
Package ‘qtl2convert’
July 1, 2020

Version 0.22-7

Date 2020-06-30

Title Convert Data among QTL Mapping Packages

Description Functions to convert data structures among the 'qtl2', 'qtl', and 'DOQTL' pack-
ages for mapping quantitative trait loci (QTL).

Author Karl W Broman [aut, cre] (<https://orcid.org/0000-0002-4914-6671>)

Maintainer Karl W Broman <broman@wisc.edu>

Depends R (>= 3.1.0)

Imports Rcpp (>= 0.12.12), qtl (>= 1.40-8), qtl2 (>= 0.18), utils,
stats

Suggests testthat, devtools, roxygen2

License GPL-3

URL http://kbroman.org/qtl2, https://github.com/rqtl/qtl2convert

BugReports https://github.com/rqtl/qtl2convert/issues

LinkingTo Rcpp

LazyData true

Encoding UTF-8

ByteCompile true

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-07-01 08:40:07 UTC

R topics documented:
cbind_smother . 2
count_unique_geno . 3
encode_geno . 3
find_consensus_geno . 4

1

http://kbroman.org/qtl2
https://github.com/rqtl/qtl2convert
https://github.com/rqtl/qtl2convert/issues

2 cbind_smother

find_unique_geno . 5
map_df_to_list . 6
map_list_to_df . 7
probs_doqtl_to_qtl2 . 8
probs_qtl2_to_array . 9
probs_qtl2_to_doqtl . 9
probs_qtl_to_qtl2 . 10
scan_qtl2_to_qtl . 11
scan_qtl_to_qtl2 . 12
write2csv . 12

Index 15

cbind_smother Combine matrices by columns, replacing matching ones and adding
unique ones

Description

This is like base::cbind() but if a column in the second matrix has the same name as a column in
the first matrix, the column in the first matrix is deleted and that in the second matrix is used in its
place.

Usage

cbind_smother(mat1, mat2)

Arguments

mat1 A matrix

mat2 Another matrix, with the same number of rows as mat.

Value

The two matrices combined by columns, but columns in the first matrix that also appear in the
second matrix are deleted and replaced by those in the second matrix. Uses the row names to align
the rows in the two matrices, and to expand them as needed.

Examples

df1 <- data.frame(x=c(1,2,3,NA,4), y=c(5,8,9,10,11), row.names=c("A", "B", "C", "D", "E"))
df2 <- data.frame(z=c(7,8,0,9,10), y=c(6,NA,NA,9,10), row.names=c("A", "B", "F", "C", "D"))
df1n2 <- cbind_smother(df1, df2)

count_unique_geno 3

count_unique_geno Count the unique genotypes for each row of a genotype matrix

Description

For genotype data (markers x individuals) on a set of individuals, count the unique genotypes for
each marker

Usage

count_unique_geno(genotypes, na.strings = c("N", "H", "NA", ""), cores = 1)

Arguments

genotypes Matrix of genotypes (markers x individuals)

na.strings Genotypes to be considered as missing values.

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Value

Vector of counts of unique genotypes.

See Also

find_unique_geno()

Examples

g <- rbind(c("NA", "A", "A", "A", "T"),
c("NA", "NA", "NA", "A", "A"),
c("A", "A", "T", "G", "G"),
c("C", "C", "G", "G", "NA"))

counts <- count_unique_geno(g)

encode_geno Encode a matrix of genotypes using a set of allele codes

Description

Encode a matrix of genotypes using a set of allele codes.

4 find_consensus_geno

Usage

encode_geno(
geno,
allele_codes,
output_codes = c("-", "A", "H", "B"),
cores = 1

)

Arguments

geno Character matrix of genotypes (rows as markers, columns as individuals)

allele_codes Two-column matrix of alleles (rows as markers)

output_codes Vector of length four, with missing, AA, AB, BB codes

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Value

Matrix of same dimensions as geno, but with values in output_codes.

