Package 'pwr2ppl'

June 12, 2019

Type Package

Title Power Analyses for Common Designs (Power to the People)
Version 0.1.1
Author Chris Aberson
Maintainer Chris Aberson cla18@humboldt.edu
Description Statistical power analysis for designs including t-tests, correlations, multiple regression, ANOVA, mediation, and logistic regression. Functions accompany Aberson (2019) doi:10.4324/9781315171500.
License GPL (>=2)

Encoding UTF-8

LazyData true
RoxygenNote 6.1.1
Imports car ($>=3.0-0$), MASS $(>=7.3-51)$, dplyr ($>=0.8 .0$), tidyr ($>=$ $0.8 .0)$, ez $(>=0.4 .3)$, nlme ($>=3.1-139$), phia ($>=0.2-0$), afex ($>=0.22-1$), MBESS $(>=4.5 .0)$, lavaan $(>=0.6-2)$, stats $(>=$ 3.5.0)

NeedsCompilation no

Repository CRAN
Date/Publication 2019-06-12 13:30:02 UTC

R topics documented:

anc 3
anova1f_3 4
anovalf_3c 5
anova1f_4 6
anova1f_4c 7
anova2x2 8
anova2x2_se 9
Chi2x2 10
Chi2X3 11
ChiES 11
ChiGOF 12
corr 13
depb 14
depcorr0 15
depcorrl 16
d_prec 16
indb 17
indcorr 18
indR2 19
indt 20
lmm1F 21
lmm1Ftrends 22
lmm1wlb 23
lmm2F 25
lmm2Fse 27
LRcat 29
LRcont 29
MANOVA1f 30
md_prec 32
med 33
MRC 34
MRC_all 35
MRC_short2 36
MRC_shortcuts 37
pairt 38
prop1 39
propind 40
R2ch 41
R2_prec 42
regint 42
regintR2 43
r_prec 44
tfromd 45
win1bg1 45
win1F 47
win1Ftrends 48
win2F 49
win2Fse 51
Index 54

Compute Power for One or Two Factor ANCOVA with a single covariate Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute Power for One or Two Factor ANCOVA with a single covariate Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

$$
\begin{aligned}
& \text { anc(m1.1, m2.1, m1.2, m2.2, m1.3 = NULL, m2.3 = NULL, m1.4 = NULL, } \\
& \text { m2.4 }=\text { NULL, s1.1 = NULL, s2.1 = NULL, s1.2 = NULL, } \\
& \text { s2.2 = NULL, s1.3 = NULL, s2.3 = NULL, s1.4 = NULL, } \\
& \text { s2.4 = NULL, r, s = NULL, alpha }=0.05 \text {, factors, } n \text {) }
\end{aligned}
$$

Arguments

$m 1.1$	Cell mean for First level of Factor A, First level of Factor B
$m 2.1$	Cell mean for Second level of Factor A, First level of Factor B
$m 1.2$	Cell mean for First level of Factor A, Second level of Factor B
$m 2.2$	Cell mean for Second level of Factor A, Second level of Factor B
$m 1.3$	Cell mean for First level of Factor A, Third level of Factor B
$m 2.3$	Cell mean for Second level of Factor A, Third level of Factor B
$m 1.4$	Cell mean for First level of Factor A, Fourth level of Factor B
$m 2.4$	Cell mean for Second level of Factor A, Fourth level of Factor B
$s 1.1$	Cell standard deviation for First level of Factor A, First level of Factor B
$s 2.1$	Cell standard deviation for Second level of Factor A, First level of Factor B
$s 1.2$	Cell standard deviation for First level of Factor A, Second level of Factor B
$s 2.2$	Cell standard deviation for Second level of Factor A, Second level of Factor B
$s 1.3$	Cell standard deviation for First level of Factor A, Third level of Factor B
$s 2.3$	Cell standard deviation for Second level of Factor A, Third level of Factor B
$s 1.4$	Cell standard deviation for First level of Factor A, Fourth level of Factor B
$s 2.4$	Cell standard deviation for Second level of Factor A, Fourth level of Factor B
r	Correlation between covariate and dependent variable.
s	Overall standard deviation. Sets all cell sds equal
alpha	Type I error (default is .05)
factors	Number of factors (1 or 2)
n	Sample Size per cell

Value

Power for One or Two Factor ANCOVA with a single covariate

Examples

```
anc(m1.1=.85,m2.1=2.5, s1.1 = 1.7, s2.1=1,
m1.2=0.85, m2.2= 2.5, s1.2 = 1.7, s2.2=1,
m1.3=0.0,m2.3=2.5, s1.3 = 1.7, s2.3=1,
m1.4=0.6, m2.4 = 2.5, s1.4 = 1.7, s2.4=1, r=0.4,
n=251, factors =2)
```

anova1f_3

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

anova1f_3(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL, s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05)

Arguments

m 1	Mean of first group
m 2	Mean of second group
m 3	Mean of third group
s 1	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
alpha	Type I error (default is .05)

Value

Power for the One Factor ANOVA

Examples

anova1f_3(m1=80, m2 $=82, m 3=82, s 1=10, s 2=10, s 3=10, n 1=60, n 2=60, n 3=60)$

anova1f_3c	Compute power for a One Factor ANOVA with three levels and con- trasts. Takes means, sds, and sample sizes for each group. Alpha is
. 05 by default, alternative values may be entered by user	

Description

Compute power for a One Factor ANOVA with three levels and contrasts. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anova1f_3c(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL,
    s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05,
    c1 = 0, c2 = 0, c3 = 0)
```


Arguments

m 1	Mean of first group
m 2	Mean of second group
m 3	Mean of third group
s 1	Standard deviation of first group
s 2	Standard deviation of second group
s 3	Standard deviation of third group
n 1	Sample size for first group
n 2	Sample size for second group
n 3	Sample size for third group
alpha	Type I error (default is .05)
c1	Weight for Contrast 1 (default is 0)
c2	Weight for Contrast 2 (default is 0)
c3	Weight for Contrast 3 (default is 0)

Value

Power for the One Factor ANOVA

Examples

$$
\begin{aligned}
& \text { anova1f } _3 c(m 1=80, m 2=82, m 3=82, s 1=10, s 2=10, s 3=10 \\
& n 1=60, \mathrm{n} 2=60, \mathrm{n} 3=60, \mathrm{c} 1=2, \mathrm{c} 2=-1, \mathrm{c} 3=-1, \text { alpha }=.05)
\end{aligned}
$$

Description

Compute power for a One Factor Between Subjects ANOVA with four levels Takes means, sds, and sample sizes for each group

Usage

anova1f_4(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL, s2 $=$ NULL, s3 = NULL, s4 = NULL, n1 = NULL, n2 = NULL, n3 $=$ NULL, $n 4=$ NULL, alpha $=0.05$)

Arguments

$m 1$	Mean of first group
$m 2$	Mean of second group
$m 3$	Mean of third group
$m 4$	Mean of fourth group
$s 1$	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
s4	Standard deviation of forth group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
n4	Sample size for fourth group
alpha	Type I error (default is .05)

Value

Power for the One Factor Between Subjects ANOVA

Examples

