Package ‘qdapRegex’

April 9, 2017
Type Package
Title Regular Expression Removal, Extraction, and Replacement Tools
Version 0.7.2
Date 2017-04-09
Maintainer Tyler Rinker <tyler.rinker@gmail.com>
Depends R (>=3.1.0)
Imports stringi (>=0.5-5)
Suggests testthat
LazyData TRUE

Description A collection of regular expression tools associated with
the 'qdap' package that may be useful outside of the context of
discourse analysis. Tools include
removal/extraction/replacement of abbreviations, dates, dollar
amounts, email addresses, hash tags, numbers, percentages,
citations, person tags, phone numbers, times, and zip codes.

License GPL-2
URL http://trinker.github.com/qdapRegex/

BugReports http://github.com/trinker/qdapRegex/issues

Collate 'S.R' 'bind.R' 'bind_or.R' 'c.extracted.R' 'case.R' 'cheat.R’
'utils.R' 'rm_default.R' 'escape.R' 'explain.R' 'grab.R’
'group.R' 'group_or.R' 'is.regex.R' 'pastex.R’
'print.extracted.R' 'print.regexr.R' 'qdapRegex-package.R'
m_.R' 'rm_abbreviation.R' Tm_between.R' 'rm_bracket.R'
'rm_caps.R' 'rm_caps_phrase.R' 'rm_citation.R'
'rm_citation_tex.R' 'm_city_state.R' 'rm_city_state_zip.R'
'm_date.R' 'rm_dollar.R' 'rm_email.R' 'rm_emoticon.R'
m_endmark.R' 'rm_hash.R' 'rm_nchar_words.R' 'rm_non_ascii.R'
'rm_non_words.R' rm_number.R' rm_percent.R' 'rm_phone.R'
'rm_postal_code.R' tm_repeated_characters.R'
'rm_repeated_phrases.R' 'rm_repeated_words.R' 'tm_tag.R’
m_time.R' 'rm_title_name.R' 'rm_url.R' 'rm_white.R'
'rm_zip.R' 'validate.R'

http://trinker.github.com/qdapRegex/
http://github.com/trinker/qdapRegex/issues

2 R topics documented:

RoxygenNote 6.0.1
NeedsCompilation no

Author Jason Gray [ctb],
Tyler Rinker [aut, cre]

Repository CRAN
Date/Publication 2017-04-09 21:29:36 UTC

R topics documented:

bind 3
bind_or 4
cextracted L. e e e e e e e e e 5
cheat L e 5
BSCAPE . v v e e e e e e e e e e e e e e e e e e e 6
exXplain. e e 6
grab ..o e e 8
GIOUD .« v o v e 9
GIOUP_OT « « v v v v v e 9
ISTEZEX « o v v o e e e e e e e e e e 10
PASIEX . . . e e e e e 11
printexplain 12
printextracted L. 13
PIrINLIEZEXT . . . o v o ot i e e e e e e e e e e e e e e e e e e e 13
gdapRegex L e 14
regex_cheat e 14
regex_supplement e e e e e e 15
TEEEX_USA © & v v v v e e e e e e e e e e e e e e e e e 17
0 20
rm_abbreviation e e e e e 21
TM_DEIWEEN o o ot e e e e e e e e e e e e 23
rm_bracket L 25
TIN_CAPS « v v v v v e 28
TM_CapS_Phrase o i e e e e e 29
IM_CItation o o e e e e e s 30
IM_CItAtION_tEX v v v o o e e e e e e e e e e e e 34
TM_CILY_StAte o ot ot e e e e e e e e e e 35
TM_CItY_State_ZiP« o v o e e e e e e e e 36
modate e e e e 37
rm_default e 39
rm_dollar 40
rm_email e 41
IM_EMOLICON . . . v v v v v v e e e e e e e e e e e e 43
rm_endmark L L 44
rm_hash e 45
rm_nchar words e 47

IM_NON_ASCIL . .+ v v v o o o e e e e e 48

bind 3
m_non_words e e e e e e 50
IM_NUMDET o o o o e e e e e e e 51
TIN_PEICENL . . . o v v v v e e e et e e e e e e e e e e e e e e e e e 53
rm_phone e 54
rm_postal_code 55
rm_repeated_characters 57
rm_repeated_phrases 58
rm_repeated_words 59
TIN_TAZ o o v v v e e e e e e e e e e e e e e e 61
TM_HME . . . o ot e e e e e e e e e e e s 62
rm_title_ name L L 65
mourl ..o 66
m_White e 68
TI_ZIP « o o o o e e e e e e e e e e e e 72
S e 74
TC . . e 74
validate L e 76

Index 78

bind Add Left/Right Character(s) Boundaries

Description

This convenience function wraps left and right boundaries of each element of a character vector.

The default is to use "\b" for left and right boundaries.

Usage
bind(..., left = "\\b", right = left,
dictionary = getOption("regex.library"))
Arguments
left A single length character vector to use as the left bound.
right A single length character vector to use as the right bound.
dictionary A dictionary of canned regular expressions to search within.
Regular expressions to add grouping parenthesis to a named expression from the
default regular expression dictionary prefixed with single at (@) (e.g., "@rm_hash")
or a regular expression from regex_supplement dictionary prefixed with an at
(@ (e.g., "@time_12_hours").
Value

Returns a character vector.

See Also

paste®

Examples

bind(LETTERS, "[", "1")

More useful default parameters/usage
x <= c("Computer is fun. Not too fun.”, "No it's not, it's dumb.”,
"What should we do?"”, "You liar, it stinks!”, "I am telling the truth!”,
"How can we be certain?”, "There is no way."”, "I distrust you.",
"What are you talking about?”, "Shall we move on? Good then.",
"I'm hungry. Let's eat. You already?")

Fry25 <- C(”the”, HO'F", "and", nau’ "tOI’, "in", Irislr’ nyouu’ "that“, ”it”,
”he”, ”Was”, “for", on”, uareu’ ”as”, ”With”, ”his”, "they",
”I", ”at”, ”be”, "this", ”haVe”, ufromn)

n n

gsub(pastex(list(bind(Fry25))), "[LELIMII", x)

bind_or

bind_or Boundary Wrap (Bind) and ‘or‘ Concatenate Elements

Description

A wrapper for bind and pastex that wraps each sub-expression element with left/right boundaries
(\b by default) and then concatenate/joins bound strings with a regex ‘or‘ ("I'). Equivalent to

pastex(bind(...), sep = "|").
Usage
bind_or(..., group.all = TRUE, left = "\\b", right = left)
Arguments
group.all logical. If TRUE the resulting ‘or‘ concatenated elements will be wrapped with
grouping parenthesis.
left A single length character vector to use as the left bound.
right A single length character vector to use as the right bound.

Regular expressions to paste together or a named expression from the default
regular expression dictionary prefixed with single at (@) (e.g., "@rm_hash") or
a regular expression from regex_supplement dictionary prefixed with an at (@)

(e.g., "@time_12_hours").

Examples

bind_or (LETTERS)
bind_or("them”, "those”, "that”, "these")
bind_or("them”, "those”, "that”, "these", group.all = FALSE)

c.extracted 5

c.extracted Combines a extracted Object

Description

Combines a extracted object

Usage

S3 method for class 'extracted'

c(x, ...)
Arguments

X The extracted object

ignored
cheat A Cheat Sheet of Common Regex Task Chunks

Description

Print a cheat sheet of common regex task chunks. cheat prints a left justified version of regex_cheat.

Usage

cheat(dictionary = qgdapRegex::regex_cheat, print = TRUE)

Arguments

dictionary A dictionary of cheat terms. Default is regex_cheat.

print logical. If TRUE the left justified output is printed to the console.
Value

Prints a cheat sheet of common regex tasks such as lookaheads. Invisibly returns regex_cheat.

See Also

regex_cheat

Examples

cheat()

6 explain

escape Escape Strings From Parsing

Description

Escape literal beginning at (@) strings from qdapRegex parsing.

Usage

escape(pattern)

Arguments

pattern A character string that should not be parsed.

Details

Many qdapRegex functions parse pattern strings beginning with an at character (@) and com-
paring against the default and supplemental (regex_supplement) dictionaries. This means that a
string such as "@before_" will be returned as "\\w+?(?= ((%sl%s)\\b))". If the user wanted to use
a regular expression that was literally "@before_" the escape function classes the character string
and tells the qdapRegex functions not to parse it (i.e., keep it as a literal string).

Value

Returns a character vector of the class "escape" and "character".

Examples

escape("@rm_caps")
x <= "...character vector. Default, \\code{@rm_caps} uses..."

rm_default(x, pattern = "@rm_caps")
rm_default(x, pattern = escape("”@rm_caps"”))

explain Visualize Regular Expressions

Description

Visualize regular expressions using http://www.regexper.com & http://rick.measham.id.
au/paste/explain.

http://www.regexper.com
http://rick.measham.id.au/paste/explain
http://rick.measham.id.au/paste/explain

explain 7

Usage

explain(pattern, open = FALSE, print = TRUE,
dictionary = getOption("regex.library"))

Arguments
pattern A character string containing a regular expression or a character string starting
with "@" that is a regular expression from a qdapRegex dictionary.
open logical. If TRUE the default browser will attempt to open http: //www. regexper.
com page. Setting open = 2 will utilize an unstable visualization via https:
//www.debuggex.com. This approach utilizes a non-api scrape that is subject
to change and not guaranteed to be stable. The regex is set to Python fla-
vor which handles lookbehinds that the Java based http://www. regexper.com
does not. This functionality was developed by Matthew Flickinger (see http:
//stackoverflow.com/a/27574103/1000343 for details). Note that the user
must have httr installed or will be prompted if the package cannot be required.
print logical. Should explain print output to the console?
dictionary A dictionary of canned regular expressions to search within.
Details

Note that http://www.regexper.com is a Java based regular expression viewer. Lookbehind and
negative lookbehinds are not respected.

Value

Prints http://rick.measham.id.au/paste/explain to the console, attempts to open the url to
the visual representation provided by http://www.regexper.com, and invisibly returns a list with
the URLs.

Author(s)

Ananda Mahto, Matthew Flickinger, and Tyler Rinker <tyler.rinker @ gmail.com>.

References

http://stackoverflow.com/a/27489977/1000343
http://www.regexper.com
http://rick.measham.id.au/paste/explain
http://stackoverflow.com/a/27574103/1000343

See Also

http://www.regexper.com
http://rick.measham.id.au/paste/explain

http://www.regexper.com
http://www.regexper.com
https://www.debuggex.com
https://www.debuggex.com
http://www.regexper.com
http://www.matthewflickinger.com
http://stackoverflow.com/a/27574103/1000343
http://stackoverflow.com/a/27574103/1000343
http://www.regexper.com
http://rick.measham.id.au/paste/explain
http://www.regexper.com
http://stackoverflow.com/a/27489977/1000343
http://www.regexper.com
http://rick.measham.id.au/paste/explain
http://stackoverflow.com/a/27574103/1000343
http://www.regexper.com
http://rick.measham.id.au/paste/explain

8 grab

Examples

explain(”"\\s*foo[A-Z]\\d{2,3}")
explain(”"@rm_time")

Not run:

explain(”\\s*foo[A-Z]\\d{2,3}", open = TRUE)
explain(”@rm_time"”, open = TRUE)

End(Not run)

grab Grab Regular Expressions from Dictionaries

Description

convenience function to

Usage

grab(pattern, dictionary = getOption("regex.library"))

Arguments
pattern A character string starting with "@" that is a regular expression from a qdapRegex
dictionary.
dictionary A dictionary of canned regular expressions to search within.
Details

Many R regular expressions contain doubled backslashes that are not used in other regex inter-
preters. Using cat can remove backslash escapes (see Examples) or URLencode if using in a url.

Value

Returns a single string regular expression from one of the qdapRegex dictionaries.

Examples

grab("@rm_white")
Not run:
Throws an error
grab("@foo")

End(Not run)

cat(grab("@pages2"))

Not run:

cat(grab("@pages2"), file="clipboard")

End(Not run)

group 9

group Group Regular Expressions
Description
group - A wrapper for paste(collapse="|") that also searches the default and supplemental

(regex_supplement) dictionaries for regular expressions before pasting them together with a pipe
(]) separator.
Usage

group(..., left = "(", right = ")",
dictionary = getOption("regex.library"))

Arguments
left A single length character vector to use as the left bound.
right A single length character vector to use as the right bound.
dictionary A dictionary of canned regular expressions to search within.
Regular expressions to add grouping parenthesis to a named expression from the
default regular expression dictionary prefixed with single at (@) (e.g., "@rm_hash")
or a regular expression from regex_supplement dictionary prefixed with an at
(@) (e.g., "@time_12_hours").
Value

Returns a single string of regular expressions with grouping parenthesis added.