See Also

find_consensus_geno(), find_unique_geno()

Examples

geno <- rbind(c("C", "G", "C", "GG", "CG"),
c("A", "A", "AT", "TA", "TT"),
c("T", "G", NA, "GT", "TT"))

codes <- rbind(c("C", "G"), c("A", "T"), c("T", "G"))
geno_encoded <- encode_geno(geno, codes)

find_consensus_geno Find the consensus genotype for each row of a genotype matrix

Description

For genotype data (markers x individuals) on a set of individuals from a single inbred line, find the
consensus genotype at each marker.

Usage

find_consensus_geno(genotypes, na.strings = c("N", "H", "NA", ""), cores = 1)

find_unique_geno 5

Arguments

genotypes Matrix of genotypes (markers x individuals)

na.strings Genotypes to be considered as missing values.

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Value

Vector of consensus genotypes, one value per row of genotypes

See Also

find_unique_geno(), encode_geno()

Examples

g <- rbind(c("NA", "N", "A", "A", "T", "G", NA, "H"),
c("C", "C", "G", "G", "A", NA, NA, NA),
rep(NA, 8),
c("C", "C", "G", "G", "G", "C", "G", "G"))

consensus <- find_consensus_geno(g)

find_unique_geno Find the unique genotypes for each row of a genotype matrix

Description

For genotype data (markers x individuals) on a set of individuals, find the unique genotypes for each
marker, provided that there are exactly two. (If more than two or fewer than two, return NAs.)

Usage

find_unique_geno(genotypes, na.strings = c("N", "H", "NA", ""), cores = 1)

Arguments

genotypes Matrix of genotypes (markers x individuals)

na.strings Genotypes to be considered as missing values.

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Value

Matrix with two columns. Each row corresponds to a marker, and has the two unique genotypes, or
NAs (if >2 or <2 unique genotypes).

6 map_df_to_list

See Also

count_unique_geno(), encode_geno()

Examples

g <- rbind(c("NA", "A", "A", "A", "T"),
c("NA", "NA", "NA", "A", "A"),
c("A", "A", "T", "G", "G"),
c("C", "C", "G", "G", "NA"))

ug <- find_unique_geno(g)

map_df_to_list Marker map data frame to list

Description

Convert a marker map organized as data frame to a list

Usage

map_df_to_list(
map,
chr_column = "chr",
pos_column = "cM",
marker_column = "marker",
Xchr = c("x", "X")

)

Arguments

map Data frame with marker map

chr_column Name of the column in map that contains the chromosome IDs.

pos_column Name of the column in map that contains the marker positions.

marker_column Name of the column in map that contains the marker names. If NULL, use the
row names.

Xchr Vector of character strings indicating the name or names of the X chromosome.
If NULL, assume there’s no X chromosome.

Value

A list of vectors of marker positions, one component per chromosome

See Also

map_list_to_df()

map_list_to_df 7

Examples

map <- data.frame(chr=c(1,1,1, 2,2,2, "X","X"),
pos=c(0,5,10, 0,8,16, 5,20),

marker=c("D1M1","D1M2","D1M3", "D2M1","D2M2","D2M3", "DXM1","DXM2"))
map_list <- map_df_to_list(map, pos_column="pos")

map_list_to_df Marker map list to data frame

Description

Convert a marker map organized as a list to a data frame

Usage

map_list_to_df(
map_list,
chr_column = "chr",
pos_column = "pos",
marker_column = "marker"

)

Arguments

map_list List of vectors containing marker positions

chr_column Name of the chromosome column in the output

pos_column Name of the position column in the output

marker_column Name of the marker column in the output. If NULL, just put them as row names.

Value

A data frame with the marker positions.