```
anova1f_4(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10,
s4=10, n1=60, n2=60, n3=60, n4=60)
```

```
anova1f_4c
```

Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

anova1f_4c(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL, $\mathrm{s} 2=$ NULL, $\mathrm{s} 3=$ NULL, $\mathrm{s} 4=$ NULL, $\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL, $\mathrm{n} 3=$ NULL, $\mathrm{n} 4=$ NULL, alpha $=0.05, \mathrm{c} 1=0, \mathrm{c} 2=0, \mathrm{c} 3=0$, c4 $=0$)

Arguments

$m 1$	Mean of first group
$m 2$	Mean of second group
$m 3$	Mean of third group
$m 4$	Mean of fourth group
$s 1$	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
s4	Standard deviation of forth group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
n4	Sample size for fourth group
alpha	Type I error (default is .05)
c1	Weight for Contrast 1 (default is 0)
c2	Weight for Contrast 2 (default is 0)
c3	Weight for Contrast 3 (default is 0)
c4	Weight for Contrast 4 (default is 0)

Examples

```
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=1, c2=1, c3=-1, c4=-1, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=1, c2=-1, c3=-0, c4=0, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=0, c2=0, c3=1, c4=-1, alpha=.05)
#'@return Power for the One Factor ANOVA
```

```
anova2x2
```

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

anova2x2(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL, s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL, $\mathrm{n} 1.1=$ NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL, alpha $=0.05$, all = "OFF")

Arguments

m1. 1
m1. 2
m2.1 Cell mean for Second level of Factor A, First level of Factor B
m2.2 Cell mean for Second level of Factor A, Second level of Factor B
s1.1 Cell standard deviation for First level of Factor A, First level of Factor B
s1.2 Cell standard deviation for First level of Factor A, Second level of Factor B
s2.1 Cell standard deviation for Second level of Factor A, First level of Factor B
s2.2 Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1 Cell sample size for First level of Factor A, First level of Factor B
n1.2 Cell sample size for First level of Factor A, Second level of Factor B
n2.1 Cell sample size for Second level of Factor A, First level of Factor B
n2.2 Cell sample size for Second level of Factor A, Second level of Factor B
alpha Type I error (default is .05)
all Power(ALL) - Power for detecting all predictors in the model at once (default is "OFF")

Value

Power for the One Factor ANOVA

Examples

```
anova2x2(m1.1=0.85,m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100, alpha=.05)
anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100,
alpha=.05, all="ON")
```

```
anova2x2_se
```

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is . 05 by default, alternative values may be entered by user

Description

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

anova2x2_se(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL, s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL, n1.1 = NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL, alpha $=0.05$)

Arguments

m1.1 Cell mean for First level of Factor A, First level of Factor B
m1.2 Cell mean for First level of Factor A, Second level of Factor B
m2.1 Cell mean for Second level of Factor A, First level of Factor B
m2.2 Cell mean for Second level of Factor A, Second level of Factor B
s1.1 Cell standard deviation for First level of Factor A, First level of Factor B
s1.2 Cell standard deviation for First level of Factor A, Second level of Factor B
s2.1 Cell standard deviation for Second level of Factor A, First level of Factor B
s2.2 Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1 Cell sample size for First level of Factor A, First level of Factor B
n1.2 Cell sample size for First level of Factor A, Second level of Factor B

n 2.1	Cell sample size for Second level of Factor A, First level of Factor B
n 2.2	Cell sample size for Second level of Factor A, Second level of Factor B
alpha	Type I error (default is .05$)$ examples anova2x2_se $(\mathrm{m} 1.1=0.85, \mathrm{~m} 1.2=0.85, \mathrm{~m} 2.1=0.00$,
	$\mathrm{m} 2.2=0.60, \mathrm{~s} 1.1=1.7, \mathrm{~s} 1.2=1.7, \mathrm{~s} 2.1=1.7, \mathrm{~s} 2.2=1.7, \mathrm{n} 1.1=250, \mathrm{n} 1.2=250, \mathrm{n} 2.1=250$, $\mathrm{n} 2.2=250$, alpha $=.05)$

Value

Power for Simple Effects Tests in a Two By Two ANOVA

Chi2x2 Compute power for an Chi Square $2 x 2$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Chi Square 2 x 2 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

Chi2x2(r1c1, r1c2, r2c1, r2c2, n, alpha $=0.05$)

Arguments

r1c1 Proportion of overall scores in Row 1, Column 1
r1c2 Proportion of overall scores in Row 1, Column 2
r2c1 Proportion of overall scores in Row 2, Column 1
r2c2 Proportion of overall scores in Row 2, Column 2
n
Total sample size
alpha Type I error (default is .05)

Value

Power for 2×2 Chi Square

Examples

Chi2x2(r1c1=.28,r1c2=.22,r2c1=.38,r2c2=.12, n=100)

Compute power for an Chi Square $2 x 3$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Chi Square 2×3 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

Chi2X3(r1c1, r1c2, r1c3, r2c1, r2c2, r2c3, n, alpha = 0.05)

Arguments

r1c1 Proportion of overall scores in Row 1, Column 1
r1c2 Proportion of overall scores in Row 1, Column 2
r1c3 Proportion of overall scores in Row 1, Column 3
r2c1 Proportion of overall scores in Row 2, Column 1
r2c2 Proportion of overall scores in Row 2, Column 2
r2c3 Proportion of overall scores in Row 2, Column 3
$\mathrm{n} \quad$ Total sample size
alpha Type I error (default is .05)

Value

Power for 2×3 Chi Square

Examples

```
Chi2X3(r1c1=.25,r1c2=.25,r1c3=.10, r2c1=.10,r2c2=.25,r2c3=.05,n=200)
```

Compute power for Chi Square Based on Effect Size Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for Chi Square Based on Effect Size Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Usage

ChiES(phi, df, nlow, nhigh, by = 1, alpha = 0.05)

Arguments

phi	phi coefficient (effect size for 2 x 2)
df	degrees of freedom
nlow	starting sample size
nhigh	ending sample size
by	Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10,12, and 14$)$ alpha
	Type I error (default is .05)

Value

Power for Chi Square Based on Effect Size

Examples

ChiES (phi=. 3, df=1, nlow=10, nhigh=200,by=10, alpha = .01)

ChiGOF
Compute power for an Chi Square Goodness of Fit Takes proportions for up to six group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Chi Square Goodness of Fit Takes proportions for up to six group. Alpha is .05 by default, alternative values may be entered by user

Usage

ChiGOF (groups, po1, po2, po3 $=$ NULL, po4 $=$ NULL, po5 $=$ NULL, po6 $=$ NULL, n, alpha $=0.05$)

Arguments

groups Number of groups
po1 Proportion observed Group 1
po2 Proportion observed Group 2
po3 Proportion observed Group 3
po4 Proportion observed Group 4
po5 Proportion observed Group 5
po6 Proportion observed Group 6
n Total sample size
alpha Type I error (default is .05)

Value

Power for Chi Square Goodness of Fit

Examples

