent process.
nu Shape parameter of the latent process.
sigma.e The standard deviation of the measurement noise.
Y The observations, either a vector or a matrix where the columns correspond to independent replicates of observations.

G The stiffness matrix of a finite element discretization of the domain.
C The mass matrix of a finite element discretization of the domain.
A A matrix linking the measurement locations to the basis of the FEM approximation of the latent model.
$\mathrm{d} \quad$ The dimension of the domain. The default value is 2 .
$\mathrm{m} \quad$ The order of the rational approximation, which needs to be a positive integer. The default value is 1 .

Value

The log-likelihood value.

See Also

spde.matern.loglike, rSPDE.loglike, matern.operators.

Examples

\#this example illustrates how the function can be used for maximum likelihood estimation set.seed(123)
\#Sample a Gaussian Matern process on R using a rational approximation
sigma = 1
nu $=0.8$
kappa = 1
sigma.e $=0.3$
n. rep $=10$
n. obs $=100$
n. $\mathrm{x}=51$
\#create mass and stiffness matrices for a FEM discretization
$x=\operatorname{seq}(f r o m=0$, to $=1$, length.out $=n . x$)
fem <- rSPDE.fem1d(x)
\#compute rational approximation
op <- matern.operators(kappa = kappa, sigma = sigma, nu = nu, $G=f e m \$ G, C=f e m \$ C, d=1$)
\#Sample the model
u <- simulate(op, n.rep)
\#Create some data
obs.loc <- runif($n=n . o b s, \min =0, \max =1$)
A <- rSPDE.A1d(x, obs.loc)
noise <- rnorm(n.obs*n.rep)
dim(noise) <- c(n.obs, n.rep)
$Y=$ as.matrix(A\%*\%u + sigma.e*noise)
\#define negative likelihood function for optimization using matern.loglike
mlik <- function(theta, Y, G, C, A)\{
return(-matern.loglike(exp(theta[1]), $\exp (t h e t a[2]), \exp (t h e t a[3]), \exp (t h e t a[4])$,
$Y=Y, G=G, C=C, A=A, d=1))$
\}
\#The parameters can now be estimated by maximizing mlik with optim
\#Choose some reasonable starting values depending on the size of the domain
theta $0=\log (c(\operatorname{sqrt}(8), \operatorname{sqrt}(\operatorname{var}(c(Y))), 0.9,0.01))$
\#run estimation and display the results
theta <- optim(theta0, mlik, $\mathrm{Y}=\mathrm{Y}, \mathrm{G}=\mathrm{fem} \mathrm{\$ G}, \mathrm{C}=\mathrm{fem} \mathrm{\$ C}, \mathrm{~A}=\mathrm{A})$
print (data.frame(kappa $=c(k a p p a, \exp ($ theta\$par[1] $))$, sigma $=c(s i g m a, \exp (t h e t a \$ p a r[2]))$, $n u=c(n u, \exp ($ theta\$par[3])), sigma.e $=c($ sigma.e, $\exp (\operatorname{theta\$ par[4])),~}$ row.names = c("Truth","Estimates")))

Description

matern. operators is used for computing a rational SPDE approximation of a stationary Gaussian random fields on R^{d} with a Matern covariance function

$$
C(h)=\frac{\sigma^{2}}{2(\nu-1) \Gamma(\nu)}(\kappa h)^{\nu} K_{\nu}(\kappa h)
$$

Usage

matern.operators(kappa, sigma, nu, G, C, d = NULL, m = 1)

Arguments

kappa Range parameter of the covariance function.
sigma Standard deviation of the covariance function.
nu Shape parameter of the covariance function.
G The stiffness matrix of a finite element discretization of the domain of interest.
C The mass matrix of a finite element discretization of the domain of interest.
d The dimension of the domain.
$m \quad$ The order of the rational approximation, which needs to be a positive integer. The default value is 1 .

