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2 qrcm-package

qrcm-package Quantile Regression Coefficients Modeling

Description

This package implements Frumento and Bottai’s (2016, 2017) method for quantile regression coef-
ficient modeling (qrcm), in which quantile regression coefficients are described by (flexible) para-
metric functions of the order of the quantile. This permits modeling the entire conditional quantile
function of a response variable.

Details

Package: qrcm
Type: Package
Version: 2.2
Date: 2020-02-26
License: GPL-2

The function iqr permits specifying the regression model, allowing for censored and truncated
outcomes. Two special functions, slp and plf, are provided to facilitate model building. The
auxiliary functions summary.iqr, predict.iqr, and plot.iqr can be used to extract information
from the fitted model, while test.fit is used to assess the model fit.

Author(s)

Paolo Frumento

Maintainer: Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), pp 74-84, doi: 10.1111/biom.12410.

Frumento, P., and Bottai, M. (2017). Parametric modeling of quantile regression coefficient func-
tions with censored and truncated data. Biometrics, 73(4), pp 1179-1188, doi: 10.1111/biom.12675.

Examples

# use simulated data

n <- 1000
x <- rexp(n)
y <- runif(n, 0, 1 + x)
model <- iqr(y ~ x, formula.p = ~ p + I(p^2))
summary(model)
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summary(model, p = c(0.1,0.2,0.3))
predict(model, type = "beta", p = c(0.1,0.2,0.3))
predict(model, type = "CDF", newdata = data.frame(x = c(1,2,3), y = c(0.5,1,2)))
predict(model, type = "QF", p = c(0.1,0.2,0.3), newdata = data.frame(x = c(1,2,3)))
predict(model, type = "sim", newdata = data.frame(x = c(1,2,3)))
par(mfrow = c(1,2)); plot(model, ask = FALSE)
test.fit(model, R = 30)

iqr Quantile Regression Coefficients Modeling

Description

This function implements Frumento and Bottai’s (2016) method for quantile regression coefficients
modeling (qrcm). Quantile regression coefficients are described by (flexible) parametric functions
of the order of the quantile. From version 2.0, this function can also be used with censored and
truncated data, as described in Frumento and Bottai (2017).

Usage

iqr(formula, formula.p = ~ slp(p,3), weights, data, s, tol = 1e-6, maxit)

Arguments

formula a two-sided formula of the form y ~ x1 + x2 + ...: a symbolic description of the
quantile regression model. The left side of the formula should be Surv(time,event)
if the data are right-censored, and Surv(time,time2,event) if the data are left-
truncated (time < time2, time can be -Inf).

formula.p a one-sided formula of the form ~ b1(p,...) + b2(p,...) + ..., describing
how quantile regression coefficients depend on p, the order of the quantile.

weights an optional vector of weights to be used in the fitting process. The weights will
always be normalized to sum to the sample size. This implies that, for example,
using double weights will not halve the standard errors.

data an optional data frame, list or environment containing the variables in formula.

s an optional 0/1 matrix that permits excluding some model coefficients (see ‘Ex-
amples’).

tol convergence criterion for numerical optimization.

maxit maximum number of iterations.

Details

Quantile regression permits modeling conditional quantiles of a response variabile, given a set of
covariates. A linear model is used to describe the conditional quantile function:

Q(p|x) = β0(p) + β1(p)x1 + β2(p)x2 + . . . .
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The model coefficients β(p) describe the effect of covariates on the p-th quantile of the response
variable. Usually, one or more quantiles are estimated, corresponding to different values of p.

Assume that each coefficient can be expressed as a parametric function of p of the form:

β(p|θ) = θ0 + θ1b1(p) + θ2b2(p) + . . .

where b1(p), b2(p, . . .) are known functions of p. If q is the dimension of x = (1, x1, x2, . . .) and
k is that of b(p) = (1, b1(p), b2(p), . . .), the entire conditional quantile function is described by a
q × k matrix θ of model parameters.

Users are required to specify two formulas: formula describes the regression model, while formula.p
identifies the ’basis’ b(p). By default, formula.p = ~ slp(p,k = 3), a 3rd-degree shifted Legendre
polynomial (see slp). Any user-defined function b(p, . . .) can be used, see ‘Examples’.

Estimation of θ is carried out by minimizing an integrated loss function, corresponding to the inte-
gral, over p, of the loss function of standard quantile regression. This motivates the acronym iqr
(integrated quantile regression).