```
ChiGOF(po1=.25, po2=.20, po3=.20, po4=.35, groups=4,n=100)
```

```
corr
```

Compute power for Pearson's Correlation Takes correlation and range of values

Description

Compute power for Pearson's Correlation Takes correlation and range of values

Usage

$\operatorname{corr}(r$, nlow, nhigh, alpha $=0.05$, tails $=2$, by $=1$)

Arguments

r	Correlation
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for Pearson's Correlation

Examples

$\operatorname{corr}(r=.30$, nlow=60, nhigh=100, by=2)

```
depb
```

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Description

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

depb (ry1, ry2, ry3 = NULL, r12, r13 = NULL, r23 = NULL, $n=$ NULL, alpha $=0.05$)

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)

Value

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors

Examples

$\operatorname{depb}(r y 1=.40, r y 2=.40, r y 3=-.40, r 12=-.15, r 13=-.60, r 23=.25, \mathrm{n}=110$, alpha=.05)
depcorr0 Compute Power for Comparing Two Dependent Correlations, No Variables in Common Takes correlations and range of values. First variable in each pair is termed predictor, second is $D V$

Description

Compute Power for Comparing Two Dependent Correlations, No Variables in Common Takes correlations and range of values. First variable in each pair is termed predictor, second is DV

Usage

depcorr0(r12, rxy, r1x, r1y, r2x, r2y, nlow, nhigh, alpha = 0.05, tails $=2$, by $=1$)

Arguments

r12	Correlation between the predictor and DV (first set of measures)		
rxy	Correlation between the predictor and DV (second set of measures)		
r1y	Correlation between the predictor (first measure) and the predictor variable (first measure)		
r2x	Correlation between the predictor (first measure) and the dependent variable (second measure)		
r2y	Correlation between the DV (first measure) and the predictor variable (first mea- sure)		
nlow	Correlation between the DV (first measure) and the dependent variable (second measure)		
nhigh	Starting sample size		
alpha	Ending sample size tails		
Type I error (default is .05)		\quad	one or two-tailed tests (default is 2)
:---			

Value

Power for Comparing Two Dependent Correlations, No Variables in Common

Examples

depcorr0(r12=.4,rxy=.7,r1x=.3,r1y=.1,r2x=.45,r2y=.35, nlow=20,nhigh=200,by=10, tails=2)
depcorr1 Compute Power for Comparing Two Dependent Correlations, One Variable in Common Takes correlations and range of values

Description

Compute Power for Comparing Two Dependent Correlations, One Variable in Common Takes correlations and range of values

Usage

depcorr1(r1y, r2y, r12, nlow, nhigh, alpha $=0.05$, tails $=2$, by $=1$)

Arguments

r1y	Correlation between the first predictor and the dependent variable
r2y	Correlation between the second predictor and the dependent variable
r12	Correlation between the first predictor and the second predictor
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for Comparing Dependent Correlations, One Variable in Common

Examples

depcorr1 (r1y=.3,r2y=.04,r12 = .2, nlow=100,nhigh=300,by=10, tails=2)

$$
\text { d_prec } \quad \text { Compute Precision Analyses for Standardized Mean Differences }
$$

Description

Compute Precision Analyses for Standardized Mean Differences

Usage

d_prec (d, nlow, nhigh, propn1 = 0.5, ci $=0.95$, tails $=2$, by $=1$)

Arguments

d
nlow

nhigh

propn1 Proportion in First Group
ci Type of Confidence Interval (e.g., .95)
tails number of tails for test (default is 2)
by Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10,12 , and 14)

Value

Precision Analyses for Standardized Mean Differences

Examples

d_prec (d=.4, nlow=100, nhigh=2000, propn1=.5, ci=.95, by=100)

indb | Power for Comparing Independent Coefficients in Multiple Regression |
| :--- |
| with Two or Three Predictors Requires correlations between all vari- |
| ables as sample size. Means, sds, and alpha are option. Also computes |
| Power(All) |

Description

Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

indb(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL,
n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL,
n2, alpha = 0.05)

Arguments

ry1_1 Correlation between DV (y) and first predictor (1), first test
ry2_1 Correlation between DV (y) and second predictor (2), first test
ry3_1 Correlation between DV (y) and third predictor (3), first test
r12_1 Correlation between first (1) and second predictor (2), first test
r13_1 Correlation between first (1) and third predictor (3), first test
r23_1 Correlation between second (2) and third predictor (3), first test

n1	Sample size first test
ry1_2	Correlation between DV (y) and first predictor (1), second test
ry2_2	Correlation between DV (y) and second predictor (2), second test
ry3_2	Correlation between DV (y) and third predictor (3), second test
r12_2	Correlation between first (1) and second predictor (2), second test
r13_2	Correlation between first (1) and third predictor (3), second test
r23_2	Correlation between second (2) and third predictor (3), second test
n2	Sample size second test
alpha	Type I error (default is .05)

Value

Power for Comparing Independent Coefficients in Multiple Regression

Examples

```
indb(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25,
n1=50,n2=50, alpha=.05)
```

indcorr Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

Description

Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

Usage

indcorr(r1, r2, nlow, nhigh, propn1 = 0.5, alpha = 0.05, tails = 2, by = 1)

Arguments

$r 1 \quad$ Correlation for Group 1
r2 Correlation for Group 2
nlow Starting sample size
nhigh Ending sample size
propn1 Proportion of sample in first group (default is . 50 for equally size groups)
alpha Type I error (default is .05)
tails one or two-tailed tests (default is 2)
by Incremental increase in sample size from low to high

Value

Power for Comparing Two Independent Correlations

Examples

indcorr $(r 1=.3, r 2=.1$, nlow=200, nhigh $=800$, by=50, tails=1)
indR2
Power for Comparing Independent $R 2$ in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Description

Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

indR2(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL, n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL, n2, alpha $=0.05$, tails = 2)

Arguments

ry1_1 Correlation between DV (y) and first predictor (1), first test
ry2_1 Correlation between DV (y) and second predictor (2), first test
ry3_1 Correlation between DV (y) and third predictor (3), first test
r12_1 Correlation between first (1) and second predictor (2), first test
r 13_1 Correlation between first (1) and third predictor (3), first test
r23_1 Correlation between second (2) and third predictor (3), first test
n1 Sample size first test
ry1_2 Correlation between DV (y) and first predictor (1), second test
ry2_2 Correlation between DV (y) and second predictor (2), second test
ry3_2 Correlation between DV (y) and third predictor (3), second test
r12_2 Correlation between first (1) and second predictor (2), second test
r13_2 Correlation between first (1) and third predictor (3), second test
r23_2 Correlation between second (2) and third predictor (3), second test
n2 Sample size second test
alpha Type I error (default is .05)
tails number of tails for test (default is 2)

Value

Power for Comparing R2 Coefficients in Multiple Regression

Examples

```
indR2(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-. 15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15, r13_2=-.60, r23_2=.25,
n1=115,n2=115, alpha=.05)
```

 indt
 Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

indt (m1 = NULL, m2 = NULL, s1 = NULL, s2 = NULL, n1 = NULL, n2 = NULL, alpha = 0.05)

Arguments

$m 1$	Mean of first group
$m 2$	Mean of second group
s1	Standard deviation of first group
s2	Standard deviation of second group
n1	Sample size for first group
n2	Sample size for second group
alpha	Type I error (default is .05)

Value

Power for Independent Samples t-test

Examples