Details

The approximation is based on a rational approximation of the fractional operator $\left(\kappa^{2}-\Delta\right)^{\beta}$, where $\beta=(\nu+d / 2) / 2$. This results in an approximate model of the form

$$
P_{l} u(s)=P_{r} W
$$

where $P_{j}=p_{j}(L)$ are non-fractional operators defined in terms of polynomials p_{j} for $j=l, r$. The order of p_{r} is given by m and the order of p_{l} is $m+m_{\beta}$ where m_{β} is the integer part of β if $\beta>1$ and $m_{\beta}=1$ otherwise.
The discrete approximation can be written as $u=P_{r} x$ where $x \sim N\left(0, Q^{-1}\right)$ and $Q=P_{l}^{T} C^{-1} P_{l}$. Note that the matrices P_{r} and Q may be be ill-conditioned for $m>1$. In this case, the metehods in operator .operations should be used for operations involving the matrices, since these methods are more numerically stable.

Value

matern. operators returns an object of class "rSPDEobj". This object contains the quantities listed in the output of fractional. operators as well as the parameters of the covariance functoin.

Author(s)

David Bolin davidbolin@gmail.com

See Also

fractional.operators, spde.matern.operators

Examples

```
#Compute rational approximation of a Gaussian process with a
#Matern covariance function on R
kappa <- 10
sigma <- 1
nu <- 0.8
#create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
#compute rational approximation of covariance function at 0.5
op <- matern.operators(kappa = kappa, sigma = sigma, nu = nu,
    G = fem$G, C = fem$C, d = 1)
v = t(rSPDE.A1d(x,0.5))
c.approx = op$Pr %*% solve(op$Q, op$Pr %*% v)
#plot the result and compare with the true Matern covariance
plot(x, matern.covariance(abs(x - 0.5), kappa, nu, sigma), type = "l", ylab = "C(h)",
    xlab="h", main = "Matern covariance and rational approximation")
lines(x,c.approx,col=2)
```

operator.operations Operations with the Pr and Pl operators

Description

Functions for multiplying and solving with the P_{r} and P_{l} operators as well as the latent precision matrix $Q=P_{l} C^{-1} P_{l}$ and covariance matrix $\Sigma=P_{r} Q^{-1} P_{r}^{T}$. These operations are done without first assembling P_{r}, P_{l} in order to avoid numerical problems caused by ill-conditioned matrices.

Usage

Pr.mult(obj, v, transpose = FALSE)
Pr.solve(obj, v, transpose = FALSE)
Pl.mult(obj, v, transpose $=$ FALSE)
Pl.solve(obj, v, transpose = FALSE)
Q.mult(obj, v)
Q.solve(obj, v)

Qsqrt.mult(obj, v, transpose = FALSE)

```
Qsqrt.solve(obj, v, transpose = FALSE)
Sigma.mult(obj, v)
Sigma.solve(obj, v)
```


Arguments

obj rSPDE object
$v \quad$ vector to apply the operation to
transpose set to TRUE if the operation should be performed with the transposed object

Details

Pl.mult, Pr.mult, and Q.mult multiplies the vector with the respective object. Changing mult to solve in the function names multiplies the vector with the inverse of the object. Qsqrt.mult and Qsqrt.solve performs the operations with the square-root type object $Q_{r}=C^{-1 / 2} P_{l}$ defined so that $Q=Q_{r}^{T} Q_{r}$.

Value

A vector with the values of the operation

Description

The function is used for computing kriging predictions based on data $Y_{i}=u\left(s_{i}\right)+\epsilon_{i}$, where ϵ is mean-zero Gaussian measurement noise and $u(s)$ is defined by a fractional $\operatorname{SPDE} L^{\beta} u(s)=W$, where W is Gaussian white noise.

Usage

\#\# S3 method for class 'rSPDEobj'
predict(object, A, Aprd, Y, sigma.e, compute.variances = FALSE, ...)

Arguments

object The rational SPDE approximation, computed using fractional.operators, matern.operators, or spde.matern.operators.
A A matrix linking the measurement locations to the basis of the FEM approximation of the latent model.
Aprd A matrix linking the prediction locations to the basis of the FEM approximation of the latent model.