Examples

group(LETTERS)
group(1)

(grouped <- group("”(the|them)\\b", "@rm_zip"))
pastex(grouped)

group_or Group Wrap and ‘or‘ Concatenate Elements

Description

A wrapper for group and pastex that wraps each sub-expression element with grouping parenthesis

and then concatenate/joins grouped strings with a regex ‘or* ("I"). Equivalent to pastex(group(...), sep = "[|").

10 is.regex

Usage
group_or(..., group.all = TRUE)
Arguments
group.all logical. If TRUE the resulting ‘or‘ concatenated elements will be wrapped with
grouping parenthesis.
Regular expressions to paste together or a named expression from the default
regular expression dictionary prefixed with single at (@) (e.g., "@rm_hash") or
aregular expression from regex_supplement dictionary prefixed with an at (@)
(e.g., "@time_12_hours").
Examples

group_or ("@rm_hash”, "@rm_tag")
group_or("them", "those"”, "that"”, "these")
group_or("them”, "those”, "that"”, "these"”, group.all = FALSE)

is.regex Test Regular Expression Validity

Description
Acts as a logical test of a regular expression’s validity. is.regex uses gsub and tests for errors
to determine a regular expression’s validity. The regular expression must conform to R’s regular
expression rules (see ?regex for details about how R handles regular expressions).

Usage

is.regex(pattern)

Arguments

pattern A regular expression to be tested.

Value

Returns a logical (TRUE is a valid regular expression).

See Also

gsub

pastex 11

Examples
is.regex("I|**x")

is.regex("I|i")

sapply(regex_usa, is.regex)
sapply(regex_supplement, is.regex) ## ‘version‘ is not a valid regex

pastex Paste Regular Expressions
Description
pastex - A wrapper for paste(collapse="|") that also searches the default and supplemental

(regex_supplement) dictionaries for regular expressions before pasting them together with a pipe
(]) separator.

%|% - A binary operator version of pastex that joins two character strings with a regex or ("l").
Equivalent to pastex(x, y, sep="]").

%+% - A binary operator version of pastex that joins two character strings with no space. Equivalent
to pastex(x, y, sep="").

Usage
pastex(..., sep = "|", dictionary = getOption("regex.library"”))
X %%y
X %t%h Yy
Arguments
sep The separator to use between the expressions when they are collapsed.
dictionary A dictionary of canned regular expressions to search within.
X, Y Two regular expressions to paste together.
Regular expressions to paste together or a named expression from the default
regular expression dictionary prefixed with single at (@) (e.g., "@rm_hash") or
a regular expression from regex_supplement dictionary prefixed with an at (@)
(e.g., "@time_12_hours").
Value

Returns a single string of regular expressions pasted together with pipe(s) (|).

Note

Note that while pastex is designed for pasting purposes it can also be used to call a single regex
from the default regional dictionary or the supplemental dictionary (regex_supplement) (see Ex-
amples).

12 print.explain

See Also

paste

Examples

X <= c("There is $5.50 for me.", "that's 45.6% of the pizza”,
"14% is $26 or $25.99", "It's 12:30 pm to 4:00 am")

pastex("@rm_percent”, "@rm_dollar")
pastex("@rm_percent”, "@time_12_hours")

rm_dollar(x, extract=TRUE, pattern=pastex(”@rm_percent”, "@rm_dollar"))
rm_dollar(x, extract=TRUE, pattern=pastex(”@rm_dollar”, "@rm_percent”, "@time_12_hours"))

retrieve regexes from dictionary
pastex("@rm_email”)
pastex("@rm_url3")
pastex("@version")

pipe operator (%|%)
IIXII %l% llyll
"@rm_url” %|% "@rm_twitter_url”

pipe operator (%p%)
XY %% Myt
"@rm_time"” %+% "\\s[APIM"

Remove Twitter Short URL
x <= c("download file from http://example.com”,
"this is the link to my website http://example.com”,
"go to http://example.com from more info.",
"Another url ftp://www.example.com”,
"And https://www.example.net”,
"twitter type: t.co/N1kq@F26tG",
"still another one https://t.co/N1kq@F26tG :-)")

rm_twitter_url(x)
rm_twitter_url(x, extract=TRUE)

Combine removing Twitter URLs and standard URLs
rm_twitter_n_url <- rm_(pattern="@rm_twitter_url” %|% "@rm_url")
rm_twitter_n_url(x)

rm_twitter_n_url(x, extract=TRUE)

print.explain Prints a explain object

Description

Prints a explain object

print.extracted 13
Usage

S3 method for class 'explain'

print(x, ...)
Arguments

X The explain object

ignored
print.extracted Prints a extracted Object

Description

Prints a extracted object

Usage

S3 method for class 'extracted'

print(x, ...)
Arguments

X The extracted object.

Ignored.
print.regexr Prints a regexr Object

Description

Prints a regexr object

Usage
S3 method for class 'regexr'
print(x, ...)

Arguments
X The regexr object.

Ignored.

14 regex_cheat

gdapRegex qdapRegex: Regular Expression Removal, Extraction, & Replacement
Tools for the qdap Package

Description

qdapRegex is a collection of regular expression tools associated with the qdap package that may
be useful outside of the context of discourse analysis. Tools include removal/extraction/replacement
of abbreviations, dates, dollar amounts, email addresses, hash tags, numbers, percentages, citations,
person tags, phone numbers, times, and zip codes.

Details

The qdapRegex package does not aim to compete with string manipulation packages such as
stringr or stringi but is meant to provide access to canned, common regular expression patterns
that can be used within qdapRegex, with R’s own regular expression functions, or add on string
manipulation packages such as stringr and stringi.

regex_cheat A dataset containing the regex chunk name, the regex string, and a
description of what the chunk does.

Description
A dataset containing the regex chunk name, the regex string, and a description of what the chunk
does.

Usage

data(regex_cheat)

Format

A data frame with 6 rows and 3 variables

Details

* Name. The name of the regex chunk.
* Regex. The regex chunk.

* What it Does. Description of what the regex chunk does.

References

http://www.rexegg.com

https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
http://www.rexegg.com

regex_supplement 15

regex_supplement Supplemental Canned Regular Expressions

Description

A dataset containing a list of supplemental, canned regular expressions. The regular expressions
in this data set are considered useful but have not been included in a formal function (of the type
rm_XXX). Users can utilize the rm_ function to generate functions that can sub/replace/extract as
desired.

Usage

data(regex_supplement)

Format

A list with 24 elements

Details
The following canned regular expressions are included:

after_a single word after the word "a"
after_the single word after the word "the"

after_ find single word after ? word (? = user defined); note contains "%s" that is replaced by
sprintf and is not a valid regex on its own (user supplies (1) n before, (2) the point, & (3) n
after)

around_ find n words (not including punctuation) before or after ? word (? = user defined); note
contains "%s" that is replaced by sprintf and is not a valid regex on its own (user supplies
(1) n before, (2) the point, & (3) n after)

around2_ find n words (plus punctuation) before or after ? word (? = user defined); note contains
"%s" that is replaced by sprintf and is not a valid regex on its own

before_ find sing word before ? word (? = user defined); note contains "%s" that is replaced by
sprintf and is not a valid regex on its own

except_first find all occurrences of a substring except the first; regex pattern retrieved from Stack-
Overflow’s akrun: http://stackoverflow.com/a/31458261/1000343

hexadecimal substring beginning with hash (#) followed by either 3 or 6 select characters (a-f,
A-F, and 0-9)
ip_address substring of four chunks of 1-3 consecutive digits separated with dots (.)

last_occurrence last occurrence of a delimiter; note contains "%s" that is replaced by sprintf and
is not a valid regex on its own (user supplies the delimiter)

pages substring with "pp." or "p.", optionally followed by a space, followed by 1 or more digits,
optionally followed by a dash, optionally followed by 1 or more digits, optionally followed by
a semicolon, optionally followed by a space, optionally followed by 1 or more digits; intended
for extraction/removal purposes

http://stackoverflow.com/users/3732271/akrun
http://stackoverflow.com/users/3732271/akrun
http://stackoverflow.com/a/31458261/1000343

16 regex_supplement

pages2 substring 1 or more digits, optionally followed by a dash, optionally followed by 1 or more
digits, optionally followed by a semicolon, optionally followed by a space, optionally followed
by 1 or more digits; intended for validation purposes

punctuation punctuation characters ([:punct:]) with the ability to negate; note contains "%s"
that is replaced by sprintf and is not a valid regex on its own
run_split a regex that is useful for splitting strings in the characters runs (e.g., "wwxyyyzz" be-

comes "ww", "x", "yyy", "zz"); regex pattern retrieved from Robert Redd: http://stackoverflow.
com/a/29383435/1000343

split_keep_delim regex string that splits on a delimiter and retains the delimiter

thousands_separator chunks digits > 4 into groups of 3 from right to left allowing for easy in-
sertion of thousands separator; regex pattern retrieved from StackOverflow’s stema: http:
//stackoverflow.com/a/10612685/1000343

time_12_hours substring of valid hours (1-12) followed by a colon (:) followed by valid minutes
(0-60), followed by an optional space and the character chunk am or pm

version substring starting with "v" or "version" optionally followed by a space and then period
separated digits for <major>.<minor>.<release>.<build>; the build sequence is optional and
the "version"/"v" IS NOT contained in the substring

version2 substring starting with "v" or "version" optionally followed by a space and then period
separated digits for <major>.<minor>.<release>.<build>; the build sequence is optional and
the "version"/"v" IS contained in the substring

white_after_comma substring of white space after a comma

word_boundary A true word boundary that only includes alphabetic characters; based on www.
rexegg.com’s suggestion taken from discussion of true word boundaries; note contains "%s"
that is replaced by sprintf and is not a valid regex on its own

word_boundary_left A true left word boundary that only includes alphabetic characters; based on
www . rexegg . com’s suggestion taken from discussion of true word boundaries

word_boundary_right A true right word boundary that only includes alphabetic characters; based
on www. rexegg. com’s suggestion taken from discussion of true word boundaries

youtube_id substring of the video id from a YouTube video; taken from Jacob Overgaard’s sub-
mission found https://regex101.com/r/kU7bP8/1

Regexes from this data set can be added to the pattern argument of any rm_XXX function via an at
sign (@) followed by a regex name from this data set (e.g., pattern = "@after_the") provided
the regular expression does not contain non-regex such as sprintf character string %s.

Use qdapRegex: : :examine_regex(regex_supplement) to interactively explore the regular ex-
pressions in regex_usa. This will provide a browser + console based break down of each regex in
the dictionary.

Warning

Note that regexes containing %s are replaced by sprintf and are not a valid regex on their own.
The S is useful for adding these missing %s parameters.

http://stackoverflow.com/users/2994949/rawr
http://stackoverflow.com/a/29383435/1000343
http://stackoverflow.com/a/29383435/1000343
http://stackoverflow.com/
http://stackoverflow.com/a/10612685/1000343
http://stackoverflow.com/a/10612685/1000343
www.rexegg.com
www.rexegg.com
http://www.rexegg.com/regex-boundaries.html#real-word-boundary
www.rexegg.com
http://www.rexegg.com/regex-boundaries.html#real-word-boundary
www.rexegg.com
http://www.rexegg.com/regex-boundaries.html#real-word-boundary
https://www.youtube.com

regex_usa 17

regex_usa Canned Regular Expressions (United States of America)

Description

A dataset containing a list U.S. specific, canned regular expressions for use in various functions
within the qdapRegex package.