```
indt(m1=22,m2=20, s1=5, s2=5, n1=99,n2=99)
indt(m1=1.3, m2=0, s1=4,s2=1,n1=78,n2=234)
```

1mm1F Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

lmm1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n, alpha $=0.05$)

Arguments

$m 1$	Mean of first time point
$m 2$	Mean of second time point
$m 3$	Mean of third time point
$m 4$	Mean of fourth time point
$s 1$	Standard deviation of first time point
$s 2$	Standard deviation of second time point
$s 3$	Standard deviation of third time point
$s 4$	Standard deviation of forth time point
$r 12$	correlation Time 1 and Time 2
$r 13$	correlation Time 1 and Time 3
$r 14$	correlation Time 1 and Time 4
$r 23$	correlation Time 2 and Time 3
$r 24$	correlation Time 2 and Time 4
$r 34$	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects Linear Mixed Model

Examples

```
lmm1F(m1 =- . 25,m2=.00,m3=.10, m4=.15, s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
lmm1F(m1 =- . 25,m2=.00,m3=.10,m4=.15, s1=.4, s2=.5, s3=2.5,s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)
```

lmm1Ftrends
Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

lmm1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n, alpha = 0.05)

Arguments

m1 Mean of first time point
m2 Mean of second time point
m3 Mean of third time point
m4 Mean of fourth time point
s1 Standard deviation of first time point
s2 Standard deviation of second time point
s3 Standard deviation of third time point
s4 Standard deviation of forth time point
r12 correlation Time 1 and Time 2
r13 correlation Time 1 and Time 3
r14 correlation Time 1 and Time 4
r23 correlation Time 2 and Time 3
r24 correlation Time 2 and Time 4
r34 correlation Time 3 and Time 4
$\mathrm{n} \quad$ Sample size for first group
alpha Type I error (default is .05)

Value

Power for the One Factor Within Subjects LMM Trends

Examples

lmm1Ftrends (m1 $=-.25, \mathrm{~m} 2=-.15, \mathrm{~m} 3=-.05, \mathrm{~m} 4=.05, \mathrm{~s} 1=.4, \mathrm{~s} 2=.5, \mathrm{~s} 3=.6, \mathrm{~s} 4=.7$,
$r 12=.50, r 13=.30, r 14=.15, r 23=.5, r 24=.30, r 34=.50, n=25$)
lmm1w1b
Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

lmm1w1b(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, $\mathrm{m} 4.2=\mathrm{NA}, \mathrm{s} 1.1=\mathrm{NA}, \mathrm{s} 2.1=\mathrm{NA}, \mathrm{s} 3.1=\mathrm{NA}, \mathrm{s} 4.1=\mathrm{NA}$, $\mathrm{s} 1.2=\mathrm{NA}, \mathrm{s} 2.2=\mathrm{NA}, \mathrm{s} 3.2=\mathrm{NA}, \mathrm{s} 4.2=\mathrm{NA}, \mathrm{r} 1.2 _1=\mathrm{NULL}$, r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL,
r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL,
r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, r = NULL,
s = NULL, n, alpha = 0.05)

Arguments

m1. 1
m2.1 Mean of second level Within Factor, 1st level Between Factor
m3.1 Mean of third level Within Factor, 1st level Between Factor
m4.1 Mean of fourth level Within Factor, 1st level Between Factor
m1.2 Mean of first level Within Factor, 2nd level Between Factor
m2.2 Mean of second level Within Factor, 2nd level Between Factor
m3.2 Mean of third level Within Factor, 2nd level Between Factor
m4.2 Mean of fourth level Within Factor, 2nd level Between Factor
s1.1 Standard deviation of first level Within Factor, 1st level Between Factor
s2.1 Standard deviation of second level Within Factor, 1st level Between Factor
s3.1 Standard deviation of third level Within Factor, 1st level Between Factor
s4.1 Standard deviation of forth level Within Factor, 1st level Between Factor

s1.2	Standard deviation of first level Within Factor, 2nd level Between Factor
s2.2	Standard deviation of second level Within Factor, 2nd level Between Factor
s3.2	Standard deviation of third level Within Factor, 2nd level Between Factor
s4.2	Standard deviation of forth level Within Factor, 2nd level Between Factor
r1.2_1	correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between
r1.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r1.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r2.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r2.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r3.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r1.2_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r1.3_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r1.4_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r2.3_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r2.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r3.4_2	sets same correlations between DVs on all factor levels (seriously, just use this)
r	sets same standard deviation for factor levels (see comment above)
s	Sample size for first group
n	Type I error (default is .05)

Value

Power for the One Factor Within Subjects and One Factor Between LMM

Examples

$$
\begin{aligned}
& l m m 1 w 1 b(m 1.1=-.25, m 2.1=0, m 3.1=0.10, m 4.1=.15, \\
& \mathrm{m} 1.2=-.25, \mathrm{~m} 2.2=-.25, \mathrm{~m} 3.2=-.25, \mathrm{~m} 4.2=-.25, \\
& \mathrm{~s} 1.1=.4, \mathrm{~s} 2.1=.5, \mathrm{~s} 3.1=0.6, \mathrm{~s} 4.1=.7, \\
& \mathrm{~s} 1.2=.4, \mathrm{~s} 2.2=.5, \mathrm{~s} 3.2=.6, \mathrm{~s} 4.2=.7, \mathrm{n}=50, \\
& \mathrm{r} 1.2 _1=.5, \mathrm{r} 1.3 _1=.3, \mathrm{r} 1.4 _1=.15, \mathrm{r} 2.3 _1=.5, r 2.4 _1=.3, \mathrm{r} 3.4 _1=.5, \\
& \left.\mathrm{r} 1.2 _2=.5, \mathrm{r} 1.3 _2=.3, \mathrm{r} 1.4 _2=.15, \mathrm{r} 2.3 _2=.5, \mathrm{r} 2.4 _2=.3, \mathrm{r} 3.4 _2=.5\right) \\
& \mathrm{lmm} 1 w 1 \mathrm{~b}(\mathrm{~m} 1.1=--.25, \mathrm{~m} 2.1=0, \mathrm{~m} 3.1=0.10, \mathrm{~m} 4.1=.15, \\
& \mathrm{m} 1.2=-.25, \mathrm{~m} 2.2=-.25, \mathrm{~m} 3.2=-.25, \mathrm{~m} 4.2=-.25, \mathrm{~s}=.4, r=.5, \mathrm{n}=100)
\end{aligned}
$$

lmm2F
Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

lmm2F (m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, $\mathrm{m} 4.2=\mathrm{NA}, \mathrm{s} 1.1=\mathrm{NA}, \mathrm{s} 2.1=\mathrm{NA}, \mathrm{s} 3.1=\mathrm{NA}, \mathrm{s} 4.1=\mathrm{NA}$, s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL, $r 13=$ NULL, $r 14=$ NULL, $r 15=$ NULL, $r 16=$ NULL, $r 17=$ NULL, r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL, r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL, r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL, r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL, r68 = NULL, r78 = NULL, $r=$ NULL, $s=$ NULL, $n, ~ a l p h a=0.05)$

Arguments

m1.1 Mean of first level factor 1, 1st level factor two
m2.1 Mean of second level factor 1, 1st level factor two
m3.1 Mean of third level factor 1, 1st level factor two
m4.1 Mean of fourth level factor 1, 1st level factor two
m1.2 Mean of first level factor 1, 2nd level factor two
m2.2 Mean of second level factor 1, 2nd level factor two
m3.2 Mean of third level factor 1, 2nd level factor two
m4.2 Mean of fourth level factor 1, 2nd level factor two
s1.1 Standard deviation of first level factor 1, 1st level factor two
s2.1 Standard deviation of second level factor 1, 1st level factor two
s3.1 Standard deviation of third level factor 1, 1st level factor two
s4.1 Standard deviation of forth level factor 1, 1st level factor two
s1.2 Standard deviation of first level factor 1, 2nd level factor two
s2.2 Standard deviation of second level factor 1, 2nd level factor two
s3.2 Standard deviation of third level factor 1, 2nd level factor two
s4.2 Standard deviation of forth level factor 1, 2nd level factor two

r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
s	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the Two Factor Within Subjects LMM

Examples

$1 \mathrm{~mm} 2 \mathrm{~F}(\mathrm{~m} 1.1=-.25, \mathrm{~m} 2.1=0, \mathrm{~m} 1.2=-.25, \mathrm{~m} 2.2=.10, \mathrm{~s} 1.1=.4, \mathrm{~s} 2.1=.5, \mathrm{~s} 1.2=.4, \mathrm{~s} 2.2=.5, r=.5, \mathrm{n}=200)$
lmm2Fse
Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

lmm2Fse(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, $\mathrm{m} 4.2=\mathrm{NA}, \mathrm{s} 1.1=\mathrm{NA}, \mathrm{s} 2.1=\mathrm{NA}, \mathrm{s} 3.1=\mathrm{NA}, \mathrm{s} 4.1=\mathrm{NA}$, s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL, $r 13=$ NULL, $r 14=$ NULL, $r 15=$ NULL, $r 16=$ NULL, $r 17=$ NULL, r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL, r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL, r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL, r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL, r68 = NULL, r78 = NULL, $r=$ NULL, $s=$ NULL, $n, ~ a l p h a=0.05)$

Arguments

m1 1
m. Mean of first level factor 1, 1st level factor two
m2.1 Mean of second level factor 1, 1st level factor two
m3.1 Mean of third level factor 1, 1st level factor two
m4.1 Mean of fourth level factor 1, 1st level factor two
m1.2 Mean of first level factor 1, 2nd level factor two
m2.2 Mean of second level factor 1, 2nd level factor two
m3.2 Mean of third level factor 1, 2nd level factor two
m4.2 Mean of fourth level factor 1, 2nd level factor two
s1.1 Standard deviation of first level factor 1, 1st level factor two
s2.1 Standard deviation of second level factor 1, 1st level factor two
s3.1 Standard deviation of third level factor 1, 1st level factor two
s4.1 Standard deviation of forth level factor 1, 1st level factor two
s1.2 Standard deviation of first level factor 1, 2nd level factor two
s2.2 Standard deviation of second level factor 1, 2nd level factor two
s3.2 Standard deviation of third level factor 1, 2nd level factor two
s4.2 Standard deviation of forth level factor 1, 2nd level factor two

r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3 error (default is .05)
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	sets same correlations between DVs on all factor levels (seriously, just use this)
r	same standard deviation for factor levels (see comment above)
s	Tpha

Value

Power for Simple Effects in Two Factor Within Subjects LMM

Examples

$$
\begin{aligned}
& \operatorname{lmm} 2 F s e(m 1.1=-.25, m 2.1=0, m 3.1=.10, m 4.1=.15, m 1.2=-.25, m 2.2=.10, m 3.2=.30, m 4.2=.35, \\
& s 1.1=.4, s 2.1=.5, s 3.1=2.5, s 4.1=2.0, s 1.2=.4, s 2.2=.5, s 3.2=2.5, s 4.2=2.0, r=.5, n=220)
\end{aligned}
$$

| LRcatCompute Power for Logistic Regression with a Single Categorical Pre-
 dictor |
| :--- | :--- |

Description

Compute Power for Logistic Regression with a Single Categorical Predictor

Usage

