rKolada
is an R package for downloading, inspecting and processing data from Kolada, a Key Performance Indicator database for Swedish municipalities and regions. This vignette provides an overview of the methods included in the rKolada
package and the design principles of the package API. To learn more about the specifics of functions and to see a full list of the functions included, please see the Reference section of the package homepage or run ??rKolada
. For a quick introduction to the package see the vignette A quick start guide to rKolada.
NOTE: All metadata and data labels in Kolada are written in Swedish only.
The design of rKolada
functions is inspired by, and are supported by, the design and functionality provided by several packages in the tidyverse
family. It is thus recommended that you install the tidyverse
package before installing rKolada:
The Swedish Municipalities and Regions Database Kolada is a openly accessible, comprehensive database containing over 4,000 Key Performance Indicators (KPIs) for a vast number of aspects of municipal and regional organisations, politics and economic life. The rKolada
R package provides an interface to R users to directly download, explore, and simplify metadata and data from Kolada.
To get started with Kolada you might want to visit its homepage (Swedish-only) or read through the REST API documentation on Github. However, you can also use the rKolada
package to explore data without prior knowledge of the database.
Data in Kolada are stored along three basic dimensions:
When downloading data, the user needs to specify search parameters for at least two of these three basic dimensions. (The Kolada API documentation also specifies a fourth basic dimension: gender. However, data for all genders is always automatically downloaded when available.) The parameters can be a single, atomic value or a vector of values.
Also, the Kolada database proves useful groupings of municipalities and KPIs that can be used for further exploration, or to create unweighted averages. Lastly, some KPIs are also available for Organizational units (OUs) within municipalities, e.g. a school, an administrative subdivision or an elderly home.
If the user already has knowledge of the IDs of the KPIs and/or municipalities they want to download, this can be done using the function get_values()
. For instance, if you want to download all values for the KPI N00945
(“Tillfälliga föräldrapenningdagar (VAB) som tas ut av män, andel av antal dagar (%)”) for Sweden’s three most populous cities; Stockholm (id "0180"
), Gothenburg (Swedish: Göteborg; "1480"
) and Malmö ("1280"
):
n00945 <- get_values(
kpi = "N00945",
municipality = "G123833",
period = 1970:2020
)
n00945
#> # A tibble: 24 x 8
#> kpi municipality_id year count gender value municipality municipality_ty…
#> <chr> <chr> <int> <int> <chr> <dbl> <chr> <chr>
#> 1 N00945 G123833 1996 0 T NA Liknande ko… G
#> 2 N00945 G123833 1997 0 T NA Liknande ko… G
#> 3 N00945 G123833 1998 7 T 31.5 Liknande ko… G
#> 4 N00945 G123833 1999 7 T 33.9 Liknande ko… G
#> 5 N00945 G123833 2000 7 T 33.7 Liknande ko… G
#> 6 N00945 G123833 2001 7 T 36.6 Liknande ko… G
#> 7 N00945 G123833 2002 7 T 35.9 Liknande ko… G
#> 8 N00945 G123833 2003 7 T 34.8 Liknande ko… G
#> 9 N00945 G123833 2004 7 T 36.2 Liknande ko… G
#> 10 N00945 G123833 2005 7 T 34.6 Liknande ko… G
#> # … with 14 more rows
In many cases, however, you will not know in advance exactly what KPIs to be looking for, or you might not know the IDs of Sweden’s municipalities.
get
functionsKolada has five different kinds of metadata entities Each one of these can be downloaded by using rKolada
’s get
functions. Each function returns a tibble
with all available data for the specified metadata entity:
get_kpi()
get_kpi_groups()
get_municipality()
get_municipality_groups()
get_ou()
Each function returns a tibble
with all available data for the specified metadata entity.