See Also

map_df_to_list()

Examples

library(qtl2)
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
iron_map <- map_list_to_df(iron$gmap)

8 probs_doqtl_to_qtl2

probs_doqtl_to_qtl2 Convert DOQTL genotype probabilities to R/qtl2 format

Description

Convert DOQTL genotype probabilities to R/qtl2 format

Usage

probs_doqtl_to_qtl2(
probs,
map,
is_female = NULL,
chr_column = "chr",
pos_column = "cM",
marker_column = "marker"

)

Arguments

probs 3d array of genotype probabilities as calculated from DOQTL (individuals x
genotypes x positions)

map Data frame with marker map

is_female Optional logical vector indicating which individuals are female. Names should
contain the individual identifiers, matching the row names in probs.

chr_column Name of the column in map that contains the chromosome IDs.

pos_column Name of the column in map that contains the marker positions.

marker_column Name of the column in map that contains the marker names. If NULL, use the
row names.

Details

We assume that the X chromosome is labeled "X" (must be upper-case) and that any other chromo-
somes are autosomes. We assume that the genotypes are labeled using the 8 letters A-H.

If the probabilities are for the full 36 states and the X chromosome is included but is_female is
not provided, we’ll guess which individuals are females based on their genotype probabilities. (If
the average, across loci, of the sum of the heterozygote probabilities is small, we’ll assume it’s a
female.)

Value

An object of the form produced by qtl2::calc_genoprob().

probs_qtl2_to_array 9

probs_qtl2_to_array Convert R/qtl2 genotype probabilities to a 3d array

Description

Convert R/qtl2 genotype probabilities to a 3d array

Usage

probs_qtl2_to_array(probs)

Arguments

probs A "calc_genoprob" object (a list of 3d arrays of genotype probabilities), as
calculated by qtl2::calc_genoprob().

Details

We convert just the autosomal genotype probabilities, because they should all have the same num-
ber of genotypes (columns). The main application of this is for identifying possible sample mix-ups
among batches of genotype probabilities (e.g., using the R/lineup2 package), and for this the auto-
somal genotype probabilities should be sufficient.

Value

A single three-dimensional array, with just the autosomal genotype probabilities.

probs_qtl2_to_doqtl Convert R/qtl2 genotype probabilities to DOQTL format

Description

Convert R/qtl2 genotype probabilities to DOQTL format

Usage

probs_qtl2_to_doqtl(probs)

Arguments

probs A "calc_genoprob" object (a list of 3d arrays of genotype probabilities), as
calculated by qtl2::calc_genoprob().

https://github.com/kbroman/lineup2

10 probs_qtl_to_qtl2

Details

If the arrays in probs all have 8 columns, they’re assumed to be allele dosages and we paste them
all together into one big array.

Otherwise, it should be that the autosomes all have 36 columns the X chromosome has 44. In this
case, the male hemizygotes on the X are placed where the female homozygotes are, and then we
reorder the genotypes into alphabetical order.

Value

A single three-dimensional array, for use with DOQTL.

probs_qtl_to_qtl2 Convert R/qtl genotype probabilities to R/qtl2 format

Description

Convert R/qtl genotype probabilities to R/qtl2 format

Usage

probs_qtl_to_qtl2(cross)

Arguments

cross An R/qtl "cross" object (see qtl::read.cross() for details.) Must contain
genotype probabilities as calculated by qtl::calc.genoprob().

Value

A list with two components:

• "probs" - the genotype probabilities in the form produced by qtl2::calc_genoprob()

• "map" - Map of marker/pseudomarker positions (a list of vectors of positions)

Examples

library(qtl)
data(hyper)
hyper <- calc.genoprob(hyper, step=1, error.prob=0.002)
result <- probs_qtl_to_qtl2(hyper)
pr <- result$probs
map <- result$map

https://github.com/dmgatti/DOQTL

scan_qtl2_to_qtl 11

scan_qtl2_to_qtl Convert scan1 results to the scanone format

Description

Convert the results of qtl2::scan1() to the form used by the R/qtl function qtl::scanone().

Usage

scan_qtl2_to_qtl(scan1_output, map)

Arguments

scan1_output Matrix of LOD scores, as calculated by qtl2::scan1().

map Map of markers/pseudomarkers (as a list of vectors).

Value

A data frame with class "scanone", containing chromosome and position columns followed by the
LOD scores in scan1_output.