```
LRcat \((\mathrm{p} 0=\) NULL, \(\mathrm{p} 1=\) NULL, prop \(=0.5\), alpha \(=0.05\), power,
    R2 = 0)
```


Arguments

p0 Probability of a Desirable Outcome in the Control Condition
p1 Probability of a Desirable Outcome in the Treatment Condition
prop Proportion in the Treatment Condition
alpha Type I error (default is .05)
power Desired Power
R2 How Well Predictor of Interest is Explained by Other Predictors (default is 0)

Value

Power for Logistic Regression with a Single Categorical Predictor

Examples

$\operatorname{LRcat}(\mathrm{p} 0=.137, \mathrm{p} 1=.611, \mathrm{prop}=.689$, power=$=.95)$

LRcont Compute Power for Logistic Regression with Continuous Predictors

Description

Compute Power for Logistic Regression with Continuous Predictors

Usage

LRcont (OR = NA, $r=N A, E R=N U L L$, alpha $=0.05$, power $=$ NULL, R2 = 0)

Arguments

OR	Odds Ratio for Predictor of Interest
r	Correlation for Predictor of Interest
ER	Event Ratio Probability of a Desirable Outcome Overall
alpha	Type I error (default is .05)
power	Desired Power
R2	How Well Predictor of Interest is Explained by Other Predictors (default is 0)

Value

Power for Logistic Regression with Continuous Predictors

Examples

```
LRcont(OR = 4.05, ER = .463, power=.95)
```

MANOVA1f Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

MANOVA1f(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, $m 4.2=N A, s 1.1=N A, s 2.1=N A, s 3.1=N A, s 4.1=N A$, s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL, r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL, r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL, r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, $r=$ NULL, $s=$ NULL, n, alpha $=0.05$)

Arguments

m1. 1
Mean of first DV, 1st level Between Factor
m2.1 Mean of second DV, 1st level Between Factor
m3.1 Mean of third DV, 1st level Between Factor
m4.1 Mean of fourth DV, 1st level Between Factor

m1. 2	Mean of first DV, 2nd level Between Factor
m2.2	Mean of second DV, 2nd level Between Factor
m3.2	Mean of third DV, 2nd level Between Factor
m4.2	Mean of fourth DV, 2nd level Between Factor
s1.1	Standard deviation of first DV, 1st level Between Factor
s2.1	Standard deviation of second DV, 1st level Between Factor
s3.1	Standard deviation of third DV, 1st level Between Factor
s4.1	Standard deviation of forth DV, 1st level Between Factor
s1.2	Standard deviation of first DV, 2nd level Between Factor
s2.2	Standard deviation of second DV, 2nd level Between Factor
s3.2	Standard deviation of third DV, 2nd level Between Factor
s4.2	Standard deviation of forth DV, 2nd level Between Factor
r1.2_1	correlation DV 1 and DV 2, 1st level Between
r1.3_1	correlation DV 1 and DV 3, 1st level Between
r1.4_1	correlation DV 1 and DV 4, 1st level Between
r2.3_1	correlation DV 1 and DV 3, 1st level Between
r2.4_1	correlation DV 1 and DV 4, 1st level Between
r3.4_1	correlation DV 1 and DV 4, 1st level Between
r1.2_2	correlation DV 1 and DV 2, 2nd level Between
r1.3_2	correlation DV 1 and DV 3, 2nd level Between
r1.4_2	correlation DV 1 and DV 4, 2nd level Between
r2.3_2	correlation DV 1 and DV 3, 2nd level Between
r2.4_2	correlation DV 1 and DV 4, 2nd level Between
r3.4_2	correlation DV 1 and DV 4, 2nd level Between
r	sets same correlations between DVs on all factor levels (seriously, just use this)
s	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects and One Factor Between ANOVA

Examples