# Download all KPI metadata as a tibble (kpi_df)
kpi_df <- get_kpi()
kpi_df
#> # A tibble: 4,688 x 13
#> auspices description has_ou_data id is_divided_by_g… municipality_ty…
#> <chr> <chr> <lgl> <chr> <int> <chr>
#> 1 E Personalko… FALSE N000… 0 K
#> 2 E Personalko… FALSE N000… 0 K
#> 3 X Kommunalek… FALSE N000… 0 K
#> 4 <NA> Externa in… FALSE N000… 0 K
#> 5 <NA> Inkomstutj… FALSE N000… 0 K
#> 6 <NA> Kostnadsut… FALSE N000… 0 K
#> 7 X Reglerings… FALSE N000… 0 K
#> 8 <NA> Utjämnings… FALSE N000… 0 K
#> 9 X Införandeb… FALSE N000… 0 K
#> 10 X Strukturbi… FALSE N000… 0 K
#> # … with 4,678 more rows, and 7 more variables: operating_area <chr>,
#> # ou_publication_date <chr>, perspective <chr>, prel_publication_date <chr>,
#> # publ_period <chr>, publication_date <chr>, title <chr>
All get
functions are thin wrappers around the more general function get_metadata()
. If you are familiar with the terminology used in the Kolada API for accessing metadata you might want to use this function instead.
For each metadata type mentioned in the previous sections, rKolada
offers several convenience functions to help exploring and narrowing down metadata tables. (If you are familiar with dplyr
semantics, most of these functions are basically wrappers around dplyr
/tidyr
code.)
Since each get
function above returns a table for the selected entity, a metadata table can be one of five different types. All metadata convenience functions are prefixed to reflect which kind of metadata table they operate on: kpi
, kpi_grp
, municipality
, municipality_grp
, and ou
.
All metadata convenience functions have been designed with functional piping in mind, so their first argument is always a metadata tibble. Most of them also return a tibble of the same type
The most important family of metadata convenience functions is the search
family. Much like dplyr::filter()
they can be used to search for one or several search terms in the entire table or in a subset of named columns:
# Search for KPIs with the term "BRP" in their description or title
kpi_filter <- kpi_df %>% kpi_search("skola", column = c("description", "title"))
kpi_filter
#> # A tibble: 622 x 13
#> auspices description has_ou_data id is_divided_by_g… municipality_ty…
#> <chr> <chr> <lgl> <chr> <int> <chr>
#> 1 <NA> Kostnadsut… FALSE N000… 0 K
#> 2 <NA> Kostnadsut… FALSE N000… 0 K
#> 3 <NA> Kostnadsut… FALSE N000… 0 K
#> 4 T Avvikelse … FALSE N000… 0 K
#> 5 T Strukturko… FALSE N001… 0 K
#> 6 E Månadsavlö… FALSE N001… 0 K
#> 7 E Årsarbetar… FALSE N001… 0 K
#> 8 X Antal invå… FALSE N017… 0 K
#> 9 X Investerin… FALSE N031… 0 K
#> 10 X Investerin… FALSE N031… 0 K
#> # … with 612 more rows, and 7 more variables: operating_area <chr>,
#> # ou_publication_date <chr>, perspective <chr>, prel_publication_date <chr>,
#> # publ_period <chr>, publication_date <chr>, title <chr>
# Search for municipality groups containing the name "Arboga"
munic_g <- get_municipality_groups()
arboga_groups <- munic_g %>% municipality_grp_search("Arboga")
arboga_groups
#> # A tibble: 11 x 3
#> id members title
#> <chr> <list> <chr>
#> 1 G123832 <df[,2] [7 × 2]> Liknande kommuner socioekonomi, Arboga, 2018
#> 2 G145970 <df[,2] [7 × 2]> Liknande regioner socioekonomi, Arboga, 2018
#> 3 G35869 <df[,2] [7 × 2]> Liknande kommuner grundskola, Arboga, 2018
#> 4 G36161 <df[,2] [7 × 2]> Liknande kommuner gymnasieskola, Arboga, 2018
#> 5 G36453 <df[,2] [7 × 2]> Liknande kommuner IFO, Arboga, 2018