From version 2.0 of the package, censored and truncated data are also allowed. Data are censored
when, instead of a response variable T , one can only observe Y = min(T,C) and d = I(T ≤ C).
Here, C is a censoring variable that is assumed to be conditionally independent of T . Truncation
occurs if Y can only be observed when it exceeds another random variable Z. For example, in the
prevalent sampling design, subjects with a disease are enrolled; those who died before enrollment
are not observed. If the data are censored or truncated, θ is estimated by solving a system of
estimating equation as described in Frumento and Bottai (2017).

Value

An object of class “iqr”, a list containing the following items:

coefficients a matrix of estimated model parameters describing the fitted quantile function.

converged logical. The convergence status.

n.it the number of iterations.

call the matched call.

obj.function the value of the minimized integrated loss function (NULL if the data are censored
or truncated).

mf the model frame used.

PDF, CDF the fitted values of the conditional probability density function (PDF) and cumu-
lative distribution function (CDF).

covar the estimated covariance matrix.

s the used ‘s’ matrix.

Use summary.iqr, plot.iqr, and predict.iqr for summary information, plotting, and predic-
tions from the fitted model. The function test.fit can be used for goodness-of-fit assessment.
The generic accessor functions coefficients, formula, terms, model.matrix, vcov are avail-
able to extract information from the fitted model.
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Note

By expressing quantile regression coefficients as functions of p, a parametric model for the con-
ditional quantile function is specified. The induced PDF and CDF can be used as diagnostic tools.
Negative values of PDF indicate quantile crossing, i.e., the conditional quantile function is not mono-
tonically increasing. Null values of PDF indicate observations that lie outside the estimated support
of the data, defined by quantiles of order 0 and 1. If null or negative PDF values occur for a rel-
atively large proportion of data, the model is probably misspecified or ill-defined. If the model is
correct, the fitted CDF should approximately follow a Uniform(0,1) distribution. This idea is used to
implement a goodness-of-fit test, see test.fit.

The intercept can be excluded from formula, e.g., iqr(y ~ -1 + x). This, however, implies that
when x = 0, y is always 0. See example 5 in ‘Examples’. The intercept can also be removed from
formula.p. This is recommended if the data are bounded. For example, for strictly positive data,
use iqr(y ~ 1,formula.p = -1 + slp(p,3)) to force the smallest quantile to be zero. See example
6 in ‘Examples’.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), pp 74-84, doi: 10.1111/biom.12410.

Frumento, P., and Bottai, M. (2017). Parametric modeling of quantile regression coefficient func-
tions with censored and truncated data. Biometrics, 73(4), pp 1179-1188, doi: 10.1111/biom.12675.

See Also

summary.iqr, plot.iqr, predict.iqr, for summary, plotting, and prediction, and test.fit for
goodness-of-fit assessment. plf and slp to define b(p) to be a piecewise linear function and a
shifted Legendre polynomial basis, respectively.

Examples

##### Using simulated data in all examples

##### Example 1

n <- 1000
x <- runif(n)
y <- rnorm(n, 1 + x, 1 + x)
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = 1 + qnorm(p)

# fit the true model: b(p) = (1 , qnorm(p))
m1 <- iqr(y ~ x, formula.p = ~ I(qnorm(p)))
# the fitted quantile regression coefficient functions are
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# beta0(p) = m1$coef[1,1] + m1$coef[1,2]*qnorm(p)
# beta1(p) = m1$coef[2,1] + m1$coef[2,2]*qnorm(p)

# a basis b(p) = (1, p), i.e., beta(p) is assumed to be a linear function of p
m2 <- iqr(y ~ x, formula.p = ~ p)

# a 'rich' basis b(p) = (1, p, p^2, log(p), log(1 - p))
m3 <- iqr(y ~ x, formula.p = ~ p + I(p^2) + I(log(p)) + I(log(1 - p)))

# 'slp' creates an orthogonal spline basis using shifted Legendre polynomials
m4 <- iqr(y ~ x, formula.p = ~ slp(p, k = 3)) # note that this is the default

# 'plf' creates the basis of a piecewise linear function
m5 <- iqr(y ~ x, formula.p = ~ plf(p, knots = c(0.1,0.9)))

summary(m1)
summary(m1, p = c(0.25,0.5,0.75))
test.fit(m1)
par(mfrow = c(1,2)); plot(m1, ask = FALSE)
# see the documentation for 'summary.iqr', 'test.fit', and 'plot.iqr'