```
MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,
m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,
s1.1=.4, s2.1=5, s3.1=1.6, s4.1=1.2,
s1.2=.4, s2.2=5, s3.2=1.6,s4.2=1.2,
r1.2_1=.1,r1.3_1=.1,r1.4_1=.1,
r2.3_1=.35,r2.4_1=.45,r3.4_1=.40,
```

```
r1.2_2=.1,r1.3_2=.1,r1.4_2=.1,
r2.3_2=.35,r2.4_2=.45,r3.4_2=.40,alpha=.05)
MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,
m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,
s=.4,r=.5,alpha=.05)
```

md_prec Compute Precision Analyses for Mean Differences

Description

Compute Precision Analyses for Mean Differences

Usage

md_prec(m1, m2, s1, s2, nlow, nhigh, propn1 $=0.5$, ci $=0.95$, by $=1$)

Arguments

m 1	Mean of first group
m 2	Mean of second group
s 1	Standard deviation of first group
s 2	Standard deviation of second group
nlow	starting sample size
nhigh	ending sample size
propn1	Proportion in First Group
ci	Type of Confidence Interval (e.g., .95) Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces by

Value

Precision Analyses for Mean Differences

Examples

```
md_prec(m1=2,m2 =0, s1=5, s2=5,nlow=100, nhigh =1600, propn1=.5, ci=.95, by=100)
md_prec(m1=0,m2 =0, s1=5, s2=5,nlow=100, nhigh =40000, propn1=.5, ci=.95, by=1000)
```

Compute Power for Mediated (Indirect) Effects Requires correlations between all variables as sample size.

Description

Compute Power for Mediated (Indirect) Effects Requires correlations between all variables as sample size.

Usage

> med $(r \times m 1, r x m 2=0, r x m 3=0, r x m 4=0, r x y, r y m 1, r y m 2=0$, $r y m 3=0, r y m 4=0, r m 1 \mathrm{~m} 2=0, r m 1 \mathrm{~m} 3=0, r m 1 \mathrm{~m} 4=0$, $r m 2 \mathrm{~m} 3=0, r m 2 m 4=0, r m 3 \mathrm{~m} 4=0$, alpha $=0.05$, mvars, $n)$

Arguments

rxm1	Correlation between predictor (x) and first mediator (m1)
rxm2	Correlation between predictor (x) and second mediator (m2)
rxm3	Correlation between predictor (x) and third mediator (m3)
rxm4	Correlation between predictor (x) and fourth mediator (m4)
rxy	Correlation between DV (y) and predictor (x)
rym1	Correlation between DV (y) and first mediator (m1)
rym2	Correlation between DV (y) and second mediator (m2)
rym3	Correlation DV (y) and third mediator (m3)
rym4	Correlation DV (y) and fourth mediator (m4)
rm1m2	Correlation first mediator (m1) and second mediator (m2)
rm1m3	Correlation first mediator (m1) and third mediator (m3)
rm1m4	Correlation first mediator (m1) and fourth mediator (m4)
rm2m3	Correlation second mediator (m2) and third mediator (m3)
rm2m4	Correlation second mediator (m2) and fourth mediator (m4)
rm3m4	Correlation third mediator (m3) and fourth mediator (m4)
alpha	Type I error (default is .05)
mvars	Number of Mediators
n	Sample size

Value

Power for Mediated (Indirect) Effects

Examples

```
med(rxm1=.25, rxy=-.35, rym1=-.5,mvars=1, n=150)
med(rxm1=.3, rxm2=.3, rxm3=.25, rxy=-. 35, rym1=-.5,rym2=-.5, rym3 = -. 5,
rm1m2=.7, rm1m3=.4,rm2m3=.4, mvars=3, n=150)
```


MRC

Compute power for Multiple Regression with up to Five Predictors Example code below for three predictors. Expand as needed for four or five

Description

Compute power for Multiple Regression with up to Five Predictors Example code below for three predictors. Expand as needed for four or five

Usage

MRC(ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 = NULL, r12 = NULL, r13 = NULL, r14 = NULL, r15 = NULL, r23 = NULL, r24 $=$ NULL, r25 $=$ NULL, r34 $=$ NULL, r35 $=$ NULL, r45 $=$ NULL, $\mathrm{n}=$ NULL, alpha $=0.05$)

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
ry4	Correlation between DV (y) and fourth predictor (4)
ry5	Correlation between DV (y) and fifth predictor (5)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r14	Correlation between first (1) and fourth predictor (4)
r15	Correlation between first (1) and fifth predictor (5)
r23	Correlation between second (2) and third predictor (3)
r24	Correlation between second (2) and fourth predictor (4)
r25	Correlation between second (2) and fifth predictor (5)
r34	Correlation between third (3) and fourth predictor (4)
r35	Correlation between third (3) and fifth predictor (5)
r45	Correlation between fourth (4) and fifth predictor (5)
n	Sample size
alpha	Type I error (default is .05)

Value

Power for Multiple Regression with Two to Five Predictors

Examples

```
MRC(ry1=.40,ry2=.40, r12=-.15,n=30)
MRC(ry1=.40,ry2=.40,ry3=-.40, r12=-.15, r13=-.60,r23=.25,n=24)
```

MRC_all Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Description

Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

MRC_all(ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 $=$ NULL, r12 $=$ NULL, r13 $=$ NULL, r14 $=$ NULL, r15 $=$ NULL, r23 $=$ NULL, r24 $=$ NULL, r25 $=$ NULL, r34 $=$ NULL, r35 $=$ NULL, r45 $=$ NULL, $\mathrm{n}=$ NULL, alpha $=0.05$, rep $=10000$)

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
ry4	Correlation between DV (y) and fourth predictor (4)
ry5	Correlation between DV (y) and fifth predictor (5)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r14	Correlation between first (1) and fourth predictor (4)
r15	Correlation between first (1) and fifth predictor (5)
r23	Correlation between second (2) and third predictor (3)
r24	Correlation between second (2) and fourth predictor (4)
r25	Correlation between second (2) and fifth predictor (5)
r34	Correlation between third (3) and fourth predictor (4)
r35	Correlation between third (3) and fifth predictor (5)
r45	Correlation between fourth (4) and fifth predictor (5)
n	Sample size
alpha	Type I error (default is .05)
rep	number of replications (default is 10000)

Value
Power for Multiple Regression (ALL)

Examples