See Also

scan_qtl2_to_qtl()

Examples

library(qtl2)
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
map <- insert_pseudomarkers(iron$gmap, step=1)
probs <- calc_genoprob(iron, map, error_prob=0.002)
pheno <- iron$pheno
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
Xcovar <- get_x_covar(iron)
out <- scan1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

out_rev <- scan_qtl2_to_qtl(out, map)

12 write2csv

scan_qtl_to_qtl2 Convert R/qtl scanone results to R/qtl2 scan1 format

Description

Convert the results of R/qtl1 qtl::scanone() to the form used by the R/qtl2 qtl2::scan1().

Usage

scan_qtl_to_qtl2(scanone_output)

Arguments

scanone_output Data frame as output by the R/qtl1 function qtl::scanone().

Value

List with two objects: the LOD scores in qtl2::scan1() format, and the map (as a list of marker/pseudomarker
positions).

See Also

scan_qtl_to_qtl2()

Examples

library(qtl)
data(hyper)
hyper <- calc.genoprob(hyper, step=1, error.prob=0.002)
out <- scanone(hyper)
out2 <- scan_qtl_to_qtl2(out)

write2csv Write a data frame to a CSV file

Description

Write a data frame to a CSV file in a special form, with info about the number of rows and columns.

write2csv 13

Usage

write2csv(
df,
filename,
comment = "",
sep = ",",
comment.char = "#",
row.names = NULL,
overwrite = FALSE

)

Arguments

df A data frame (or matrix)

filename File name to write

comment Comment to place on the first line

sep Field separator

comment.char Character to use to initiate the comment lines

row.names If NA or NULL (the default), row names are not included in the output file.
Otherwise, the row names are included as the first column of the output, and this
is taken to be the name for that column.

overwrite If TRUE, overwrite file if it exists. If FALSE (the default) and the file exists,
stop with an error.

Details

If the file already exists, the function will refuse to write over it.

The file will include comments at the top, using # as a comment character, including the number of
rows (not including the header) and the number of columns.

By default, row names are not included. But with the option row.names provided as a character
string, they are added as an initial column, with the value of this argument defining the name for
that column. If a column with that name already exists, the function halts with an error.

Value

None.

Examples

nr <- 10
nc <- 5
x <- data.frame(id=paste0("ind", 1:nr),

matrix(rnorm(nr*nc), ncol=nc))
colnames(x)[1:nc + 1] <- paste0("col", 1:nc)

testfile <- file.path(tempdir(), "tmpfile.csv")
write2csv(x, testfile, "A file created by write2csv")

14 write2csv

Remove the file, to clean up temporary directory
unlink(testfile)

Index

base::cbind(), 2

cbind_smother, 2
count_unique_geno, 3
count_unique_geno(), 6

encode_geno, 3
encode_geno(), 5, 6

find_consensus_geno, 4
find_consensus_geno(), 4
find_unique_geno, 5
find_unique_geno(), 3–5

map_df_to_list, 6
map_df_to_list(), 7
map_list_to_df, 7
map_list_to_df(), 6

parallel::detectCores(), 3–5
parallel::makeCluster(), 3–5
probs_doqtl_to_qtl2, 8
probs_qtl2_to_array, 9
probs_qtl2_to_doqtl, 9
probs_qtl_to_qtl2, 10

qtl2::calc_genoprob(), 8–10
qtl2::scan1(), 11, 12
qtl::calc.genoprob(), 10
qtl::read.cross(), 10
qtl::scanone(), 11, 12

scan_qtl2_to_qtl, 11
scan_qtl2_to_qtl(), 11
scan_qtl_to_qtl2, 12
scan_qtl_to_qtl2(), 12

write2csv, 12

15

	cbind_smother
	count_unique_geno
	encode_geno
	find_consensus_geno
	find_unique_geno
	map_df_to_list
	map_list_to_df
	probs_doqtl_to_qtl2
	probs_qtl2_to_array
	probs_qtl2_to_doqtl
	probs_qtl_to_qtl2
	scan_qtl2_to_qtl
	scan_qtl_to_qtl2
	write2csv
	Index