##### Example 2 ### excluding coefficients

n <- 1000
x <- runif(n)
qy <- function(p,x){(1 + qnorm(p)) + (1 + log(p))*x}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = 1 + qnorm(p)
# beta1(p) = 1 + log(p)

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)
iqr(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)))

# I would like to exclude log(p) from beta0(p), and qnorm(p) from beta1(p)
# I set to 0 the corresponding entries of 's'

s <- matrix(1,2,3); s[1,3] <- s[2,2] <- 0
iqr(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)), s = s)

##### Example 3 ### excluding coefficients when b(p) is singular

n <- 1000
x <- runif(n)
qy <- function(p,x){(1 + log(p) - 2*log(1 - p)) + (1 + log(p/(1 - p)))*x}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = 1 + log(p) - 2*log(1 - p)
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# beta1(p) = 1 + log(p/(1 - p))

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)

iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)) + I(log(p/(1 - p))))
# log(p/(1 - p)) is dropped due to singularity

# I want beta0(p) to be a function of log(p) and log(1 - p),
# and beta1(p) to depend on log(p/(1 - p)) alone

s <- matrix(1,2,4); s[2,2:3] <- 0
iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)) + I(log(p/(1 - p))), s = s)
# log(p/(1 - p)) is not dropped

##### Example 4 ### using slp to test deviations from normality

n <- 1000
x <- runif(n)
y <- rnorm(n, 2 + x)
# the true model is normal, i.e., b(p) = (1, qnorm(p))

summary(iqr(y ~ x, formula.p = ~ I(qnorm(p)) + slp(p,3)))
# if slp(p,3) is not significant, no deviation from normality

##### Example 5 ### formula without intercept

n <- 1000
x <- runif(n)
y <- runif(n, 0,x)

# True quantile function: Q(p | x) = p*x, i.e., beta0(p) = 0, beta1(p) = p
# When x = 0, all quantiles of y are 0, i.e., the distribution is degenerated
# To explicitly model this, remove the intercept from 'formula'

iqr(y ~ -1 + x, formula.p = ~ p)

# the true model does not have intercept in b(p) either:

iqr(y ~ -1 + x, formula.p = ~ -1 + p)

##### Example 6 ### no covariates, strictly positive outcome

n <- 1000
y <- rgamma(n, 3,1)
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# you know that Q(0) = 0
# remove intercept from 'formula.p', and use b(p) such that b(0) = 0

summary(iqr(y ~ 1, formula.p = ~ -1 + slp(p,5))) # shifted Legendre polynomials
summary(iqr(y ~ 1, formula.p = ~ -1 + sin(p*pi/2) + I(qbeta(p,2,4)))) # unusual basis
summary(iqr(y ~ 1, formula.p = ~ -1 + I(sqrt(p))*I(log(1 - p)))) # you can include interactions

##### Example 7 ### revisiting the classical linear model

n <- 1000
x <- runif(n)
y <- 2 + 3*x + rnorm(n,0,1) # beta0 = 2, beta1 = 3

iqr(y ~ x, formula.p = ~ I(qnorm(p)), s = matrix(c(1,1,1,0),2))
# first column of coefficients: (beta0, beta1)
# top-right coefficient: residual standard deviation

##### Example 8 ### censored data

n <- 1000
x <- runif(n,0,5)

u <- runif(n)
beta0 <- -log(1 - u)
beta1 <- 0.2*log(1 - u)
t <- beta0 + beta1*x # time variable
c <- rexp(n,2) # censoring variable
y <- pmin(t,c) # observed events
d <- (t <= c) # 1 = event, 0 = censored

iqr(Surv(y,d) ~ x, formula.p = ~ I(log(1 - p)))

##### Example 8 (cont.) ### censored and truncated data

z <- rexp(n,10) # truncation variable
w <- which(y > z) # only observe z,y,d,x when y > z
z <- z[w]; y <- y[w]; d <- d[w]; x <- x[w]

iqr(Surv(z,y,d) ~ x, formula.p = ~ I(log(1 - p)))

plf Basis of a Piecewise Linear Function
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Description

Generates b1(p), b2(p), . . . such that, for 0 < p < 1,

θ1 ∗ b1(p) + θ2 ∗ b2(p) + . . .

is a piecewise linear function with slopes (θ1, θ2, . . .).