Y
A vector with the observed data, can also be a matrix where the columns are observations of independent replicates of u.
sigma.e The standard deviation of the Gaussian measurement noise. Put to zero if the model does not have measurement noise.
compute. variances
Set to also TRUE to compute the kriging variances.
... further arguments passed to or from other methods.

Value

A list with elements
mean The kriging predictor (the posterior mean of ulY).
variance The posterior variances (if computed).

Examples

```
#Sample a Gaussian Matern process on R using a rational approximation
kappa <- 10
sigma <- 1
nu <- 0.8
sigma.e <- 0.3
#create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
#compute rational approximation
op <- matern.operators(kappa = kappa, sigma = sigma,
                nu = nu, G=fem$G, C = fem$C, d = 1)
#Sample the model
u <- simulate(op)
#Create some data
obs.loc <- runif(n = 10, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
Y <- as.vector(A%*%u + sigma.e*rnorm(10))
#compute kriging predictions at the FEM grid
A.krig <- rSPDE.A1d(x, x)
u.krig <- predict(op, A = A, Aprd = A.krig, Y = Y, sigma.e = sigma.e,
    compute.variances= TRUE)
plot(obs.loc, Y, ylab = "u(x)", xlab = "x", main = "Data and prediction",
    ylim = c(min(u.krig$mean - 2*sqrt(u.krig$variance)),
    max(u.krig$mean + 2*sqrt(u.krig$variance))))
lines(x, u.krig$mean)
lines(x, u.krig$mean + 2*sqrt(u.krig$variance), col = 2)
lines(x, u.krig$mean - 2*sqrt(u.krig$variance), col = 2)
```


Description

Turn off all warnings for require(), to allow clean completion of examples that require unavailable Suggested packages.

Usage

require.nowarnings(package, lib.loc = NULL, character.only = FALSE)

Arguments

package \quad The name of a package, given as a character string.
lib.loc a character vector describing the location of R library trees to search through, or NULL. The default value of NULL corresponds to all libraries currently known to . libPaths(). Non-existent library trees are silently ignored.
character.only a logical indicating whether package can be assumed to be a character string.

Details

require (package) acts the same as require (package, quietly = TRUE) but with warnings turned off. In particular, no warning or error is given if the package is unavailable. Most cases should use requireNamespace (package, quietly = TRUE) instead, which doesn't produce warnings.

Value

require. nowarnings returns (invisibly) TRUE if it succeeds, otherwise FALSE

See Also

require

Examples

```
## This should produce no output:
if (require.nowarnings(nonexistent)) {
    message("Package loaded successfully")
}
```

rSPDE Rational approximations of fractional SPDEs.

Description

rSPDE is used for approximating fractional elliptic SPDEs

$$
L^{\beta} u(s)=W
$$

, where L is a differential operator and $\beta>0$ is a general fractional power.

Details

The approximation is based on a rational approximation of the fractional operator, and allows for computationally efficient inference and simulation.
The main function for computing the rational operators is fractional. operators, and the following simplified interfaces are available

- matern. operators Compuation of operators for random fields with stationary Matern covariance functions
- spde.matern.operators Compuation of operators for random fields with defined as solutions to a possibly non-stationary Matern-type SPDE model.

Basic statistical operations such as likelihood evaluations (see rSPDE. loglike) and kriging predictions (see predict. rSPDEobj) using the fractional approximations are also implemented.
For illustration purposes, the package contains a simple FEM implementation for models on R. For spatial models, the FEM implementation in the R-INLA package is recommended.
For a more detailed introduction to the package, see the rSPDE Vignette.
rSPDE.A1d Observation matrix for finite element discretization on R

Description

A finite element discretization on R can be written as $u(s)=\sum_{i}^{n} u_{i} \varphi_{i}(s)$ where $\varphi_{i}(s)$ is a piecewise linear "hat function" centered at location x_{i}. This function computes an $m \times n$ matrix A that links the basis function in the expansion to specified locations $s=\left(s_{1}, \ldots, s_{m}\right)$ in the domain through $A_{i} j=\varphi_{j}\left(s_{i}\right)$.