```
MRC_all(ry1=. 50, ry2=.50,ry3=.50, r12=.2, r13=.3,r23=.4,n=82, rep=10000)
```

MRC_short2 | Compute Multiple Regression shortcuts with three predictors for Ind |
| :--- |
| Coefficients Requires correlations between all variables as sample |
| size. Means and sds are option. Also computes Power(All) |

Description

Compute Multiple Regression shortcuts with three predictors for Ind Coefficients Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Usage

MRC_short2(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL, n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL, n2, alpha = 0.05, my_1 = 0, m1_1 = 0, m2_1 = 0, m3_1 = 0, s1_1 = 1, s2_1 = 1, s3_1 = 1, sy_1 = 1, my_2 = 0, $\mathrm{m} 1 _2=0, \mathrm{~m} 2 _2=0, \mathrm{~m} 3 _2=0, \mathrm{~s} 1 _2=1, \mathrm{~s} 2 _2=1, \mathrm{~s} 3 _2=1$, sy_2 = 1)

Arguments

ry1_1
ry2_1 Correlation between DV (y) and second predictor (2), first group
ry3_1 Correlation between DV (y) and third predictor (3), first group
r12_1 Correlation between first (1) and second predictor (2), first group
r13_1 Correlation between first (1) and third predictor (3), first group
r23_1 Correlation between second (2) and third predictor (3), first group
n1 Sample size, first group
ry1_2 Correlation between DV (y) and first predictor (1), second group
ry2_2 Correlation between DV (y) and second predictor (2), second group
ry3_2 Correlation between DV (y) and third predictor (3), second group
r12_2 Correlation between first (1) and second predictor (2), second group
$r 13 _2 \quad$ Correlation between first (1) and third predictor (3), second group
r23_2 Correlation between second (2) and third predictor (3), second group
n2 Sample size, second group
alpha Type I error (default is .05)

my_1	Mean of DV (default is 0), first group
m1_1	Mean of first predictor (default is 0), first group
m2_1	Mean of second predictor (default is 0), first group
m3_1	Mean of third predictor (default is 0), first group
s1_1	Standard deviation of first predictor (default is 1), first group
s2_1	Standard deviation of second predictor (default is 1), first group
s3_1	Standard deviation of third predictor (default is 1), first group
sy_1	Standard deviation of DV (default is 1), first group
my_2	Mean of DV (default is 0), second group
m1_2	Mean of first predictor (default is 0), second group
m2_2	Mean of second predictor (default is 0), second group
m3_2	Mean of third predictor (default is 0), second group
s1_2	Standard deviation of first predictor (default is 1), second group
s2_2	Standard deviation of second predictor (default is 1), second group
s3_2	Standard deviation of third predictor (default is 1), second group
sy_2	Standard deviation of DV (default is 1), second group

Value

Multiple Regression shortcuts with three predictors for Ind Coefficients

Examples

```
MRC_short2(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25,
n1=50, n2=50, alpha=.05,my_1=1,m1_1=1,m2_1=1,m3_1=1,
sy_1=7, s1_1=1, s2_1=1, s3_1=2,
my_2=1,m1_2=1,m2_2=1,m3_2=1,sy_2=7, s1_2=1,s2_2=1,s3_2=2)
```

MRC_shortcuts Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Description

Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Usage

MRC_shortcuts(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL, $r 13=$ NULL, $r 23=$ NULL, $n=100$, alpha $=0.05, \mathrm{my}=0$, $\mathrm{m} 1=0, \mathrm{~m} 2=0, \mathrm{~m} 3=0, \mathrm{~s} 1=1, \mathrm{~s} 2=1, \mathrm{~s} 3=1$, $\mathrm{sy}=1$)

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)
my	Mean of DV (default is 0)
m1	Mean of first predictor (default is 0)
m2	Mean of second predictor (default is 0)
m3	Mean of third predictor (default is 0)
s1	Standard deviation of first predictor (default is 1)
s2	Standard deviation of second predictor (default is 1)
s3	Standard deviation of third predictor (default is 1)
sy	Standard deviation of DV (default is 1)

Value

Multiple Regression shortcuts with three predictors

Examples

MRC_shortcuts $(r y 1=.40, r y 2=.40, r y 3=-.40, r 12=-.15, r 13=-.60, r 23=.25$,
$n=110, m y=1, m 1=1, m 2=1, m 3=1, s y=7, s 1=1, s 2=1, s 3=2)$
pairt Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is .05 by default, alternative values may be entered by user. correlation (r) defaults to . 50 .

Description

Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is .05 by default, alternative values may be entered by user. correlation (r) defaults to . 50 .

Usage

pairt(m1 $=$ NULL, $m 2=$ NULL, $s=$ NULL, $n=$ NULL, $r=$ NULL, alpha $=0.05$)

Arguments

m 1	Mean for Pre Test
m 2	Mean for Post Test
s	Standard deviation
n	Sample size
r	Correlation pre-post measures (default is .50)
alpha	Type I error (default is .05)

Value

Power for the Paired t -test

Examples

```
    pairt(m1 = 25,m2=20, s = 5, n = 25, r = .5)
```

prop1 Compute power for a single sample proportion test Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a single sample proportion test Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Usage

prop1 (p1, p0, nlow, nhigh, alpha $=0.05$, tails $=2$, by $=1$)

Arguments

p1
expected proportion (a.k.a. alternative proportion)
p0 null proportion
nlow starting sample size
nhigh ending sample size
alpha Type I error (default is .05)
tails number of tails for test (default is 2)
by Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10,12 , and 14)

Value

Power for Tests of Single Proportion

Examples

$\operatorname{prop} 1(\mathrm{p} 1=.60, \mathrm{p} 0=.42, \mathrm{nlow}=20$, nhigh=100, tails=1, by=10)

Compute power for Tests of Two Independent Proportions Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for Tests of Two Independent Proportions Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Usage

propind(p1, p2, nlow, nhigh, nratio $=0.5$, alpha $=0.05$, tails $=2$, by = 1)

Arguments

p1	expected proportion Group 1
p2	expected proportion Group 2
nlow	starting sample size
nhigh	ending sample size
nratio	ratio of sample size of first group to second (default is .5 for equally sized groups)
alpha	Type I error (default is .05) tails
number of tails for test (default is 2$)$	

Value

Power for Tests of Two Independent Proportions

Examples