Usage

plf(p, knots)

Arguments

p a numeric vector of values between 0 and 1.

knots a set of internal knots between 0 and 1. It can be NULL for no internal knots.

Details

This function permits computing a piecewise linear function on the unit interval. A different slope
holds between each pair of knots, and the function is continuous at the knots.

Value

A matrix with one row for each element of p, and length(knots) + 1 columns. The knots are
returned as attr(,"knots"). Any linear combination of the basis matrix is a piecewise linear
function where each coefficient represents the slope in the corresponding sub-interval (see ‘Exam-
ples’).

Note

This function is typically used within a call to iqr. A piecewise linear function can be used to
describe how quantile regression coefficients depend on the order of the quantile.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

slp, for shifted Legendre polynomials.

Examples

p <- seq(0,1, 0.1)

a1 <- plf(p, knots = NULL) # returns p

a2 <- plf(p, knots = c(0.2,0.7))
plot(p, 3 + 1*a2[,1] - 1*a2[,2] + 2*a2[,3], type = "l")

# intercept = 3; slopes = (1,-1,2)
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plot.iqr Plot Quantile Regression Coefficients

Description

Plots quantile regression coefficients β(p) as a function of p, based on a fitted model of class “iqr”.

Usage

## S3 method for class 'iqr'
plot(x, conf.int = TRUE, polygon = TRUE, which = NULL, ask = TRUE, ...)

Arguments

x an object of class “iqr”, typically the result of a call to iqr.

conf.int logical. If TRUE, asymptotic 95% confidence intervals are added to the plot.

polygon logical. If TRUE, confidence intervals are represented by shaded areas via polygon.
Otherwise, dashed lines are used.

which an optional numerical vector indicating which coefficient(s) to plot. If which =
NULL, all coefficients are plotted.

ask logical. If which = NULL and ask = TRUE (the default), you will be asked
interactively which coefficients to plot.

... additional graphical parameters, that can include xlim, ylim, xlab, ylab,
col, lwd, cex.lab, cex.axis, axes, frame.plot. See par.

Details

Using iqr, each quantile regression coefficient β(p) is described by a linear combination of known
parametric functions of p. With this command, a plot of β(p) versus p is created. If ask = TRUE, an
additional option permits plotting a Q-Q plot of the fitted cumulative distribution function (CDF),
that should follow a U(0,1) distribution if the model is correctly specified. If the data are censored
or truncated, this is assessed applying the Kaplan-Meier estimator to the fitted CDF values. See also
test.fit for a formal test of uniformity.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr for model fitting; summary.iqr and predict.iqr for model summary and prediction.
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Examples

# using simulated data

n <- 1000
x <- runif(n)
qy <- function(p,x){p^2 + x*log(p)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = p^2
# beta1(p) = log(p)

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)

par(mfrow = c(1,2))
plot(iqr(y ~ x, formula.p = ~ slp(p,3)), ask = FALSE)
# flexible fit with shifted Legendre polynomials

predict.iqr Prediction After Quantile Regression Coefficients Modeling

Description

Predictions from an object of class “iqr”.

Usage

## S3 method for class 'iqr'
predict(object, type = c("beta", "CDF", "QF", "sim"), newdata, p, se = TRUE, ...)

Arguments

object an object of class “iqr”, the result of a call to iqr.

type a character string specifying the type of prediction. See ‘Details’.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the data are used. For type = "CDF", it must include the response
variable. Ignored if type = "beta".

p a numeric vector indicating the order(s) of the quantile to predict. Only used if
type = "beta" or type = "QF".

se logical. If TRUE (the default), standard errors of the prediction will be computed.
Only used if type = "beta" or type = "QF".

... for future methods.

Details

Using iqr, quantile regression coefficients β(p) are modeled as parametric functions of p, the order
of the quantile. This implies that the model parameter is not β(p) itself. The function predict.iqr
permits computing β(p) and other quantities of interest, as detailed below.
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• if type = "beta" (the default), β(p) is returned at the supplied value(s) of p. If p is missing,
a default p = (0.01, ..., 0.99) is used.

• if type = "CDF", the value of the fitted CDF (cumulative distribution function) and PDF
(probability density function) are computed.

• if type = "QF", the fitted values x′β(p), corresponding to the conditional quantile function,
are computed at the supplied values of p.

• if type = "sim", data are simulated from the fitted model. To simulate the data, the fitted
conditional quantile function is computed at randomly generated p following a Uniform(0,1)
distribution.