Usage

rSPDE.A1d(x, loc)

Arguments

x
The locations of the nodes in the FEM discretization.
loc
The locations $\left(s_{1}, \ldots, s_{m}\right)$

Value

The sparse matrix A.

Author(s)

David Bolin davidbolin@gmail.com

See Also

rSPDE.fem1d

Examples

```
#create mass and stiffness matrices for a FEM discretization on [0,1]
x = seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
#create the observation matrix for some locations in the domain
obs.loc <- runif(n = 10, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
```

 rSPDE.fem1d Finite element calculations for problems on \(R\)

Description

This function computes mass and stiffness matrices for a FEM approximation on R, assuming Neumann boundary conditions. These matrices are needed when discretizing the operators in rational approximations.

Usage

rSPDE.fem1d(x)

Arguments

$x \quad$ Locations of the nodes in the FEM approximation.

Value

The function returns a list with the following elements
G The stiffness matrix.
C
The mass matrix.

Author(s)

David Bolin davidbolin@gmail.com

See Also

rSPDE.A1d

Examples

```
#create mass and stiffness matrices for a FEM discretization on [0,1]
x = seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
```

rSPDE.loglike
Log-likelihood function for latent Gaussian fractional SPDE model

Description

This function evaluates the log-likelihood function for a fractional SPDE model $L^{\beta} u(s)=W$ that is observed under Gaussian measurement noise: $Y_{i}=u\left(s_{i}\right)+\epsilon_{i}$, where ϵ_{i} are iid mean-zero Gaussian variables.

Usage

rSPDE.loglike(obj, Y, A, sigma.e)

Arguments

obj The rational SPDE approximation, computed using fractional.operators, matern.operators, or spde.matern.operators.
Y The observations, either a vector or a matrix where the columns correspond to independent replicates of observations.

A
An observation matrix that links the measurement location to the finite elemen basis.
sigma.e The standard deviation of the measurement noise.

Value

The log-likelihood value.

Note

This example below shows how the function can be used to evaluate the likelihood of a latent Matern model. Se matern.loglike for an example of how this can be used for maximum likelihood estimation.

See Also

matern.loglike, spde.matern.loglike

Examples

```
#Sample a Gaussian Matern process on R using a rational approximation
kappa = 10
sigma = 1
nu = 0.8
sigma.e = 0.3
#create mass and stiffness matrices for a FEM discretization
x = seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
#compute rational approximation
op <- matern.operators(kappa = kappa, sigma = sigma, nu = nu,
    G fem$G, C = fem$C, d = 1)
#Sample the model
u <- simulate(op)
#Create some data
obs.loc <- runif(n = 10, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
Y = as.vector(A%*%u + sigma.e*rnorm(10))
#compute log-likelihood of the data
lik1 <- rSPDE.loglike(op, Y, A, sigma.e)
cat(lik1)
```


Description

The function samples a Gaussian random field based on a pre-computed rational SPDE approximation.

Usage

```
simulate(object, nsim)
## S3 method for class 'rSPDEobj'
simulate(object, nsim = 1)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { The rational SPDE approximation, computed using fractional.operators, } \\
\text { matern.operators, or spde.matern.operators. } \\
\text { nsim } & \text { The number of simulations. }
\end{array}
$$

Value

A matrix with the n samples as columns.

Examples