Usage

data(regex_usa)

Format

A list with 54 elements

Details
The following canned regular expressions are included:
rm_abbreviation abbreviations containing single lower case or capital letter followed by a period
and then an optional space (this must be repeated 2 or more times)

rm_between Remove characters between a left and right boundary including the boundaries; note
contains "%s" that is replaced by sprintf and is not a valid regex on its own

rm_between2 Remove characters between a left and right boundary NOT including the bound-
aries; note contains "%s" that is replaced by sprintf and is not a valid regex on its own

rm_caps words containing 2 or more consecutive upper case letters and no lower case

rm_caps_phrase phrases of 1 word or more containing 1 or more consecutive upper case letters
and no lower case; if phrase is one word long then phrase must be 2 or more consecutive
capital letters

rm_citation substring that looks for in-text and parenthetical APAG6 style citations (attempts to
exclude references)

rm_citation2 substring that looks for in-text APA6 style citations (attempts to exclude references)

rm_citation3 substring that looks for parenthetical APA6 style citations (attempts to exclude ref-
erences)

rm_city_state substring with city (single lower case word or multiple consecutive capitalized
words before a comma and state) & state (2 consecutive capital letters)

rm_city_state_zip substring with city (single lower case word or multiple consecutive capitalized
words before a comma and state) & state (2 consecutive capital letters) & zip code (exactly 5
or 5+4 consecutive digits)

rm_date dates in the form of 2 digit month, 2 digit day, and 2 or 4 digit year. Separator between
month, day, and year may be dot (.), slash (/), or dash (-)

rm_date2 dates in the form of 3-9 letters followed by one or more spaces, 2 digits, a commay,),
one or more spaces, and 4 digits

18

regex_usa

rm_date3 dates in the form of XXXX-XX-XX; hyphen separated string of 4 digit year, 2 digit
month, and 2 digit day

rm_date4 dates in the form of both rm_date, rm_date2, and rm_date3

rm_dollar substring with dollar sign ($) followed by (1) just dollars (no decimal), (2) dollars and
cents (whole number and decimal), or (3) just cents (decimal value); dollars may contain
commas

rm_email substring with (1) alphanumeric characters or dash (-), plus (+), or underscore (_) (This
may be repeated) (2) followed by at (@), followed by the same regex sequence as before the
at (@), and ending with dot (.) and 2-14 digits

rm_emoticon common emoticons (logic is complicated to explain in words) using ">?[:;=8XB]{1}[-
~+0M?[N")(> DO>{pP3/]+I</?3IXD+ID:<Ix[-~+0"] ?7[\")(> DO>{pP3/]+" regex pattern;
general pattern is optional hat character, followed by eyes character, followed by optional
nose character, and ending with a mouth character

rm_endmark substring of the last endmark group in a string; endmarks include (! ? . * OR |)
rm_endmark3 substring of the last endmark group in a string; endmarks include (! ? OR .)
rm_endmark3 substring of the last endmark group in a string; endmarks include (! 7. *1; OR :)
rm_hash substring that begins with a hash (#) followed by a word

rm_nchar_words substring of letters (that may contain apostrophes) n letters long (apostrophe not
counted in length); note contains "%s" that is replaced by sprintf and is not a valid regex on
its own

rm_nchar_words2 substring of letters (that may contain apostrophes) n letters long (apostrophe
counted in length); note contains "%s" that is replaced by sprintf and is not a valid regex on
its own

rm_non_ascii substring of 2 digits or letters a-f inside of a left and right angle brace in the form of
n <a4> n

rm_non_words substring of any character that isn’t a letter, apostrophe, or single space

rm_number substring that may begin with dash (-) for negatives, and is (1) just whole number (no
decimal), (2) whole number and decimal, or (3) just decimal value; regex pattern provided by
Jason Gray

rm_percent substring beginning with (1) just whole number (no decimal), (2) whole number and
decimal, or (3) just decimal value and followed by a percent sign (%)

rm_phone phone numbers in the form of optional country code, valid 3 digit prefix, and 7 digits
(may contain hyphens and parenthesis); logic is complex to explain (see http: //stackoverflow.
com/a/21008254/1000343 for more)

rm_postal_code U.S. state abbreviations (and District of Columbia) that is constrained to just
possible U.S. state names, not just two consecutive capital letters; taken from Mike Hamilton’s
submission found http://regexlib.com/REDetails.aspx?regexp_id=2177

rm_repeated_characters substring with a repetition of repeated characters within a word; regex
pattern retrieved from StackOverflow’s, vks: http://stackoverflow.com/a/29438461/1000343

rm_repeated_phrases substring with a phrase (a sequence of 1 or more words) that is repeated
2 or more times (case is ignored; separating periods and commas are ignored); regex pat-
tern retrieved from StackOverflow’s, BrodieG: http://stackoverflow.com/a/28786617/
1000343

http://stackoverflow.com/a/21008254/1000343
http://stackoverflow.com/a/21008254/1000343
http://regexlib.com/REDetails.aspx?regexp_id=2177
http://stackoverflow.com
http://stackoverflow.com/users/3679490/vks
http://stackoverflow.com/a/29438461/1000343
http://stackoverflow.com
http://stackoverflow.com/users/2725969/brodieg
http://stackoverflow.com/a/28786617/1000343
http://stackoverflow.com/a/28786617/1000343

regex_usa 19

rm_repeated_words substring with a word (marked with a boundary) that is repeat 2 or more
times (case is ignored)

rm_tag substring that begins with an at (@) followed by a word

rm_tag2 Twitter substring that begins with an at (@) followed by a word composed of alpha-
numeric characters and underscores, no longer than 15 characters

rm_title_name substring beginning with title (Mrs., Mr., Ms., Dr.) that is case independent or full
title (Miss, Mizz, mizz) followed by a single lower case word or multiple capitalized words

rm_time substring that (1) must begin with 0-2 digits, (2) must be followed by a single colon (:),
(3) optionally may be followed by either a colon (:) or a dot (.), (4) optionally may be followed
by 1-infinite digits (if previous condition is true)

rm_time2 substring that is identical to rm_time with the additional search for Ante Meridiem/Post
Meridiem abbreviations (e.g., AM, p.m., etc.)

rm_transcript_time substring that is specific to transcription time stamps in the form of HH:MM:SS.0S
where OS is milliseconds. HH: and .OS are optional. The SS.OS period divide may also be
a comma or additional colon. The HH:SS divid may also be a period. String may be affixed
with pound sign (#).

rm_twitter_url Twitter short link/url; substring optionally beginning with http, followed by t.co
ending on a space or end of string (whichever comes first)

rm_url substring beginning with http, www., or ftp and ending on a space or end of string (whichever
comes first); note that this regex is simple and may not cover all valid URLs or may include
invalid URLs

rm_url2 substring beginning with h#tp, www., or ftp and more constrained than rm_url; based on
@imme_emosol’s response from https://mathiasbynens.be/demo/url-regex

rm_url3 substring beginning with Attp or ftp and more constrained than rm_url & rm_url2 though
light-weight, making it ideal for validation purposes; taken from @imme_emosol’s response
found https://mathiasbynens.be/demo/url-regex

rm_white substring of white space(s); this regular expression combines rm_white_bracket, rm_white_colon,
rm_white_comma, rm_white_endmark, rm_white_lead, rm_white_trail, and rm_white_multiple

rm_white_bracket substring of white space(s) following left brackets ("{", "(", "[") or preceding
right brackets (ll}ll’ VV)H’ ll]ll)

rm_white_colon substring of white space(s) preceding colon(s)/semicolon(s)
rm_white_comma substring of white space(s) preceding a comma

rm_white_endmark substring of white space(s) preceding a single occurrence/combination of pe-
riod(s), question mark(s), and exclamation point(s)

rm_white_lead substring of leading white space(s)
rm_white_lead_trail substring of leading/trailing white space(s)
rm_white_multiple substring of multiple, consecutive white spaces

rm_white_punctuation substring of white space(s) preceding a comma or a single occurrence/combination
of colon(s), semicolon(s), period(s), question mark(s), and exclamation point(s)

rm_white_trail substring of trailing white space(s)

rm_zip substring of 5 digits optionally followed by a dash and 4 more digits

https://twitter.com/
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex

20 rm

Extra

Use qdapRegex: : :examine_regex() to interactively explore the regular expressions in regex_usa.
This will provide a browser + console based break down of each regex in the dictionary.

rm_ Remove/Replace/Extract Function Generator

Description

Remove/replace/extract substrings from a string. A function generator used to make regex func-
tions that operate typical of other qdapRegex rm_XXX functions. Use rm_ for removal and ex_ for

extraction.
Usage
rm_(...)
ex_(...)
Arguments
Arguments passed to rm_default. Generally, pattern and extract are the
most useful parameters to change. Arguments that can be set include:
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean logical. If TRUE extra white spaces and escaped character will be re-
moved.
pattern A character string containing a regular expression (or character string
for fixed = TRUE) to be matched in the given character vector.
replacement Replacement for matched pattern.
extract logical. If TRUE strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern
begins with "@rm_".
. Other arguments passed to gsub.
Value

Returns a function that operates typical of other qdapRegex rm_XXX functions but with user defined
defaults.

See Also

rm_default

rm_abbreviation 21

Examples

rm_digit <- rm_(pattern="[0-91")
rm_digit(” I 12 1i34ke ice56cream78. ")

rm_lead <- rm_(pattern=""\\s+", trim = FALSE, clean = FALSE)
rm_lead("” I 12 1i34ke ice56cream78. ")

rm_all_except_letters <- rm_(pattern="[* a-zA-Z]")
rm_all_except_letters(” I 12 1li34ke ice56cream78. ")

extract_consec_num <- rm_(pattern="[0-9]+", extract = TRUE)
extract_consec_num(” I 12 li34ke iceb56cream78. ")

Using the supplemental dictionary dataset:
x <= "A man lives there! The dog likes it. I want the map. I want an apple.”

extract_word_after_the <- rm_(extract=TRUE, pattern="@after_the")
extract_word_after_a <- rm_(extract=TRUE, pattern="@after_a")
extract_word_after_the(x)

extract_word_after_a(x)

f <= rm_(pattern="@time_12_hours")
f("I will go at 12:35 pm")

x <= ¢(
"test@aol.fg.com”,
"test@hotmail.com”,
"test@xyzrr.lk.edu",
"test@abc.xx.zz.vv.net"”

)

file_ext2 <- rm_(pattern="(?<=\\.)[a-z]1*$", extract=TRUE)
tools::file_ext(x)
file_ext2(x)

rm_abbreviation Remove/Replace/Extract Abbreviations

Description

Remove/replace/extract abbreviations from a string containing lower case or capital letters followed
by a period and then an optional space (this must be repeated 2 or more times).

Usage

rm_abbreviation(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_abbreviation”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

22 rm_abbreviation

ex_abbreviation(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_abbreviation”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_abbreviation uses
the rm_abbreviation regex from the regular expression dictionary from the
dictionary argument.

replacement Replacement for matched pattern.

extract logical. If TRUE the abbreviations are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with abbreviations removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_between, rm_bracket, rm_caps_phrase, rm_caps, rm_citation_tex,
rm_citation,rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c("I want $2.33 at 2:30 p.m. to go to A.n.p.",
"She will send it A.S.A.P. (e.g. as soon as you can) said I.",
"Hello world."”, "In the U. S. A.")

rm_abbreviation(x)

ex_abbreviation(x)

rm_between 23

rm_between Remove/Replace/Extract Strings Between 2 Markers

Description

Remove/replace/extract strings bounded between a left and right marker.

Usage

rm_between(text.var, left, right, fixed = TRUE, trim = TRUE, clean = TRUE,
replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

rm_between_multiple(text.var, left, right, fixed = TRUE, trim = TRUE,
clean = TRUE, replacement = "", extract = FALSE,
include.markers = FALSE, merge = TRUE)

ex_between(text.var, left, right, fixed = TRUE, trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

ex_between_multiple(text.var, left, right, fixed = TRUE, trim = TRUE,
clean = TRUE, replacement = "", extract = TRUE,
include.markers = FALSE, merge = TRUE)

Arguments

text.var The text variable.

left A vector of character or numeric symbols as the left edge to extract.

right A vector of character or numeric symbols as the right edge to extract.

fixed logical. If TRUE regular expression special characters (c(".", "|", "(", ")", "C", "1", "{",
will be treated as typical characters. If the user wants to pass a regular expres-
sion with special characters then fixed = FALSE should be used.

trim logical. If TRUE removes leading and trailing white spaces.

clean trim logical. If TRUE extra white spaces and escaped character will be removed.

replacement Replacement for matched pattern.

extract logical. If TRUE the strings are extracted into a list of vectors.

include.markers

logical. If TRUE and extract = TRUE returns the markers (left/right) and the
text between.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

merge logical. If TRUE the results of each bracket type will be merged by string. FALSE
returns a named list of lists of vectors of markered text per marker type.

nyn

’

[l

24 rm_between

Value

Returns a character string with markers removed. If rm_between returns merged strings and is
significantly faster. If rm_between_multiple the strings are optionally merged by left/right
symbols. The latter approach is more flexible and names extracted strings by symbol boundaries,
however, it is slower than rm_between.