Value

• if type = "beta" a list with one item for each covariate in the model. Each element of the list
is a data frame with columns (p, beta, se, low, up) reporting β(p), its estimated standard
error, and the corresponding 95% confidence interval. If se = FALSE, the last three columns
are not computed.

• if type = "CDF", a two-columns data frame (CDF,PDF).

• if type = "QF" and se = FALSE, a data frame with one row for each observation, and one
column for each value of p. If se = TRUE, a list of two data frames, fit (predictions) and
se.fit (standard errors).

• if type = "sim", a vector of simulated data.

Note

Prediction may generate quantile crossing if the support of the new covariates values supplied in
newdata is different from that of the observed data.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr, for model fitting; summary.iqr and plot.iqr, for summarizing and plotting iqr objects.

Examples

# using simulated data

n <- 1000
x <- runif(n)
y <- rlogis(n, 1 + x, 1 + x)
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = 1 + log(p/(1 - p))

model <- iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)))
# (fit asymmetric logistic distribution)
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# predict beta(0.25), beta(0.5), beta(0.75)
predict(model, type = "beta", p = c(0.25,0.5, 0.75))

# predict the CDF and the PDF at new values of x and y
predict(model, type = "CDF", newdata = data.frame(x = c(.1,.2,.3), y = c(1,2,3)))

# computes the quantile function at new x, for p = (0.25,0.5,0.75)
predict(model, type = "QF", p = c(0.25,0.5,0.75), newdata = data.frame(x = c(.1,.2,.3)))

# simulate data from the fitted model
ysim <- predict(model, type = "sim") # 'newdata' can be supplied

# if the model is correct, the distribution of y and that of ysim should be similar
qy <- quantile(y, prob = seq(.1,.9,.1))
qsim <- quantile(ysim, prob = seq(.1,.9,.1))
plot(qy, qsim); abline(0,1)

slp Shifted Legendre Polynomials

Description

Computes shifted Legendre polynomials.

Usage

slp(p, k = 3, intercept = FALSE)

Arguments

p the variable for which to compute the polynomials. Must be 0 <= p <= 1.

k the degree of the polynomial.

intercept logical. If TRUE, the polynomials include the constant term.

Details

Shifted Legendre polynomials (SLP) are orthogonal polynomial functions in (0,1) that can be used
to build a spline basis, typically within a call to iqr. The constant term is omitted unless intercept
= TRUE: for example, the first two SLP are (2*p -1,6*p^2 -6*p + 1), but slp(p,k = 2) will only
return (2*p,6*p^2 -6*p).

Value

An object of class “slp”, i.e., a matrix with the same number of rows as p, and with k columns
named slp1,slp2,... containing the SLP of the corresponding orders. The value of k is reported
as attribute.



14 summary.iqr

Note

The estimation algorithm of iqr is optimized for objects of class “slp”, which means that us-
ing formula.p = ~ slp(p,k) instead of formula.p = ~ p + I(p^2) + ... + I(p^k) will result in
a quicker computation, even with k = 1, with equivalent results. The default for iqr is formula.p
= ~ slp(p,k = 3).

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Refaat El Attar (2009), Legendre Polynomials and Functions, CreateSpace, ISBN 978-1-4414-
9012-4.

See Also

plf, for piecewise linear functions in the unit interval.

Examples

p <- seq(0,1,0.1)
slp(p, k = 1) # = 2*p
slp(p, k = 1, intercept = TRUE) # = 2*p - 1 (this is the true SLP of order 1)
slp(p, k = 3) # a linear combination of (p, p^2, p^3), with slp(0,k) = 0

summary.iqr Summary After Quantile Regression Coefficients Modeling

Description

Summary of an object of class “iqr”.

Usage

## S3 method for class 'iqr'
summary(object, p, cov = FALSE, ...)

Arguments

object an object of class “iqr”, the result of a call to iqr.

p an optional vector of quantiles.

cov logical. If TRUE, the covariance matrix of β(p) is reported. Ignored if p is
missing.

... for future methods.
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Details

If p is missing, a summary of the fitted model is reported. This includes the estimated coefficients,
their standard errors, and other summaries (see ‘Value’). If p is supplied, the quantile regression
coefficients of order p are extrapolated and summarized.

Value

If p is supplied, a standard summary of the estimated quantile regression coefficients is returned for
each value of p. If cov = TRUE, the covariance matrix is also reported.