```
#Sample a Gaussian Matern process on R using a rational approximation
kappa <- 10
sigma <- 1
nu <- 0.8
#create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
#compute rational approximation
op <- matern.operators(kappa = kappa, sigma = sigma,
    nu = nu, G=fem$G, C=fem$C, d=1)
#Sample the model and plot the result
Y <- simulate(op)
plot(x, Y, type = "l", ylab = "u(x)", xlab = "x")
```

| spde.matern.loglike | Log-likelihood for a latent Gaussian Matern SPDE model using a ra-
 tional SPDE approximation |
| :--- | :--- | tional SPDE approximation

Description

This function evaluates the log-likelihood function for observations of a Gaussian process defined as the solution to the SPDE

$$
(\kappa(s)-\Delta)^{\beta}(\tau(s) u(s))=W
$$

Usage

spde.matern.loglike(kappa, tau, nu, sigma.e, Y, $G, C, A, d=2, m=1)$

Arguments

kappa Vector with the, possibly spatially varying, range parameter evaluated at the locations of the mesh used for the finite element discretization of the SPDE.
tau Vector with the, possibly spatially varying, precision parameter evaluated at the locations of the mesh used for the finite element discretization of the SPDE.
nu \quad Shape parameter of the covariance function, related to β through the equation $\beta=(\nu+d / 2) / 2$.
sigma.e The standard deviation of the measurement noise.
Y
The observations, either a vector or a matrix where the columns correspond to independent replicates of observations.

G
C
A
The stiffness matrix of a finite element discretization of the domain.
C The mass matrix of a finite element discretization of the domain.
A matrix linking the measurement locations to the basis of the FEM approximation of the latent model.
$\mathrm{d} \quad$ The dimension of the domain. The default value is 2 .
$\mathrm{m} \quad$ The order of the rational approximation, which needs to be a positive integer. The default value is 1 .

Details

The observations are assumed to be generated as $Y_{i}=u\left(s_{i}\right)+\epsilon_{i}$, where ϵ_{i} are iid mean-zero Gaussian variables. The latent model is approximated using a rational approximation of the fractional SPDE model.

Value

The log-likelihood value.

See Also

matern.loglike, rSPDE.loglike.

Examples

```
#this example illustrates how the function can be used for maximum likelihood estimation
set.seed(1)
#Sample a Gaussian Matern process on R using a rational approximation
sigma.e = 0.1
n.rep = 10
n.obs = 100
n.x = 51
#create mass and stiffness matrices for a FEM discretization
x = seq(from = 0, to = 1, length.out = n.x)
fem <- rSPDE.fem1d(x)
tau = rep(0.5,n.x)
```

```
nu = 0.8
kappa = rep(1,n.x)
#compute rational approximation
op <- spde.matern.operators(kappa = kappa, tau = tau, nu = nu,
                                    G = fem$G, C = fem$C, d = 1)
#Sample the model
u <- simulate(op, n.rep)
#Create some data
obs.loc <- runif(n = n.obs, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
noise <- rnorm(n.obs*n.rep)
dim(noise) <- c(n.obs, n.rep)
Y = as.matrix(A%*%u + sigma.e*noise)
#define negative likelihood function for optimization using matern.loglike
mlik <- function(theta, Y, G, C, A){
return(-spde.matern.loglike(rep(exp(theta[1]),n.x), rep(exp(theta[2]),n.x),
                                    exp(theta[3]), exp(theta[4]),
                                    Y = Y, G = G, C = C, A = A, d = 1))
}
#' #The parameters can now be estimated by maximizing mlik with optim
#Choose some reasonable starting values depending on the size of the domain
theta0 = log(c(sqrt(8), 1/sqrt(var(c(Y))), 0.9, 0.01))
#run estimation and display the results
theta <- optim(theta0, mlik, Y = Y, G = fem$G, C = fem$C, A = A)
print(data.frame(kappa = c(kappa[1],exp(theta$par[1])), tau = c(tau[1], exp(theta$par[2])),
    nu = c(nu,exp(theta$par[3])), sigma.e = c(sigma.e,exp(theta$par[4])),
    row.names = c("Truth","Estimates")))
```

spde.matern.operators Rational approximations of non-stationary Gaussian SPDE Matern random fields

Description

spde.matern.operators is used for computing a rational SPDE approximation of a Gaussian random fields on R^{d} defined as a solution to the SPDE

$$
(\kappa(s)-\Delta)^{\beta}(\tau(s) u(s))=W
$$

Usage

spde.matern.operators(kappa, tau, nu, G, C, d, m = 1)

Arguments

kappa Vector with the, possibly spatially varying, range parameter evaluated at the locations of the mesh used for the finite element discretization of the SPDE.
tau Vector with the, possibly spatially varying, precision parameter evaluated at the locations of the mesh used for the finite element discretization of the SPDE.
nu \quad Shape parameter of the covariance function, related to β through the equation $\beta=(\nu+d / 2) / 2$.
G The stiffness matrix of a finite element discretization of the domain of interest.
C The mass matrix of a finite element discretization of the domain of interest.
d The dimension of the domain.
$\mathrm{m} \quad$ The order of the rational approximation, which needs to be a positive integer. The default value is 1 .

Details

The approximation is based on a rational approximation of the fractional operator $\left(\kappa(s)^{2}-\Delta\right)^{\beta}$, where $\beta=(\nu+d / 2) / 2$. This results in an approximate model on the form

$$
P_{l} u(s)=P_{r} W
$$

where $P_{j}=p_{j}(L)$ are non-fractional operators defined in terms of polynomials p_{j} for $j=l, r$. The order of p_{r} is given by m and the order of p_{l} is $m+m_{\beta}$ where m_{β} is the integer part of β if $\beta>1$ and $m_{\beta}=1$ otherwise.
The discrete approximation can be written as $u=P_{r} x$ where $x \sim N\left(0, Q^{-1}\right)$ and $Q=P_{l}^{T} C^{-1} P_{l}$. Note that the matrices P_{r} and Q may be be ill-conditioned for $m>1$. In this case, the metehods in operator. operations should be used for operations involving the matrices, since these methods are more numerically stable.

Value

spde.matern. operators returns an object of class "rSPDEobj. This object contains the quantities listed in the output of fractional. operators as well as the smoothness parameter ν.

Author(s)

David Bolin davidbolin@gmail.com

See Also

fractional.operators, spde.matern.operators

Examples