See Also

gsub, rm_bracket, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_bracket, rm_caps_phrase, rm_caps, rm_citation_tex,
rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= "I like [bots] (not)."

rm_between(x, "(", ")")
ex_between(x, "(", ")"
rm_between(x, c("(", "["), <", "1")
eX_betWeen(X’ C(“ II, ll[lr)’ C(”)”, VI]H))

rm_between(x, c("(", "["), c(")", "1"), include.markers=FALSE)
ex_between(x, c("(", "["), c(")", "1"), include.markers=TRUE)

multiple (naming and ability to keep separate bracket types but slower)
x <= c("Where is the /big dog#?",
"I think he's @arunning@b with /little cat#.")

rm_between_multiple(x, "@a", "@b")
ex_between_multiple(x, "@a", "@b")
rm_between_multiple(x, c("/", "@a"), c("#", "@"))
ex_between_multiple(x, c("/", "@a"), c("#", "@b"))

x2 <= c("Where is the L1big doglL2?",

"I think he's 98running99 with L1little catL2.")
rm_between_multiple(x2, c("L1", 98), c("L2", 99))
ex_between_multiple(x2, c("L1", 98), c("L2", 99))

state <- c("Computer is fun. Not too fun.”, "No it's not, it's dumb.”,
"What should we do?”, "You liar, it stinks!”, "I am telling the truth!”,
"How can we be certain?”, "There is no way.", "I distrust you.",
"What are you talking about?”, "Shall we move on? Good then.",

"I'm hungry. Let's eat. You already?")
rm_between_multiple(state, c("is", "we"), c("too", "on"))

Use Grouping
s <- "something before stuff $some text$ in between 1% and after”

rm_bracket

rm_between(s, "$", "$", replacement="\\2<E>")

Using regular expressions as boundaries (fixed =FALSE)
x <= ¢(

"There are 2.3 million species in the world”,

"There are 2.3 billion species in the world”

)

ex_between(x, left='There', right = '[mbJillion', fixed = FALSE, include=TRUE)

25

rm_bracket Remove/Replace/Extract Brackets

Description

Remove/replace/extract bracketed strings.

Usage
rm_bracket(text.var, pattern = "all", trim = TRUE, clean = TRUE,
replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)
rm_round(text.var, pattern = "(", trim = TRUE, clean = TRUE,
replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

rm_square(text.var, pattern = "[", trim = TRUE, clean = TRUE,

replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

rm_curly(text.var, pattern = "{", trim = TRUE, clean = TRUE,
replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

rm_angle(text.var, pattern = "<", trim = TRUE, clean = TRUE,
replacement = "", extract = FALSE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)

rm_bracket_multiple(text.var, trim = TRUE, clean = TRUE, pattern = "all”,
replacement = "", extract = FALSE, include.markers = FALSE,
merge = TRUE)

ex_bracket(text.var, pattern = "all"”, trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,

FALSE, TRUE), dictionary = getOption("regex.library”), ...)

ex_bracket_multiple(text.var, trim = TRUE, clean = TRUE, pattern = "all",

26 rm_bracket
replacement = "", extract = TRUE, include.markers = FALSE,
merge = TRUE)
ex_angle(text.var, pattern = "<", trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)
ex_round(text.var, pattern = "(", trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)
ex_square(text.var, pattern = "[", trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)
ex_curly(text.var, pattern = "{", trim = TRUE, clean = TRUE,
replacement = "", extract = TRUE, include.markers = ifelse(extract,
FALSE, TRUE), dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
pattern The type of bracket (and encased text) to remove. This is one or more of the
Stril’lgS "Curly“/"\{”’ "Square“/”[”’ Ilr,oundﬁl/ll(ll’ Ilanglell/”<ll and llallll.
These strings correspond to: {, [, (, < or all four types.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
replacement Replacement for matched pattern.
extract logical. If TRUE the bracketed text is extracted into a list of vectors.
include.markers
logical. If TRUE and extract = TRUE returns the markers (left/right) and the
text between.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
merge logical. If TRUE the results of each bracket type will be merged by string. FALSE
returns a named list of lists of vectors of bracketed text per bracket type.
Value
rm_bracket - returns a character string with multiple brackets removed. If extract = TRUE the
results are optionally merged and named by bracket type. This is more flexible than rm_bracket
but slower.

rm_round - returns a character string with round brackets removed.

rm_square - returns a character string with square brackets removed.

rm_bracket 27

rm_curly - returns a character string with curly brackets removed.
rm_angle - returns a character string with angle brackets removed.

rm_bracket_multiple - returns a character string with multiple brackets removed. If extract = TRUE
the results are optionally merged and named by bracket type. This is more flexible than rm_bracket
but slower.

Author(s)

Martin Morgan and Tyler Rinker <tyler.rinker @ gmail.com>.

References

http://stackoverflow.com/q/8621066/1000343

See Also

gsub, rm_between, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_caps_phrase, rm_caps, rm_citation_tex,
rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

examp <- structure(list(person = structure(c(1L, 2L, 1L, 3L),
.Label = c("bob", "greg", "sue"), class = "factor"), text =
c("I love chicken [unintelligible]!",
"Me too! (laughter) It's so good.[interrupting]”,

"Yep it's awesome {reading}."”, "Agreed. {is so much fun}")), .Names =
c("person”, "text"), row.names = c(NA, -4L), class = "data.frame")
examp
rm_bracket(examp$text, pattern = "square”)
rm_bracket (examp$text, pattern = "curly")
rm_bracket (examp$text, pattern = c("”square”, "round"))

rm_bracket (examp$text)

ex_bracket(examp$text, pattern = "square")

ex_bracket(examp$text, pattern = "curly”)

ex_bracket(examp$text, pattern = c("square”, "round"))

ex_bracket (examp$text, pattern = c("square”, "round"), merge = FALSE)

ex_bracket (examp$text)
ex_bracket (examp$tex, include.markers=TRUE)

Not run:

library(qdap)

ex_bracket(examp$tex, pattern="curly") %>%
unlist() %>%
na.omit() %>%
paste2()

http://stackoverflow.com/q/8621066/1000343

28 rm_caps

End(Not run)

x <= "I like [bots] (not). And <likely> many do not {he he}"
rm_round(x)

ex_round(x)

ex_round(x, include.marker = TRUE)

rm_square(x)
ex_square(x)

rm_curly(x)
ex_curly(x)

rm_angle(x)
ex_angle(x)

lapply(ex_between('She said, "I am!"” and he responded..."”Am what?".',

left=""", right='""), "[", c(TRUE, FALSE))
rm_caps Remove/Replace/Extract All Caps
Description

Remove/replace/extract ’all caps’ words containing 2 or more consecutive upper case letters from a

string.
Usage
rm_caps(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_caps”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_caps(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_caps”,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_caps uses the rm_caps
regex from the regular expression dictionary from the dictionary argument.

replacement Replacement for matched pattern.

rm_caps_phrase 29

extract logical. If TRUE the all caps strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with "all caps" removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_citation_tex,
rm_citation,rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

X <= c("UGGG! When I use caps I am YELLING!")

rm_caps(x)
rm_caps(x, replacement="\\L\\1")
ex_caps(x)
rm_caps_phrase Remove/Replace/Extract All Caps Phrases
Description

Remove/replace/extract ’all caps’ phrases containing 1 or more consecutive upper case letters from
a string. If one word phrase the word must be 3+ letters long.

Usage
rm_caps_phrase(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_caps_phrase”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_caps_phrase(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_caps_phrase”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

30 rm_citation

Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_caps_phrae uses
the rm_caps_phrase regex from the regular expression dictionary from the
dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the all caps strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with "all caps phrases" removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps, rm_citation_tex,
rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

X <= c("UGGG! When I use caps I am YELLING!",
"Or it may mean this is VERY IMPORTANT!",
"or trying to make a LITTLE SEEM like IT ISN'T LITTLE"
)
rm_caps_phrase(x)
ex_caps_phrase(x)

rm_citation Remove/Replace/Extract Citations

Description

Remove/replace/extract APAG style citations from a string.

Counts of normalized citations ("et al." to original author converted to author + year standarization).

rm_citation 31

Usage
rm_citation(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_citation”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_citation(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_citation”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
as_count(x, ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector (see Details for additional informa-
tion). Default, @m_citation uses the rm_citation regex from the regular
expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the dates are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Ignored.
X The output from ex_citation.
Details

The default regular expression used by rm_citation finds in-text and parenthetical citations. This
behavior can be altered by using a secondary regular expression from the regex_usa data (or other
dictionary) via (pattern = "@rm_citation2” or pattern = "@rm_citation3”). See Examples
for example usage.

Value

Returns a character string with citations removed.

Returns a data. frame of Authors, Years, and n (counts).

Note

This function is experimental.

32 rm_citation

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_city_state_zip,rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

All Citations
x <- c("Hello World (V. Raptor, 1986) bye",
"Narcissism is not dead (Rinker, 2014)",
"The R Core Team (2014) has many members.",
paste("Bunn (2005) said, \"As for elegance, R is refined, tasteful, and”,
"beautiful. When I grow up, I want to marry R.\""),
"It is wrong to blame ANY tool for our own shortcomings (Baer, 2005).",
"Wickham's (in press) Tidy Data should be out soon.”,
"Rinker's (n.d.) dissertation not so much.”,
"I always consult xkcd comics for guidance (Foo, 2012; Bar, 2014).",
"Uwe Ligges (2007) says, \"RAM is cheap and thinking hurts\""
)

rm_citation(x)

ex_citation(x)

as_count(ex_citation(x))

rm_citation(x, replacement="[CITATION HERE]")

Not run:
gdapTools: :vect2df (sort(table(unlist(rm_citation(x, extract=TRUE)))),
"citation”, "count")

End(Not run)

In-Text
ex_citation(x, pattern="@rm_citation2")

Parenthetical
ex_citation(x, pattern="@rm_citation3")

Not run:

Mining Citation

if (!require(”pacman”)) install.packages("pacman"”)
pacman: :p_load(qdap, qdapTools, dplyr, ggplot2)

url_dl("http://umlreading.weebly.com/uploads/2/5/2/5/25253346/whole_language_timeline-updated.docx")
parts <- read_docx("whole_language_timeline-updated.docx") %>%
rm_non_ascii() %>%

split_vector(split = "References”, include = TRUE, regex=TRUE)

parts[[1]]

rm_citation

parts[[11] %>%
unbag() %>%
ex_citation() %>%

cO

Counts

parts[[1]] %>%
unbag() %>%
ex_citation() %>%
as_count()

By line
ex_citation(parts[[11])

Frequency
cites <- parts[[1]1] %>%
unbag() %>%
ex_citation() %>%
c() %%
data_frame(citation=.) %>%
count(citation) %>%
arrange(n) %>%
mutate(citation=factor(citation, levels=citation))

Distribution of citations (find locations and then plot)
cite_locs <- do.call(rbind, lapply(cites[[1]], function(x){
m <- gregexpr(x, unbag(parts[[1]]), fixed=TRUE)
data.frame(
citation=x,
start = m[[1]1] -5,
end = m[[1]] + 5 + attributes(m[[1]]1)[["match.length"]]
)
1))

ggplot(cite_locs) +

geom_segment (aes(x=start, xend=end, y=citation, yend=citation), size=3,
color="yellow") +

xlab("Duration”) +

scale_x_continuous(expand = c(9,0),
limits = c(@, nchar(unbag(parts[[1]]1)) + 25)) +

theme_grey() +

theme(
panel.grid.major=element_line(color="grey20"),
panel.grid.minor=element_line(color="grey20"),
plot.background = element_rect(fill="black"),
panel.background = element_rect(fill="black"),
panel.border = element_rect(colour = "grey50”, fill=NA, size=1),
axis.text=element_text(color="grey50"),
axis.title=element_text(color="grey50")

33

34

End(Not run)

rm_citation_tex

rm_citation_tex

Remove/Replace/Extract LaTeX Citations

Description

Remove/replace/extract LaTeX citations from a string.

Usage
rm_citation_tex(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_citation_tex", replacement = "", extract = FALSE,
split = extract, unlist.extract = TRUE,
dictionary = getOption("regex.library”), ...)
ex_citation_tex(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_citation_tex", replacement = "", extract = TRUE,
split = extract, unlist.extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string).
replacement Replacement for matched pattern.
extract logical. If TRUE the dates are extracted into a list of vectors.
split logical. If TRUE and extract = TRUE the bibkey will be removed from the

LaTeX citation code curly braces and split on commas.

unlist.extract logical. If TRUE the splits from between LaTeX citation code curly braces will
be unlisted. if FALSE the list structure (1 per citation code curly brace) will be

retained.

dictionary A dictionary of canned regular expressions to search within if pattern begins

with "@rm_".

Additional arguments passed to rm_default.

Value

Returns a character string with citations (bibkeys) removed.

rm_city_state 35

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c(
"I say \\parencite*x{Ted2005, Moe1999} go there in \\textcite{Few2010} said to.",
"But then \\authorcite{Ware2013} said it was so \\pcite[seel[p. 22]{Get9999c}.",
"then I \\citep[p. 22]{Foo1882c} him")

rm_citation_tex(x)
rm_citation_tex(x, replacement="[[CITATION]]")
ex_citation_tex(x)

rm_city_state Remove/Replace/Extract City & State

Description

Remove/replace/extract city (single lower case word or multiple consecutive capitalized words be-
fore a comma and state) & state (2 consecutive capital letters) from a string.

Usage
rm_city_state(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_city_state”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_city_state(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_city_state”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_city_state uses the
rm_city_state regex from the regular expression dictionary from the dictionary
argument.