If p is missing (the default), a list with the following items:

converged logical value indicating the convergence status.

n.it the number of iterations.

n the number of observations.

free.par the number of free parameters in the model.

coefficients the matrix of estimated coefficients. Each row corresponds to a covariate, while
each column corresponds to an element of b(p), the set of functions that describe
how quantile regression coefficients vary with the order of the quantile. See
‘Examples’.

se the estimated standard errors.

test.x Wald test for the covariates. Each row of coefficients is tested for nullity.

test.p Wald test for the building blocks of the quantile function. Each column of
coefficients is tested for nullity.

obj.function the minimized loss function (NULL if the data are censored or truncated.

call the matched call.

Note

In version 1.0 of the package, a chi-squared goodness-of-fit test was provided. The test appeared to
be very unreliable and has now been removed. Use test.fit.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr, for model fitting; predict.iqr and plot.iqr, for predicting and plotting objects of class
“iqr”. test.fit for a goodness-of-fit test.

Examples

# using simulated data

set.seed(1234); n <- 1000
x1 <- rexp(n)
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x2 <- runif(n)
qy <- function(p,x){qnorm(p)*(1 + x)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = qnorm(p)

y <- qy(runif(n), x1) # to generate y, plug uniform p in qy(p,x)
# note that x2 does not enter

model <- iqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + p + I(p^2))
# beta(p) is modeled by linear combinations of b(p) = (1, qnorm(p),p,p^2)

summary(model)
# interpretation:

# beta0(p) = model$coef[1,]*b(p)
# beta1(p) = model$coef[2,]*b(p); etc.

# x2 and (p, p^2) are not significant

summary(model, p = c(0.25, 0.75)) # summary of beta(p) at selected quantiles

test.fit Goodness-of-Fit Test

Description

Goodness-of-fit test for a model fitted with iqr. The Kolmogorov-Smirnov statistic and the Cramer-
Von Mises statistic are computed. Their distribution under the null hypothesis is estimated with
Monte Carlo.

Usage

test.fit(object, R = 100, zcmodel = 1, trace = FALSE)

Arguments

object an object of class “iqr”.

R number of Monte Carlo replications.

zcmodel a numeric value indicating how to model the joint distribution of censoring (C)
and truncation (Z). Only used when data are censored and truncated. See ‘De-
tails’.

trace logical. If TRUE, the progress be printed.

Details

This function permits assessing goodness of fit by testing the null hypothesis that the CDF values
follow a U(0, 1) distribution, indicating that the model is correctly specified. Since the CDF values
depend on estimated parameters, the distribution of the test statistic is not known. To evaluate it,
the model is fitted on R simulated datasets generated under the null hypothesis.
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If the data are censored and truncated, object$CDF is as well a censored and truncated outcome,
and its quantiles must be estimated with Kaplan-Meier. The fitted survival curve is then compared
with a U(0, 1).

To run Monte Carlo simulations when data are censored or truncated, the distribution of the censor-
ing and that of the truncation variable must be estimated: the function pchreg from the pch package
is used, with its option splinex = splinex().

The joint distribution of the censoring variable (C) and the truncation variable (Z) can be specified
in two ways:

• If zcmodel = 1 (the default), it is assumed that C = Z+U , where U is a positive variable and
is independent of Z, given covariates. This is the most common situation, and is verified when
censoring occurs at the end of the follow-up. Under this scenario, C and Z are correlated with
P (C > Z) = 1.

• If zcmodel = 2, it is assumed that C and Z are conditionally independent. This situation is
more plausible when all censoring is due to drop-out.

The testing procedure is described in details by Frumento and Bottai (2016, 2017).

Value

a matrix with columns statistic and p.value, reporting the Kolmogorov-Smirnov and Cramer-
Von Mises statistic and the associated p-values evaluated with Monte Carlo.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), pp 74-84, doi: 10.1111/biom.12410.

Frumento, P., and Bottai, M. (2017). Parametric modeling of quantile regression coefficient func-
tions with censored and truncated data. Biometrics, 73(4), pp 1179-1188, doi: 10.1111/biom.12675.

Examples

y <- rnorm(1000)
m1 <- iqr(y ~ 1, formula.p = ~ I(qnorm(p))) # correct
m2 <- iqr(y ~ 1, formula.p = ~ p) # misspecified
test.fit(m1)
test.fit(m2)
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