```
#Sample non-stationary Matern field on R
tau <- 1
nu <- 0.8
#create mass and stiffness matrices for a FEM discretization
```

```
x <- seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
    #define a non-stationary range parameter
    kappa <- seq(from = 2, to = 20, length.out = length(x))
#compute rational approximation
op <- spde.matern.operators(kappa = kappa, tau = tau, nu = nu,
                G = fem$G, C = fem$C, d = 1)
#sample the field
u <- simulate(op)
#plot the sample
plot(x, u, type = "l", ylab = "u(s)", xlab = "s")
```

```
summary.rSPDEobj Summarise excurobj objects
```


Description

Summary method for class "rSPDEobj"

Usage

\#\# S3 method for class 'rSPDEobj'
summary (object, ...)
\#\# S3 method for class 'summary.rSPDEobj'
print(x, ...)
\#\# S3 method for class 'rSPDEobj'
print(x, ...)

Arguments

object an object of class "rSPDEobj", usually, a result of a call to fractional. operators, matern.operators, or spde.matern.operators.
... further arguments passed to or from other methods.
$x \quad$ an object of class "summary.rSPDEobj", usually, a result of a call to summary.rSPDEobj.

Index

```
fractional.operators, 2, 7, 9, 12, 14, 16,
    19,20
matern.covariance,4
matern.loglike, 5, 14, 15, 17
matern.operators, 3, 5, 6, 9, 12, 14,16,20
operator.operations, 3, 7, 8, 19
Pl.mult(operator.operations), 8
Pl.solve (operator.operations), 8
Pr.mult(operator.operations), 8
Pr.solve (operator.operations), 8
predict.rSPDEobj, 9, 12
print.rSPDEobj(summary.rSPDEobj), 20
print.summary.rSPDEobj
    (summary.rSPDEobj), 20
Q.mult (operator.operations), 8
Q.solve (operator.operations), 8
Qsqrt.mult(operator.operations), 8
Qsqrt.solve (operator.operations), 8
require, 11
require.nowarnings,11
rSPDE, 12
rSPDE.A1d, 12, 14
rSPDE.fem1d, 13, 13
rSPDE.loglike, 5, 12, 14,17
Sigma.mult (operator.operations), 8
Sigma.solve (operator.operations), 8
simulate, 15
spde.matern.loglike, 5, 15, 16
spde.matern.operators, 3, 7, 9, 12, 14, 16,
    18,19, 20
summary.rSPDEobj, 20,20
```