#> 6 G36745 <df[,2] [7 × 2]> Liknande kommuner äldreomsorg, Arboga, 2018
#> 7 G37329 <df[,2] [7 × 2]> Liknande kommuner, övergripande, Arboga, 2018
#> 8 G39502 <df[,2] [7 × 2]> Liknande kommuner LSS, Arboga, 2018
#> 9 G85463 <df[,2] [7 × 2]> Liknande kommuner fritidshem, Arboga, 2018
#> 10 G85755 <df[,2] [7 × 2]> Liknande kommuner förskola, Arboga, 2018
#> 11 G87629 <df[,2] [7 × 2]> Liknande kommuner integration, Arboga, 2018
Another important family of exploration functions is the describe
family of functions. These functions take a metadata table and print a human-readable summary of the most important facts about each row in the table (up to a limit, specified by max_n
). By default, output is printed directly to the R console. But by specifying format = "md"
you can make the describe
functions create markdown-ready output which can be added directly to a R markdown file by setting the chunk option results='asis'
. The output then looks as follows:
Kostnadsutj.netto: förskola och skolbarnomsorg, tkr dividerat med antal invånare totalt 1/11 nov fg år. Källa: SCB.
Has OU data: FALSE
Divided by gender: FALSE
Municipality type: K
Operating area: Skatter och utjämning
Publication date: NA
Publication period: NA
OU publication date: NA
Unknown
Kostnadsutj.netto: Grundskola, tkr dividerat med antal invånare totalt 1/11 nov fg år. Källa: SCB.
Has OU data: FALSE
Divided by gender: FALSE
Municipality type: K
Operating area: Skatter och utjämning
Publication date: NA
Publication period: NA
OU publication date: NA
Unknown
KPI metadata is considerably more complex than other types of metadata. To further assist in exploring KPI metadata the function kpi_bind_keywords()
can be used to tag data with keywords (these are inferred from the KPI title) to classify KPIs and make them more searchable.
# Add keywords to a KPI table
kpis_with_keywords <- kpi_filter %>% kpi_bind_keywords(n = 4)
# count keywords
kpis_with_keywords %>%
tidyr::pivot_longer(dplyr::starts_with("keyword"), values_to = "keyword") %>%
dplyr::count(keyword, sort = TRUE)
#> # A tibble: 305 x 2
#> keyword n
#> <chr> <int>
#> 1 elever 126
#> 2 gymnasieelever 92
#> 3 grundskola 80
#> 4 gymnasieskola 68
#> 5 åk 67
#> 6 ungdomar 63
#> 7 studerar 58
#> 8 förskola 57
#> 9 kostnad 57
#> 10 kr 55
#> # … with 295 more rows
Some KPIs can be very similar-looking and it can sometimes be hard to discern which of the KPIs to use. To make sifting through data easier, kpi_minimize()
can be used to remove all redundant columns from a KPI table. (In this case, “redundant” means "containing no information that helps in differentiating KPIs from one another, i.e. columns containing only one single value for all observations in the table):
# Top 10 rows of the table
kpi_filter %>% dplyr::slice(1:10)
#> # A tibble: 10 x 13
#> auspices description has_ou_data id is_divided_by_g… municipality_ty…
#> <chr> <chr> <lgl> <chr> <int> <chr>
#> 1 <NA> Kostnadsut… FALSE N000… 0 K
#> 2 <NA> Kostnadsut… FALSE N000… 0 K
#> 3 <NA> Kostnadsut… FALSE N000… 0 K
#> 4 T Avvikelse … FALSE N000… 0 K
#> 5 T Strukturko… FALSE N001… 0 K
#> 6 E Månadsavlö… FALSE N001… 0 K
#> 7 E Årsarbetar… FALSE N001… 0 K
#> 8 X Antal invå… FALSE N017… 0 K
#> 9 X Investerin… FALSE N031… 0 K
#> 10 X Investerin… FALSE N031… 0 K
#> # … with 7 more variables: operating_area <chr>, ou_publication_date <chr>,
#> # perspective <chr>, prel_publication_date <chr>, publ_period <chr>,
#> # publication_date <chr>, title <chr>