36 rm_city_state_zip

replacement Replacement for matched pattern.

extract logical. If TRUE the city & state are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with city & state removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,

rm_citation_tex, rm_citation, rm_city_state_zip, rm_date, rm_default, rm_dollar, rm_email,

rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <- paste@("I went to Washington Heights, NY for food! ",
"It's in West ven,PA, near Bolly Bolly Bolly, CA!",
"I like Movies, PG13")

rm_city_state(x)

ex_city_state(x)

rm_city_state_zip Remove/Replace/Extract City, State, & Zip

Description

Remove/replace/extract city (single lower case word or multiple consecutive capitalized words be-
fore a comma and state) + state (2 consecutive capital letters) + zip code (5 digits or 5 + 4 digits)
from a string.

Usage
rm_city_state_zip(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_city_state_zip"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_city_state_zip(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_city_state_zip"”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

rm_date

Arguments

text.var
trim
clean

pattern

replacement
extract

dictionary

Value

37

The text variable.
logical. If TRUE removes leading and trailing white spaces.
trim logical. If TRUE extra white spaces and escaped character will be removed.

A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_city_state_zip uses

the rm_city_state_zip regex from the regular expression dictionary from the
dictionary argument.

Replacement for matched pattern.
logical. If TRUE the city, state, & zip are extracted into a list of vectors.

A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Returns a character string with city, state, & zip removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state, rm_date, rm_default, rm_dollar, rm_email,
rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <- paste@("I went to Washington Heights, NY 54321 for food! ",
"It's in West ven,PA 12345, near Bolly Bolly Bolly, CA12345-1234!",

"hello world")

rm_city_state_zip(x)
ex_city_state_zip(x)

rm_date

Remove/Replace/Extract Dates

Description

Remove/replace/extract dates from a string in the form of (1) XX/XX/XXXX, XX/XX/XX, XX-
XX-XXXX, XX-XX-XX, XX.XX.XXXX, or XX.XX.XX OR (2) March XX, XXXX or Mar XX,
XXXX OR (3) both forms.

38 rm_date

Usage
rm_date(text.var, trim = !extract, clean = TRUE, pattern = "@rm_date",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_date(text.var, trim = !extract, clean = TRUE, pattern = "@rm_date”,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector (see Details for additional informa-
tion). Default, @m_date uses the rm_date regex from the regular expression
dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the dates are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Details

The default regular expression used by rm_date finds numeric representations not word/abbreviations.
This means that "June 13, 2002" is not matched. This behavior can be altered (to include month
names/abbreviations) by using a secondary regular expression from the regex_usa data (or other
dictionary) via (pattern = "@rm_date2”, pattern = "@rm_date3”, or pattern = "@rm_date4").
See Examples for example usage.

Value

Returns a character string with dates removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation,rm_city_state_zip, rm_city_state, rm_default, rm_dollar,
rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

rm_default

Examples

39

Numeric Date Representation
x <- paste@("Format dates as 04/12/2014, 04-12-2014, 04.12.2014. or",
" @4/12/14 but leaves mismatched: 12.12/2014")

rm_date(x)
ex_date(x)

Word/Abbreviation Date Representation

x2 <- paste@("Format dates as Sept 09, 2002 or October 22, 1887",
"but not 04-12-2014 and may match good 00, 9999")

rm_date(x2, pattern="@rm_date2")

ex_date(x2, pattern="@rm_date2")

Year-Month-Day Representation
x3 <- sprintf ("R uses time in this format %s."”, Sys.time())
rm_date(x3, pattern="@rm_date3")

Grab all types
ex_date(c(x, x2,

x3), pattern="@rm_date4")

rm_default

Remove/Replace/Extract Template

Description

Remove/replace/extract substring from a string. This is the template used by other qdapRegex

rm_XXX functions.

Usage
rm_default(text.var, trim = l!extract, clean = TRUE, pattern,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_default(text.var, trim = l!extract, clean = TRUE, pattern,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector.
replacement Replacement for matched pattern.

40 rm_dollar

extract logical. If TRUE the strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with substring removed.

See Also

rm_, gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_dollar,
rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

Built in regex dictionary
rm_default("I live in Buffalo, NY 14217", pattern="@rm_city_state_zip")

User defined regular expression
pat <= "(\\s*([A-ZI[\\w=1%)+) ,\\s([A-ZI{23)\\s (?<I\\d)\\d{53}(?: [-1\\d{43})?\\b"
rm_default("I live in Buffalo, NY 14217", pattern=pat)

rm_dollar Remove/Replace/Extract Dollars

Description

Remove/replace/extract dollars amounts from a string.

Usage
rm_dollar(text.var, trim = !extract, clean = TRUE, pattern = "@rm_dollar"”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_dollar(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_dollar”,
replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

rm_email 41

Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_dollar uses the
rm_dollar regex from the regular expression dictionary from the dictionary
argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the dollar strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with dollars removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

rm_email Remove/Replace/Extract Email Addresses

Description

Remove/replace/extract email addresses from a string.

Usage
rm_email (text.var, trim = l!extract, clean = TRUE, pattern = "@rm_email”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_email(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_email”,
replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

42 rm_email

Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_email uses the rm_email
regex from the regular expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the emails are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with email addresses removed.

Author(s)

Barry Rowlingson and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The email regular expression was taken from: http://stackoverflow.com/a/25077704/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <- paste("fred is fred@foo.com and joe is joe@example.com - but @this is a
twitter handle for twit@here.com or footbar@google.com/fred@foo.fnord")

x2 <- c("fred is fredefoo.com and joe is joe@example.com - but @this is a",
"twitter handle for twit@here.com or footbar@google.com/fred@foo.fnord”,
"hello world")

rm_email (x)
rm_email(x, replacement = '\\1")
ex_email(x)
ex_email(x2)

http://stackoverflow.com/a/25077704/1000343

rm_emoticon 43

rm_emoticon Remove/Replace/Extract Emoticons

Description

Remove/replace/extract common emoticons from a string.

Usage
rm_emoticon(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_emoticon”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_emoticon(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_emoticon”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_emoticon uses the
rm_emoticon regex from the regular expression dictionary from the dictionary
argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the emoticons are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with emoticons removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

44

Examples

x <- c("are

n

rm_emoticon(x)
ex_emoticon(x)

rm_endmark

:=)) it 8-D he XD on =-D they :D of :-) is :> for :0) that :-/",
as :-D I xD with :*) a =D to =) the 8D and :3 in =3 you 8) his B”D was")

rm_endmark

Remove/Replace/Extract Endmarks

Description

Remove/replace/extract endmarks from a string.

Usage
rm_endmark(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_endmark"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_endmark(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_endmark"”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_endmark uses the
rm_dollar regex from the regular expression dictionary from the dictionary
argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the endmark strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Details

The default regular expression used by rm_endmark finds endmark punctuation used in the qdap
package; this includes ! . ? * AND |. This behavior can be altered (to ; AND : or to use just !
. AND ?) by using a secondary regular expression from the regex_usa data (or other dictionary)
via (pattern = "@rm_endmark2"” or pattern = "@rm_endmark3"). See Examples for example

usage.

rm_hash 45

Value

Returns a character string with endmarks removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_hash, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c("I like the dog.”, "I want it *|", "I;",
"Who is| that?”, "Hello world”, "You...")

rm_endmark(x)
ex_endmark(x)

rm_endmark(x, pattern="@rm_endmark2")
ex_endmark(x, pattern="@rm_endmark2")

rm_endmark(x, pattern="@rm_endmark3")
ex_endmark(x, pattern="@rm_endmark3")

rm_hash Remove/Replace/Extract Hash Tags

Description

Remove/replace/extract hash tags from a string.

Usage
rm_hash(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_hash",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_hash(text.var, trim = !extract, clean = TRUE, pattern = "@rm_hash”,
replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

46 rm_hash

Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_hash uses the rm_hash
regex from the regular expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the hash tags are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with hash tags removed.

Author(s)

stackoverflow’s hwnd and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The hash tag regular expression was taken from: http://stackoverflow.com/a/25096474/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_nchar_words, rm_non_ascii, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <- c("@hadley I like #rstats for #ggplot2 work.",
"Difference between #magrittr and #pipeR, both implement pipeline operators for #rstats:
http://renkun.me/r/2014/07/26/difference-between-magrittr-and-pipeR.html @timelyportfolio”,
"Slides from great talk: @ramnath_vaidya: Interactive slides from Interactive Visualization
presentation #user2014. http://ramnathv.github.io/user2014-rcharts/#1"
)

rm_hash(x)
rm_hash(rm_tag(x))
ex_hash(x)

remove just the hash symbol
rm_hash(x, replace="\\3")

http://stackoverflow.com/
http://stackoverflow.com/a/25096474/1000343

rm_nchar words 47

rm_nchar_words Remove/Replace/Extract N Letter Words

Description

Remove/replace/extract words that are n letters in length (apostrophes not counted).

Usage
rm_nchar_words(text.var, n, trim = !extract, clean = TRUE,
pattern = "@rm_nchar_words"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_nchar_words(text.var, n, trim = l!extract, clean = TRUE,
pattern = "@rm_nchar_words"”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
n The number of letters counted in the word.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector (see Details for additional infor-
mation). Default, @ m_nchar_words uses the rm_nchar_words regex from the
regular expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the n letter words are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Details

The default regular expression used by rm_nchar_words counts letter length, not characters. This
means that apostrophes are not include in the character count. This behavior can be altered (to
include apostrophes in the character count) by using a secondary regular expression from the
regex_usa data (or other dictionary) via (pattern = "@rm_nchar_words2"). See Examples
for example usage.

Value

Returns a character string with n letter words removed.

48 rm_non_ascii

Author(s)

stackoverflow’s CharlieB and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The n letter/character word regular expression was taken from: http://stackoverflow.com/a/
25243885/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_non_ascii, rm_non_words, rm_number,
rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= "This is Jon's dogs' 'bout there in a word Mike's re'y.”
rm_nchar_words(x, 4)
ex_nchar_words(x, 4)

Count characters (apostrophes and letters)
ex_nchar_words(x, 5, pattern = "@rm_nchar_words2")

nchar range
rm_nchar_words(x, "1,2")

Not run:

Larger example

library(qdap)
ex_nchar_words(hamlet[["dialogue"]], 5)

End(Not run)

rm_non_ascii Remove/Replace/Extract Non-ASCII

Description

Remove/replace/extract non-ASCII substring from a string. This is the template used by other
qdapRegex rm_XXX functions.

http://stackoverflow.com/
http://stackoverflow.com/a/25243885/1000343
http://stackoverflow.com/a/25243885/1000343

rm_non_ascii 49

Usage
rm_non_ascii(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_non_ascii”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ascii.out = TRUE, ...)
ex_non_ascii(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_non_ascii”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ascii.out = TRUE, ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_non_ascii uses the
rm_non_ascii regex from the regular expression dictionary from the dictionary
argument. If extract = FALSE gsub is not used as with other rm_XXX functions,
rather iconv with the sub argument set is used to conduct the subbing.
replacement Replacement for matched pattern.
extract logical. If TRUE the all non-ASCII strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
ascii.out logical. If TRUE output is given in non-ASCII format, otherwise "byte" is used.
ignored.
Value

Returns a character string with "all non-ascii" removed.

Warning

iconv is used within rm_non_ascii. iconv’s behavior across operating systems may not be con-
sistent.

Author(s)

stackoverflow’s MrFlick, hwnd, and Tyler Rinker <tyler.rinker @ gmail.com>.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_words,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

http://stackoverflow.com

50 rm_non_words

Examples

x <- c("Hello World", "Ekstr\xf8m"”, "J\xf6reskog"”, "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latinl”
X

rm_non_ascii(x)

rm_non_ascii(x, replacement="<<FLAG>>")
ex_non_ascii(x)

ex_non_ascii(x, ascii.out=FALSE)

simple regex to remove non-ascii
rm_default(x, pattern="[* -~]1")
ex_default(x, pattern="[* -~]1")

rm_non_words Remove/Replace/Extract Non-Words

Description

rm_non_words - Remove/replace/extract non-words (Anything that’s not a letter or apostrophe; also
removes multiple white spaces) from a string.

Usage
rm_non_words(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_non_words"”, replacement = " ", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_non_words(text.var, trim = l!extract, clean = TRUE,
pattern = "[*A-Za-z']+", replacement = " ", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_non_words uses the
rm_non_words regex from the regular expression dictionary from the dictionary
argument.
replacement Replacement for matched pattern (Note: defaultis " ", whereas most qdapRegex
functions replace with "").
extract logical. If TRUE the non-words are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins

with "@rm_".

Other arguments passed to gsub.

rm_number 51

Value

Returns a character string with non-words removed.

Note

Setting the argument extract = TRUE is not very useful. Use the following setup instead (see
Examples for a demonstration).

rm_default(x, pattern = "[*A-Za-z']", extract=TRUE)

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= ¢(
"I like 56 dogs!”,
"It's seventy-two feet from the px290.",
NA,
"What",
"thatlis2a3way4to5go6.",
"What do youx% want? For real%; I think you'll see.”,
"Oh some <html>code</html> to remove”

)

rm_non_words(x)
ex_non_words(x)

rm_number Remove/Replace/Extract Numbers

Description

rm_number - Remove/replace/extract number from a string (works on numbers with commas, deci-
mals and negatives).

as_numeric - A wrapper for as.numeric(gsub(”,”, "", x)), which removes commas and
converts a list of vectors of strings to numeric. If the string cannot be converted to numeric NA is
returned.

as_numeric?2 - A convenience function for as_numeric that unlists and returns a vector rather than
a list.

52 rm_number

Usage
rm_number (text.var, trim = !extract, clean = TRUE, pattern = "@rm_number"”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

as_numeric(x)

as_numeric2(x)

ex_number(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_number”,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_number uses the
rm_number regex from the regular expression dictionary from the dictionary

argument.

replacement Replacement for matched pattern.

extract logical. If TRUE the numbers are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.
X a character vector to convert to a numeric vector.

Value

rm_number - Returns a character string with number removed.
as_numeric - Returns a list of vectors of numbers.

as_numeric? - Returns an unlisted vector of numbers.

References

The number regular expression was created by Jason Gray.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,

rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

rm_percent 53

Examples
X <= ¢("-2 is an integer. -4.3 and 3.33 are not.”,
"123,456 is @ alot -123456 more than -.2", "and 3456789123 fg for 345.",
"fg 12,345 23 .44 or 18.", "don't remove this 444,44", "hello world -.q")

rm_number (x)
ex_number (x)

##Convert to numeric
as_numeric(ex_number(x)) # retain list
as_numeric2(ex_number(x)) # unlist

rm_percent Remove/Replace/Extract Percentages

Description

Remove/replace/extract percentages from a string.

Usage
rm_percent(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_percent”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_percent(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_percent”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_percent uses the
rm_percent regex from the regular expression dictionary from the dictionary
argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the percentages are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

54 rm_phone

Value

Returns a character string with percentages removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_phone, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c¢("There is $5.50 for me."”, "that's 45.6% of the pizza"”,
"14% is $26 or $25.99")

rm_percent (x)
ex_percent(x)

rm_phone Remove/Replace/Extract Phone Numbers

Description

Remove/replace/extract phone numbers from a string.

Usage
rm_phone(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_phone”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_phone(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_phone",
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_phone uses the rm_phone
regex from the regular expression dictionary from the dictionary argument.

replacement Replacement for matched pattern.

rm_postal_code 55

extract logical. If TRUE the phone numbers are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with phone numbers removed.

Author(s)

stackoverflow’s Marius and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The phone regular expression was taken from: http://stackoverflow.com/a/21008254/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,

rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_postal_code, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c(" Mr. Bean bought 2 tickets 2-613-213-4567 or 5555555555 call either one”,
"43 Butter Rd, Brossard QC KQA 3PQ - 613 213 4567",
"Please contact Mr. Bean (613)2134567",
"1.575.555.5555 is his #1 number”,
"7164347566",
"I like 1234567 dogs”
)

rm_phone (x)
ex_phone(x)

rm_postal_code Remove/Replace/Extract Postal Codes

Description

Remove/replace/extract postal codes.

http://stackoverflow.com/
http://stackoverflow.com/a/21008254/1000343

56 rm_postal_code

Usage
rm_postal_code(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_postal_code”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_postal_code(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_postal_code”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_postal_code uses
the rm_postal_code regex from the regular expression dictionary from the
dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the city & state are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with postal codes removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_repeated_characters, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c("Anchorage, AK", "New York City, NY", "Some Place, Another Place, LA")
rm_postal_code(x)
ex_postal_code(x)

rm_repeated_characters 57

rm_repeated_characters
Remove/Replace/Extract Words With Repeating Characters

Description

Remove/replace/extract words with repeating characters. The word must contain characters, each
repeating at east 2 times

Usage
rm_repeated_characters(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_repeated_characters”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_repeated_characters(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_repeated_characters”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_repeated_characters
uses the rm_repeated_characters regex from the regular expression dictio-
nary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the words with repeating characters are extracted into a list of
vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with percentages removed.

Author(s)

stackoverflow’s vks and Tyler Rinker <tyler.rinker @ gmail.com>.

References

http://stackoverflow.com/a/29438461/1000343

http://stackoverflow.com/
http://stackoverflow.com/a/29438461/1000343

58 rm_repeated_phrases

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_phrases,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

X <- "aaaahahahahaha that was a good joke peep and pepper and pepe”
rm_repeated_characters(x)
ex_repeated_characters(x)

rm_repeated_phrases Remove/Replace/Extract Repeating Phrases

Description

Remove/replace/extract repeating phrases from a string.

Usage
rm_repeated_phrases(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_repeated_phrases”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_repeated_phrases(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_repeated_phrases”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_repeated_phrases
uses the rm_repeated_phrases regex from the regular expression dictionary
from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the repeated phrases are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins

with "@rm_".

Other arguments passed to gsub.

rm_repeated_words 59

Value

Returns a character string with percentages removed.

Author(s)

stackoverflow’s BrodieG and Tyler Rinker <tyler.rinker @ gmail.com>.

References

http://stackoverflow.com/a/28786617/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c(
"this is a big is a Big deal”,
"I want want to see”,
"I want, want to see”,
"I want...want to see see see how",
"I like it. It is cool”,
"this is a big is a Big deal for those of, those of you who are.”

)

rm_repeated_phrases(x)
ex_repeated_phrases(x)

rm_repeated_words Remove/Replace/Extract Repeating Words

Description

Remove/replace/extract repeating words from a string.

Usage
rm_repeated_words(text.var, trim = lextract, clean = TRUE,
pattern = "@rm_repeated_words"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

ex_repeated_words(text.var, trim = l!extract, clean = TRUE,

http://stackoverflow.com/
http://stackoverflow.com/a/28786617/1000343

60

rm_repeated_words

pattern = "@rm_repeated_words”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_repeated_words uses
the rm_repeated_words regex from the regular expression dictionary from the
dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the repeated words are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with percentages removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_tag, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c(

"this is a big is a Big deal”,

"I want want to see”,

"I want, want to see”,

"I want...want to see see see how",
"I like it. It is cool”,

"this is a big is a Big deal for those of, those of you who are.

)

rm_repeated_words(x)
ex_repeated_words(x)

rm_tag 61

rm_tag Remove/Replace/Extract Person Tags

Description

Remove/replace/extract person tags from a string.

Usage
rm_tag(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_tag",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_tag(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_tag",
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @ m_tag uses the rm_tag
regex from the regular expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the person tags are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Details

The default regex pattern " (?<![@\w])@([a-z@-9_]+)\b" is more liberal and searches for the at
(@) symbol followed by any word. This can be accessed via pattern = "@rm_tag". Twitter user
names are more constrained. A second regex (" (?<![@\w])@([a-z0-9_1{1,15})\b") is provide
that contains the latter word to substring that begins with an at (@) followed by a word composed
of alpha-numeric characters and underscores, no longer than 15 characters. This can be accessed
via pattern = "@rm_tag2" (see Examples).

Value

Returns a character string with person tags removed.

62 m_time

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_time, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <- c("@hadley I like #rstats for #ggplot2 work.",
"Difference between #magrittr and #pipeR, both implement pipeline operators for #rstats:
http://renkun.me/r/2014/07/26/difference-between-magrittr-and-pipeR.html @timelyportfolio”,
"Slides from great talk: @ramnath_vaidya: Interactive slides from Interactive Visualization
presentation #user2014. http://ramnathv.github.io/user2014-rcharts/#1",
"tyler.rinker@gamil.com is my email”,
"A non valid Twitter is @abcdefghijklmnopgrstuvwxyz"

)

rm_tag(x)
rm_tag(rm_hash(x))
ex_tag(x)

more restrictive Twitter regex
ex_tag(x, pattern="@rm_tag2")

Remove only the @ sign
rm_tag(x, replacement = "\\3")
rm_tag(x, replacement = "\\3", pattern="@rm_tag2")

rm_time Remove/Replace/Extract Time

Description

rm_time - Remove/replace/extract time from a string.
rm_transcript_time - Remove/replace/extract transcript specific time stamps from a string.

as_time - Convert a time stamp removed by rm_time or rm_transcript_time to a standard time
format (HH:SS:MM.OS) and optionally convert to as.POSIX1t.

as_time - A convenience function for as_time that unlists and returns a vector rather than a list.

Usage

rm_time(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_time",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

rm_time 63

rm_transcript_time(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_transcript_time"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

as_time(x, as.POSIX1t = FALSE, millisecond = TRUE)

as_time2(x, ...)

ex_time(text.var, trim = !extract, clean = TRUE, pattern = "@rm_time",
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)

ex_transcript_time(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_transcript_time"”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)

Arguments

text.var The text variable.

trim logical. If TRUE removes leading and trailing white spaces.

clean trim logical. If TRUE extra white spaces and escaped character will be removed.

pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector (see Details for additional informa-
tion). Default, @m_time uses the rm_time regex from the regular expression
dictionary from the dictionary argument.

replacement Replacement for matched pattern.

extract logical. If TRUE the times are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.
X A list with extracted time stamps.
as.POSIX1t logical. If TRUE the output will be converted to as.POSIX1t.
millisecond logical. If TRUE milliseconds are retained. If FALSE they are rounded and added

to seconds.
Details

The default regular expression used by rm_time finds time with no AM/PM. This behavior can be
altered by using a secondary regular expression from the regex_usa data (or other dictionary) via
(pattern = "@rm_time2". See Examples for example usage.

Value

Returns a character string with time removed.

64 m_time

Note

...in as_time2 are the other arguments passed to as_time.

Author(s)

stackoverflow’s hwnd and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The time regular expression was taken from: http://stackoverflow.com/a/25111133/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_title_name, rm_url, rm_white, rm_zip

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_title_name, rm_url, rm_white, rm_zip

Examples

x <= c("R uses 1:5 for 1, 2, 3, 4, 5.",
"At 3:00 we'll meet up and leave by 4:30:20",
"We'll meet at 6:33.", "He ran it in :22.34")

rm_time(x)
ex_time(x)

With AM/PM

x <= c(
"I'm getting 3:04 AM just fine, but...",
"for 10:47 AM I'm getting 0:47 AM instead.”,
"no time here”,
"Some time has 12:04 with no AM/PM after it",
"Some time has 12:04 a.m. or the form 1:22 pm’

I

)

ex_time(x)

ex_time(x, pat="@rm_time2")

rm_time(x, pat="@rm_time2")

ex_time(x, pat=pastex("@rm_time2", "@rm_time"))

Convert to standard format
as_time(ex_time(x))

http://stackoverflow.com/
http://stackoverflow.com/a/25111133/1000343

rm_title_name

as_time(ex_time(x), as.POSIX1t
as_time(ex_time(x), as.POSIX1t

TRUE)
FALSE, millisecond = FALSE)

Transcript specific time stamps

x2 <-c(
'08:15 8 minutes and 15 seconds 00:08:15.0"',
'3:15 3 minutes and 15 seconds not 1:03:15.0',
'91:22:30 1 hour 22 minutes and 30 seconds 01:22:30.0',
'#00:09:33-5# 9 minutes and 33.5 seconds 00:09:33.5",
'00:09.33,75 9 minutes and 33.5 seconds 00:09:33.75'

rm_transcript_time(x2)
(out <- ex_transcript_time(x2))

as_time(out)
as_time(out, TRUE)
as_time(out, millisecond = FALSE)

Not run:

if (!'require(”pacman”)) install.packages("pacman”)
pacman: :p_load(chron)

lapply(as_time(out), chron::times)
lapply(as_time(out, , FALSE), chron::times)

End(Not run)

65

rm_title_name Remove/Replace/Extract Title + Person Name

Description

Remove/replace/extract title (honorific) + person name(s) from a string.

Usage
rm_title_name(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_title_name"”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_title_name(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_title_name"”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.

clean trim logical. If TRUE extra white spaces and escaped character will be removed.

66 rm_url

pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_title_name uses the
rm_title_name regex from the regular expression dictionary from the dictionary

argument.

replacement Replacement for matched pattern.

extract logical. If TRUE the person tags are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with person tags removed.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_time, rm_url, rm_white, rm_zip

Examples

x <= c("Dr. Brend is mizz hart's in mrs. Holtz's.",
"Where is mr. Bob Jr. and Ms. John Kennedy?")

rm_title_name(x)
ex_title_name(x)

rm_url Remove/Replace/Extract URLs

Description

rm_url - Remove/replace/extract URLs from a string.

rm_twitter_url - Remove/replace/extract Twitter Short URLSs from a string.