# Top 10 rows of the table, with non-distinct data removed
kpi_filter %>% dplyr::slice(1:10) %>% kpi_minimize()
#> # A tibble: 10 x 8
#> id title description operating_area perspective prel_publicatio…
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 N000… Kost… Kostnadsut… Skatter och u… Resurser <NA>
#> 2 N000… Kost… Kostnadsut… Skatter och u… Resurser <NA>
#> 3 N000… Kost… Kostnadsut… Skatter och u… Resurser <NA>
#> 4 N000… Nett… Avvikelse … Kommunen, öve… Resurser 2020-06-19
#> 5 N001… Stru… Strukturko… Kommunen, öve… Resurser <NA>
#> 6 N001… Måna… Månadsavlö… Barn och utbi… Resurser <NA>
#> 7 N001… Årsa… Årsarbetar… Barn och utbi… Resurser <NA>
#> 8 N017… Invå… Antal invå… Befolkning Volymer,Öv… <NA>
#> 9 N031… Inve… Investerin… Barn och utbi… Resurser 2020-04-08
#> 10 N031… Inve… Investerin… Barn och utbi… Resurser <NA>
#> # … with 2 more variables: publ_period <chr>, publication_date <chr>
Kolada provides pre-defined groups of KPIs and municipalities/regions. Exploring an using thse groups can facilitate meaningful comparisons between different entities or help paint a broader picture of developments in a certain field or area.
To get
, search
or describe
group metadata, use the same techniques as described above for regular metadata (relevant prefixes are kpi_grp_
and municipality_grp_
).
A crucial difference between group metadata and other metadata tables, however, is that group metadata comes in the form of a nested table. Typically you might want to unnest the groups in a group metadata table once yo hae found the relevant group(s) for your query. To do this, use the unnest
functions to create a table containing unnested entities, e.g. running kpi_grp_unnest(kpi_grp_df)
using a KPI group metadata table as argument creates a kpi_df
that can be further processed using the kpi_
functios described in previous sections of this vignette.
An alternative approach to downloading data using known IDs is to use metadata tables to construct arguments to get_values()
. rKolada
provides a extract_ids
family of functions for passing a metadata table as an argument to get_values
. A typical workflow would be to download metadata for (groups of) KPIs and/or municipalities, use functions like kpi_search()
to filter down the tables to a few rows, and then call get_values()
to fetch data.
As an example, let’s say we want to download all KPIs describing Gross Regional Product for all municipalities that are socioeconomically similar to Arboga, a small municipality in central Sweden:
# Get KPIs describing Gross Regional Product of municipalities
kpi_filter <- get_kpi() %>%
kpi_search("BRP")
# Creates a table with two rows
munic_grp_filter <- get_municipality_groups() %>%
municipality_grp_search("Liknande kommuner socioekonomi, Arboga")
# Creates a table with one group of 7 municipalities
arboga_filter <- get_municipality() %>% municipality_search("Arboga")
# Get values
grp_data <- get_values(
kpi = kpi_extract_ids(kpi_filter),
municipality = c(
municipality_grp_extract_ids(munic_grp_filter),
municipality_extract_ids(arboga_filter)
)
)
# Visualize results
library("ggplot2")
ggplot(grp_data, aes(year, value, color = municipality)) +
geom_line() +
facet_grid(kpi ~ ., scales = "free") +
labs(
title = "Gross Regional Product 2012-2017",
subtitle = "Swedish municipalities similar to Arboga",
caption = values_legend(grp_data, kpi_filter)
) +
scale_color_viridis_d(option = "B") +
scale_y_continuous(labels = scales::comma)