Usage
rm_url(text.var, trim = lextract, clean = TRUE, pattern = "@rm_url”,
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

rm_twitter_url(text.var, trim = l!extract, clean = TRUE,

rm_url 67

pattern = "@rm_twitter_url”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_url(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_url”,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
ex_twitter_url(text.var, trim = lextract, clean = TRUE,
pattern = "@rm_twitter_url”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @ m_url uses the rm_url
regex from the regular expression dictionary from the dictionary argument.

replacement Replacement for matched pattern.

extract logical. If TRUE the URLs are extracted into a list of vectors.

dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Details
The default regex pattern " (http[* JIx)|(www\.[* J*)" is more liberal. More constrained ver-
sions can be accessed via pattern = "@rm_url2"” & pattern = "@rm_url3” see Examples).
Value

Returns a character string with URLSs removed.

References

The more constrained url regular expressions ("@rm_url2"” and "@rm_url3"” was adapted from
imme_emosol’s response: https://mathiasbynens.be/demo/url-regex

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_white, rm_zip

https://mathiasbynens.be/demo/url-regex

68 rm_white

Examples
x <= " I like www.talkstats.com and http://stackoverflow.com"
rm_url(x)
rm_url(x, replacement = '\\1")
ex_url(x)
ex_url(x, pattern = "@rm_url2")
ex_url(x, pattern = "@rm_url3")

Remove Twitter Short URL
x <= c("download file from http://example.com”,
"this is the link to my website http://example.com”,
"go to http://example.com from more info.",
"Another url ftp://www.example.com”,
"And https://www.example.net”,
"twitter type: t.co/NT1kg@F26tG",
"still another one https://t.co/N1kq@F26tG :-)")

rm_twitter_url(x)
ex_twitter_url(x)

Combine removing Twitter URLs and standard URLs

rm_twitter_n_url <- rm_(pattern=pastex(”@rm_twitter_url”, "@rm_url"))
rm_twitter_n_url(x)

rm_twitter_n_url(x, extract=TRUE)

rm_white Remove/Replace/Extract White Space

Description

rm_white - Remove multiple white space (> 1 becomes a single white space), white space before a
comma, white space before a single or consecutive combination of a colon, semicolon, or endmark
(period, question mark, or exclamation point), white space after a left bracket ("", "(", "[") or before
a right bracket ("", ")", "]"), leading or trailing white space.

rm_white_bracket - Remove white space after a left bracket ("", "(", "[") or before a right bracket
¢ .

rm_white_colon - Remove white space before a single or consecutive combination of a colon,
semicolon.

rm_white_comma - Remove white space before a comma.

rm_white_endmark - Remove white space before endmark(s) (".", "?", "!").

rm_white_lead - Remove leading white space.

rm_white_lead_trail - Remove leading or trailing white space.

rm_white_trail - Remove trailing white space.

rm_white_multiple - Remove multiple white space (> 1 becomes a single white space).

rm_white 69

rm_white_punctuation - Remove multiple white space before a comma, white space before a
single or consecutive combination of a colon, semicolon, or endmark (period, question mark, or
exclamation point).

Usage
rm_white(text.var, trim = FALSE, clean = FALSE, pattern = "@rm_white",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

ex_white(text.var, trim = FALSE, clean = FALSE, pattern = "@rm_white",

replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)
rm_white_bracket(text.var, trim = l!extract, clean = TRUE,

pattern = "@rm_white_bracket”, replacement = "", extract = FALSE,

dictionary = getOption("regex.library”), ...)
ex_white_bracket(text.var, trim = l!extract, clean = TRUE,

pattern = "@rm_white_bracket"”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)
rm_white_colon(text.var, trim = !extract, clean = TRUE,

pattern = "@rm_white_colon”, replacement = "", extract = FALSE,

dictionary = getOption("regex.library”), ...)
ex_white_colon(text.var, trim = l!extract, clean = TRUE,

pattern = "@rm_white_colon”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)
rm_white_comma(text.var, trim = l!extract, clean = TRUE,

pattern = "@rm_white_comma”, replacement = "", extract = FALSE,

dictionary = getOption("regex.library”), ...)
ex_white_comma(text.var, trim = l!extract, clean = TRUE,

pattern = "@rm_white_comma”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)
rm_white_endmark(text.var, trim = l!lextract, clean = TRUE,

pattern = "@rm_white_endmark"”, replacement = "", extract = FALSE,

dictionary = getOption("regex.library”), ...)
ex_white_endmark(text.var, trim = !extract, clean = TRUE,

pattern = "@rm_white_endmark"”, replacement = "", extract = TRUE,

dictionary = getOption("regex.library”), ...)

rm_white_lead(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_lead”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)

70 rm_white
ex_white_lead(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_lead”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
rm_white_lead_trail(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_lead_trail”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_white_lead_trail(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_lead_trail”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
rm_white_trail(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_trail”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_white_trail(text.var, trim = FALSE, clean = FALSE,
pattern = "@rm_white_trail”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
rm_white_multiple(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_white_multiple”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_white_multiple(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_white_multiple”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
rm_white_punctuation(text.var, trim = l!extract, clean = TRUE,
pattern = "@rm_white_punctuation”, replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_white_punctuation(text.var, trim = !extract, clean = TRUE,
pattern = "@rm_white_punctuation”, replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)

to be matched in the given character vector. Default, @m_dollar uses the
rm_dollar regex from the regular expression dictionary from the dictionary
argument.

replacement Replacement for matched pattern.

rm_white 71

extract logical. If TRUE the dollar strings are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".

Other arguments passed to gsub.

Value

Returns a character string with extra white space removed.

Author(s)

rm_white_endmark/rm_white_punctuation - stackoverflow’s hwnd and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The rm_white_endmark/rm_white_punctuation regular expression was taken from: http://
stackoverflow.com/a/25464921/1000343

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_zip

Examples

x <= c(" There is ($5.50) for , me . ", " that's [45.6%] of! the pizza !",
" 14% is { $26 1} or $25.99 ?", "Oh ; here's colon : Yippee !")

rm_white(x)
rm_white_bracket(x)
rm_white_colon(x)
rm_white_comma(x)
rm_white_endmark(x)
rm_white_lead(x)
rm_white_trail(x)
rm_white_lead_trail(x)
rm_white_multiple(x)
rm_white_punctuation(x)

http://stackoverflow.com
http://stackoverflow.com/a/25464921/1000343
http://stackoverflow.com/a/25464921/1000343

72 rm_zip

rm_zip Remove/Replace/Extract Zip Codes

Description

Remove/replace/extract zip codes from a string.

Usage
rm_zip(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_zip",
replacement = "", extract = FALSE,
dictionary = getOption("regex.library”), ...)
ex_zip(text.var, trim = l!extract, clean = TRUE, pattern = "@rm_zip”,
replacement = "", extract = TRUE,
dictionary = getOption("regex.library”), ...)
Arguments
text.var The text variable.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector. Default, @m_zip uses the rm_zip
regex from the regular expression dictionary from the dictionary argument.
replacement Replacement for matched pattern.
extract logical. If TRUE the zip codes are extracted into a list of vectors.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Other arguments passed to gsub.
Value

Returns a character string with U.S. 5 and 5+4 zip codes removed.

Author(s)

stackoverflow’s hwnd and Tyler Rinker <tyler.rinker @ gmail.com>.

References

The time regular expression was taken from: http://stackoverflow.com/a/25223890/1000343

http://stackoverflow.com/
http://stackoverflow.com/a/25223890/1000343

rm_zip 73

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation, rm_between, rm_bracket, rm_caps_phrase, rm_caps,
rm_citation_tex, rm_citation, rm_city_state_zip, rm_city_state, rm_date, rm_default,
rm_dollar, rm_email, rm_emoticon, rm_endmark, rm_hash, rm_nchar_words, rm_non_ascii,
rm_non_words, rm_number, rm_percent, rm_phone, rm_postal_code, rm_repeated_characters,
rm_repeated_phrases, rm_repeated_words, rm_tag, rm_time, rm_title_name, rm_url, rm_white

Examples

x <= c("Mr. Bean bought 2 tickets 2-613-213-4567",
"43 Butter Rd, Brossard QC K@QA 3P@ - 613 213 4567",
"Rat Race, XX, 12345",
"Ignore phone numbers(613)2134567",
"Grab zips with dashes 12345-6789 or no space before12345-6789",
"Grab zips with spaces 12345 6789 or no space beforel12345 6789",
"I like 1234567 dogs"

)

rm_zip(x)

ex_zip(x)

#H# ##
BUILD YOUR OWN FUNCTION
#H#

example from: http://stackoverflow.com/a/26092576/1000343
zips <- data.frame(id = seq(1, 6),
address = c("Company, 18540 Main Ave., City, ST 12345",
"Company 18540 Main Ave. City ST 12345-0000",
"Company 18540 Main Ave. City State 12345",
"Company, 18540 Main Ave., City, ST 12345 USA",
"Company, One Main Ave Suite 1854@m, City, ST 12345",
"company 12345678")
)

Function to grab even if a character follows the zip

paste together a more flexible regular expression
pat <- pastex(
"@rm_zip",
"CO<INNANANA{EF(?IN\N\D) ",
"<INNADANNA{5F-\\d{43(?!I\\d) "
)
Create your own function that extract is set to TRUE
ex_zip2 <- rm_(pattern=pat, extract=TRUE)
ex_zip2(zips$address)

Function to extract just 5 digit zips

ex_zip3 <- rm_(pattern="(?<!I\\d)\\d{53}(?!\\d)", extract=TRUE)

74 TC

ex_zip3(zips$address)

S Use C-style String Formatting Commands

Description

Convenience wrapper for sprintf that allows recycling of ... of length one.

Usage
S(x, ...)
Arguments
X A single string containing "%s".
A vector of substitutions equal in length to the number of "%s" in x or of length
one (if length one . .. will be recycled).
Value

Returns a string with "%s" replaced.

See Also

sprintf

Examples

S("@after_", "the", "the")

Recycle

S("e@after_", "the")
S("@rm_between”, "LEFT", "RIGHT")

TC Upper/Lower/Title Case

Description

TC - Capitalize titles according to traditional capitalization rules.
L - All lower case.

U - All upper case.

TC 75

Usage
TC(text.var, lower = NULL, ...)
L(text.var, ...)
U(text.var, ...)
Arguments
text.var The text variable.
lower A vector of words to retain lower case for (unless first or last word).
Other arguments passed to: stri_trans_tolower, stri_trans_toupper, and
stri_trans_totitle.
Details

Case wrapper functions for stringi’s stri_trans_tolower, stri_trans_toupper,and stri_trans_totitle.
Functions are useful within magrittr style chaining.

Value

Returns a character vector with new case (lower, upper, or title).

Note
TC utilizes additional rules for capitalization beyond stri_trans_totitle that include:

1. Capitalize the first & last word
2. Lowercase articles, coordinating conjunctions, & prepositions

3. Lowercase "to" in an infinitive

See Also

stri_trans_tolower, stri_trans_toupper, stri_trans_totitle

Examples

y <= <(
"I'm liking it but not too much.”,
"How much are you into it?",
"I'd say it's yet awesome yet."”

)

L(y)

uy)

TC(Y)

76 validate

validate Regex Validation Function Generator

Description

Generate function to validate regular expressions.

Usage

validate(pattern, single = TRUE, trim = FALSE, clean = FALSE,
dictionary = getOption("regex.library"))

Arguments
pattern A character string containing a regular expression (or character string for fixed = TRUE)
to be matched in the given character vector.
single logical. If TRUE only returns true if the output string is of length one. If FALSE
multiple strings and multiple outputs are accepted.
trim logical. If TRUE removes leading and trailing white spaces.
clean trim logical. If TRUE extra white spaces and escaped character will be removed.
dictionary A dictionary of canned regular expressions to search within if pattern begins
with "@rm_".
Value

Returns a function that operates typical of other qdapRegex rm_XXX functions but with user defined
defaults.

Warning

validate uses qdapRegex’s built in regular expressions. As this patterns are used for text analysis
they tend to be flexible and thus liberal. The user may wish to define more conservative validation
regular expressions and supply to pattern.

Examples

Single element email
valid_email <- validate("@rm_email"”)
valid_email(c("tyler.rinker@gmail.com”, "@trinker"))

Multiple elements
valid_email_1 <- validate("@rm_email”, single=FALSE)
valid_email_1(c("tyler.rinker@gmail.com”, "@trinker"))

single element address
valid_address <- validate("@rm_city_state_zip")
valid_address("Buffalo, NY 14217")

validate

valid_address("buffalo,NY14217")
valid_address("buffalo NY 14217")

valid_address2 <- validate(paste@(” (\\b([A-ZI[\\w-]Ix)+),",
"N\\s([A-ZI{2)\\s (2<I\\d)\\A{53(?: [-1\\d{4})?\\b"))

valid_address2("Buffalo, NY 14217")

valid_address2("buffalo, NY 14217")

valid_address2("buffalo,NY14217")

valid_address2("buffalo NY 14217")

77

Index

xTopic abbreviation
rm_abbreviation, 21
*Topic ascii
rm_non_ascii, 48
xTopic bibkey
rm_citation_tex, 34
*Topic bracket
rm_bracket, 25
xTopic capital
rm_caps, 28
rm_caps_phrase, 29
xTopic caps
rm_caps, 28
rm_caps_phrase, 29
xTopic characters
rm_repeated_characters, 57
xTopic citation
rm_citation, 30
rm_citation_tex, 34
xTopic datasets
regex_cheat, 14
regex_supplement, 15
regex_usa, 17
xTopic date
rm_city_state, 35
rm_city_state_zip, 36
rm_date, 37
+Topic digispeak
rm_emoticon, 43
*Topic email
rm_email, 41
+Topic emoticon
rm_emoticon, 43
+Topic escape
escape, 6
*Topic explain
explain, 6
*Topic extract
rm_default, 39

78

«Topic ftp
rm_url, 66
«Topic get
grab, 8
+Topic grab
grab, 8
*Topic group
group, 9
*Topic hash
rm_hash, 45
*Topic http
rm_url, 66
*Topic non-words
rm_non_words, 50
+Topic noparse
escape, 6
*Topic number
rm_number, 51
«Topic paste
pastex, 11
«Topic percent
rm_dollar, 40
rm_endmark, 44
rm_percent, 53
rm_white, 68
+Topic person
rm_tag, 61
rm_title_name, 65
xTopic phone
rm_phone, 54
xTopic phrases
rm_repeated_phrases, 58
*Topic postal,
rm_postal_code, 55
xTopic postalcodes,
rm_postal_code, 55
+Topic regex,
is.regex, 10
+Topic regex

INDEX

explain, 6
group, 9
pastex, 11
+Topic repeat
rm_repeated_characters, 57
rm_repeated_phrases, 58
rm_repeated_words, 59
+Topic state
rm_postal_code, 55
*Topic sub
rm_default, 39
*Topic t.CO
rm_url, 66
*Topic tag
rm_tag, 61
rm_title_name, 65
+Topic telephone
rm_phone, 54
*Topic time
rm_time, 62
+Topic twitter
rm_hash, 45
rm_tag, 61
rm_title_name, 65
+Topic unicode
rm_non_ascii, 48
*Topic url
rm_url, 66
xTopic valid
is.regex, 10
*Topic words
rm_nchar_words, 47
rm_repeated_words, 59
*Topic WWW
rm_url, 66
*Topic Zip
rm_zip, 72
%+% (pastex), 11

as.POSIX1t, 62, 63
as_count (rm_citation), 30
as_numeric (rm_number), 51
as_numeric2 (rm_number), 51
as_time (rm_time), 62
as_time2 (rm_time), 62

bind, 3
bind_or, 4

79

c.extracted, 5
cat, 8
cheat, 5

data.frame, 3/

escape, 6

ex_(rm_), 20

ex_abbreviation (rm_abbreviation), 21

ex_angle (rm_bracket), 25

ex_between (rm_between), 23

ex_between_multiple (rm_between), 23

ex_bracket (rm_bracket), 25

ex_bracket_multiple (rm_bracket), 25

ex_caps (rm_caps), 28

ex_caps_phrase (rm_caps_phrase), 29

ex_citation (rm_citation), 30

ex_citation_tex (rm_citation_tex), 34

ex_city_state (rm_city_state), 35

ex_city_state_zip (rm_city_state_zip),
36

ex_curly (rm_bracket), 25

ex_date (rm_date), 37

ex_default (rm_default), 39

ex_dollar (rm_dollar), 40

ex_email (rm_email), 41

ex_emoticon (rm_emoticon), 43

ex_endmark (rm_endmark), 44

ex_hash (rm_hash), 45

ex_nchar_words (rm_nchar_words), 47

ex_non_ascii (rm_non_ascii), 48

ex_non_words (rm_non_words), 50

ex_number (rm_number), 51

ex_percent (rm_percent), 53

ex_phone (rm_phone), 54

ex_postal_code (rm_postal_code), 55

ex_repeated_characters
(rm_repeated_characters), 57

ex_repeated_phrases
(rm_repeated_phrases), 58

ex_repeated_words (rm_repeated_words),
59

ex_round (rm_bracket), 25

ex_square (rm_bracket), 25

ex_tag (rm_tag), 61

ex_time (rm_time), 62

ex_title_name (rm_title_name), 65

ex_transcript_time (rm_time), 62

ex_twitter_url (rm_url), 66

80

ex_url (rm_url), 66

ex_white (rm_white), 68
ex_white_bracket (rm_white), 68
ex_white_colon (rm_white), 68
ex_white_comma (rm_white), 68
ex_white_endmark (rm_white), 68
ex_white_lead (rm_white), 68
ex_white_lead_trail (rm_white), 68
ex_white_multiple (rm_white), 68
ex_white_punctuation (rm_white), 68
ex_white_trail (rm_white), 68
ex_zip(rm_zip), 72

explain, 6

grab, 8

group, 9

group_or, 9

gsub, 10, 20, 22-24, 26, 27, 29, 30, 32, 35-38,
40-64, 66, 67, 71-73

iconv, 49
is.regex, 10

L (TC), 74

package-qgdapRegex (qdapRegex), 14
paste, 12

paste0, 4

pastex, 11

print.explain, 12
print.extracted, 13
print.regexr, 13

gdapRegex, 14
gdapRegex-package (qdapRegex), 14

regex_cheat, 5, 14

regex_supplement, 3, 4, 6,9-11, 15

regex_usa, 17, 31, 38, 44,47, 63

require, 7

rm_, 20, 40

rm_abbreviation, 21, 24, 27, 29, 30, 32,
35-38, 4043, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73

rm_angle (rm_bracket), 25

rm_between, 22, 23, 27, 29, 30, 32, 35-38,
40-43, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67,71, 73

rm_between_multiple (rm_between), 23

INDEX

rm_bracket, 22, 24, 25, 29, 30, 32, 35-38,
4043, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67, 71,73
rm_bracket_multiple (rm_bracket), 25
rm_caps, 22, 24, 27, 28, 30, 32, 35-38, 4043,
45, 46, 48, 49, 51, 52, 54-56, 58-60,
62, 64,0606, 67,71,73
rm_caps_phrase, 22, 24, 27, 29, 29, 32,
35-38, 4043, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_citation, 22, 24, 27, 29, 30, 30, 35-38,
40-43, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67, 71,73
rm_citation_tex, 22,24, 27, 29, 30, 32, 34,
36-38, 4043, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_city_state, 22, 24, 27, 29, 30, 32, 35, 35,
37, 38,4043, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_city_state_zip, 22, 24, 27, 29, 30, 32,
35, 36, 36, 38, 4043, 45, 46, 48, 49,
51, 52, 54-56, 58-60, 62, 64, 66, 67,
71,73
rm_curly (rm_bracket), 25
rm_date, 22, 24, 27, 29, 30, 32, 35-37, 37,
40-43, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67,71,73
rm_default, 20, 22, 24, 27, 29, 30, 32, 34-38,
39,4143, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_dollar, 22, 24, 27, 29, 30, 32, 35-38, 40,
40, 42, 43, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_email, 22, 24, 27, 29, 30, 32, 35-38, 40,
41,41, 43,45, 46,48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_emoticon, 22, 24, 27, 29, 30, 32, 35-38,
4042, 43, 45, 46, 48, 49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73
rm_endmark, 22, 24, 27, 29, 30, 32, 35-38,
40-43, 44, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67, 71,73
rm_hash, 22, 24, 27, 29, 30, 32, 35-38, 4043,
45, 45,48, 49, 51, 52, 54-56, 58-60,
62,64, 0606, 67,71,73
rm_nchar_words, 22, 24, 27, 29, 30, 32,
35-38,40-43, 45, 46, 47,49, 51, 52,
54-56, 58-60, 62, 64, 66, 67,71, 73

INDEX

rm_non_ascii, 22, 24,27, 29, 30, 32, 35-38,
40-43, 45, 46, 48, 48, 51, 52, 54-56,
58-60, 62, 64, 66, 67,71, 73

rm_non_words, 22, 24, 27, 29, 30, 32, 35-38,
4043, 45, 46, 48, 49, 50, 52, 54-56,
58-60, 62, 64, 66, 67,71, 73

rm_number, 22, 24, 27, 29, 30, 32, 35-38,
4043, 45, 46, 48, 49, 51, 51, 54-56,
58-60, 62, 64, 66, 67,71, 73

rm_percent, 22, 24, 27, 29, 30, 32, 35-38,
40-43, 45, 46, 48, 49, 51, 52, 53, 55,
56, 58-60, 62, 64, 66, 67,71, 73

rm_phone, 22, 24, 27, 29, 30, 32, 35-38,
40-43, 45, 46, 48, 49, 51, 52, 54, 54,
56, 58-60, 62, 64, 66, 67,71, 73

rm_postal_code, 22, 24, 27, 29, 30, 32,
35-38, 4043, 45, 46, 48, 49, 51, 52,
54, 55,55, 58-60, 62, 64, 66, 67, 71,
73

rm_repeated_characters, 22, 24, 27, 29, 30,
32, 35-38, 4043, 45, 46, 48, 49, 51,
52, 54-56, 57, 59, 60, 62, 64, 66, 67,
71,73

rm_repeated_phrases, 22, 24, 27, 29, 30, 32,
35-38,40-43, 45, 46, 48, 49, 51, 52,
54-56, 58, 58, 60, 62, 64, 66, 67,71,
73

rm_repeated_words, 22, 24, 27, 29, 30, 32,
35-38, 4043, 45, 46, 48, 49, 51, 52,
54-56, 58, 59, 59, 62, 64, 66, 67,71,
73

rm_round (rm_bracket), 25

rm_square (rm_bracket), 25

rm_tag, 22, 24, 27, 29, 30, 32, 35-38, 40-43,
45, 46, 48, 49, 51, 52, 54-56, 58-60,
61,064,606, 67,71,73

rm_time, 22, 24, 27, 29, 30, 32, 35-38, 4043,
45, 46, 48, 49, 51, 52, 54-56, 58-60,
62,62,60,67,71,73

rm_title_name, 22, 24, 27, 29, 30, 32, 35-38,
4043, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 65, 67,71, 73

rm_transcript_time (rm_time), 62

rm_twitter_url (rm_url), 66

rm_url, 22,24, 27, 29, 30, 32, 35-38, 40-43,
45, 46, 48, 49, 51, 52, 54-56, 58-60,
62, 64,66, 66,71,73

rm_white, 22, 24, 27, 29, 30, 32, 35-38,

81

40-43, 45, 46, 48, 49, 51, 52, 54-56,
58-60, 62, 64, 66, 67, 68, 73
rm_white_bracket (rm_white), 68
rm_white_colon (rm_white), 68
rm_white_comma (rm_white), 68
rm_white_endmark (rm_white), 68
rm_white_lead (rm_white), 68
rm_white_lead_trail (rm_white), 68
rm_white_multiple (rm_white), 68
rm_white_punctuation (rm_white), 68
rm_white_trail (rm_white), 68
rm_zip, 22, 24, 27, 29, 30, 32, 35-38, 40-43,
45, 46,48, 49, 51, 52, 54-56, 58-60,
62, 64,606, 67,71,72

S, 16,74

sprintf, 15-18, 74

stri_extract_all_regex, 22, 24, 27, 29, 30,
32, 35-38,40-43, 45, 46, 48, 49, 51,
52, 54-56, 58-60, 62, 64, 66, 67, 71,
73

stri_trans_tolower, 75

stri_trans_totitle, 75

stri_trans_toupper, 75

TC, 74

U (TC), 74
URLencode, 8

validate, 76

	bind
	bind_or
	c.extracted
	cheat
	escape
	explain
	grab
	group
	group_or
	is.regex
	pastex
	print.explain
	print.extracted
	print.regexr
	qdapRegex
	regex_cheat
	regex_supplement
	regex_usa
	rm_
	rm_abbreviation
	rm_between
	rm_bracket
	rm_caps
	rm_caps_phrase
	rm_citation
	rm_citation_tex
	rm_city_state
	rm_city_state_zip
	rm_date
	rm_default
	rm_dollar
	rm_email
	rm_emoticon
	rm_endmark
	rm_hash
	rm_nchar_words
	rm_non_ascii
	rm_non_words
	rm_number
	rm_percent
	rm_phone
	rm_postal_code
	rm_repeated_characters
	rm_repeated_phrases
	rm_repeated_words
	rm_tag
	rm_time
	rm_title_name
	rm_url
	rm_white
	rm_zip
	S
	TC
	validate
	Index