```
propind(p1=.62, p2=.55,nlow=200,nhigh=2500, by=100,nratio=.2)
```

Compute power for $R 2$ change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

Description

Compute power for R2 change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

Usage

R2ch(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL, r13 = NULL, r23 = NULL, $\mathrm{n}=$ NULL, alpha $=0.05$, my $=0, \mathrm{~m} 1=0, \mathrm{~m} 2=0$, $\mathrm{m} 3=0, \mathrm{~s} 1=1$, $\mathrm{s} 2=1, \mathrm{~s} 3=1$, sy = 1)

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)
my	Mean of DV (default is 0)
m1	Mean of first predictor (default is 0)
m2	Mean of second predictor (default is 0)
m3	Mean of third predictor (default is 0)
s1	Standard deviation of first predictor (default is 1)
s2	Standard deviation of second predictor (default is 1)
s3	Standard deviation of third predictor (default is 1)
sy	Standard deviation of DV (default is 1)

Value

Power for R2 change in Multiple Regression (up to three predictors)

Examples

$$
\operatorname{R2ch}(r y 1=.40, r y 2=.40, r y 3=-.40, r 12=-.15, r 13=-.60, r 23=.25, n=24)
$$

R2_prec | Compute Precision Analyses for R-Squared This approach simply |
| :--- |
| loops a function from MBESS |

Description

Compute Precision Analyses for R-Squared This approach simply loops a function from MBESS

Usage

R2_prec(R2, nlow, nhigh, pred, ci = 0.95, by = 1)

Arguments

R2	R-squared
nlow	starting sample size
nhigh	ending sample size
pred	Number of Predictors
ci	Type of Confidence Interval (e.g., .95)
by	Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10,12, and 14$)$

Value

Precision Analyses for R-Squared

Examples

```
R2_prec(R2=.467, nlow=24, nhigh=100, pred=3, by=4)
```

regint | Compute Power for Regression Interaction (Correlation/Coefficient |
| :--- |
| Approach) |

Description

Compute Power for Regression Interaction (Correlation/Coefficient Approach)

Usage

regint(Group1, Group2, $s x 1=1, s x 2=1, s y 1=1$, sy2 = 1, nlow, nhigh, alpha $=0.05$, Prop_n1 $=0.5$, by $=2$, Estimates $=1$)

Arguments

Group1	Estimates (r or b) for Group 1
Group2	Estimates (r or b) for Group 2
$\mathrm{sx1}$	Standard deviation of predictor, group 1 (defaults to 1)
$\mathrm{sx2}$	Standard deviation of predictor, group 2 (defaults to 1)
sy1	Standard deviation of outcome, group 1 (defaults to 1)
sy2	Standard deviation of outcome, group 2 (defaults to 1)
nlow	starting sample size
nhigh	ending sample size
alpha	Type I error (default is .05) Prop_n1
Proportion of Sample in First Group (defaults to equal sample sizes)	
by	incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10, 12, and 14)
Estimates	1 for Correlations (default), 2 for coefficients

Value

Power for Regression Interaction (Correlation/Coefficient Approach)

Examples

```
regint(Group1=-. 26,Group2=.25, alpha=.05,Prop_n1=0.5,nlow=110, nhigh=140,by=2,Estimates=1)
```


Description

Compute Power for Regression Interaction (R2 Change Approach)

Usage

regintR2(R2Mod, R2Ch, mod_pred, ch_pred, nlow, nhigh, by = 1, alpha = 0.05)

Arguments

R2Mod	Full Model R2
R2Ch	Change in R2 Added by Interaction
mod_pred	Full Model Number of Predictors
ch_pred	Change Model Number of Predictors
nlow	starting sample size

```
nhigh ending sample size
by incremental increase in sample (e.g. nlow = 10, nhigh =24, by =2, produces
                                estimates of 10, 12, and 14)
alpha Type I error (default is .05)
```

Value
Power for Regression Interaction (R2 Change Approach)

Examples

regintR2(R2Mod=.092,R2Ch=.032,mod_pred=3, ch_pred=1,nlow=100,nhigh=400,by=20)

$$
\begin{array}{ll}
\text { r_prec } & \begin{array}{l}
\text { Compute Precision Analyses for Correlations This approach simply } \\
\text { loops a function from MBESS }
\end{array}
\end{array}
$$

Description

Compute Precision Analyses for Correlations This approach simply loops a function from MBESS

Usage

r_prec(r, nlow, nhigh, ci = 0.95, by = 1)

Arguments

r

nlow starting sample size
nhigh ending sample size
ci Type of Confidence Interval (e.g., .95)
by Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces estimates of 10,12 , and 14)

Value

Precision Analyses for Correlations

Examples

r_prec(r=.3, nlow=80, nhigh=400, by=20, ci=.95)

Compute power for a t test using d statistic Takes d, sample size range, type of test, and tails.

Description

Compute power for a t test using d statistic Takes d, sample size range, type of test, and tails.

Usage

tfromd(d, nlow, nhigh, alpha $=0.05$, test $=" I "$, tails $=2$, by $=1$)

Arguments

d	standardize mean difference (Cohen's d)
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
test	"I" for independent, "P" for paired
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for the t -test from d statistic

Examples

tfromd(d=.2, nlow=10, nhigh=200, by=10, test="P")
tfromd($d=.2$, nlow=10, nhigh=200, by=10, test="I")

```
win1bg1
```

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
win1bg1(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
    m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
    s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL,
    r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL,
    r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL,
    r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, r = NULL,
    s = NULL, n, alpha = 0.05)
```


Arguments

m1. 1
m2. 1
Mean of first level Within Factor, 1st level Between Factor Mean of second level Within Factor, 1st level Between Factor
m3. 1
m4. 1 Mean of third level Within Factor, 1st level Between Factor
m1.2 Mean of first level Within Factor, 2nd level Between Factor Mean of fourth level Within Factor, 1st level Between Factor
m2.2 Mean of second level Within Factor, 2nd level Between Factor
m3.2 Mean of third level Within Factor, 2nd level Between Factor
m4.2 Mean of fourth level Within Factor, 2nd level Between Factor
s1.1 Standard deviation of first level Within Factor, 1st level Between Factor
s2.1 Standard deviation of second level Within Factor, 1st level Between Factor
s3.1 Standard deviation of third level Within Factor, 1st level Between Factor
s4.1 Standard deviation of forth level Within Factor, 1st level Between Factor
s1.2 Standard deviation of first level Within Factor, 2nd level Between Factor
s2.2 Standard deviation of second level Within Factor, 2nd level Between Factor
s3.2 Standard deviation of third level Within Factor, 2nd level Between Factor
s4.2 Standard deviation of forth level Within Factor, 2nd level Between Factor
r1.2_1 correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between
r1.3_1 correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r1.4_1 correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r2.3_1 correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r2.4_1 correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r3.4_1 correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r1.2_2 correlation Within Factor Level 1 and Within Factor, Level 2, 2nd level Between
r1.3_2 correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r1.4_2 correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r2.3_2 correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r2.4_2 correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r3.4_2 correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r
$s \quad$ sets same standard deviation for factor levels (see comment above)
n Sample size for first group
alpha Type I error (default is .05)
win1F

Value

Power for the One Factor Within Subjects and One Factor Between ANOVA

Examples

```
win1bg1(m1.1 = -. 25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-. 25,m3.2=-.25, m4.2=-.25,
s1.1 = .4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4,s2.2=.5,s3.2=.6, s4.2=.7,n = 50,
r1.2_1=.5,r1.3_1=.3,r1.4_1=.15,r2.3_1=.5,r2.4_1=.3,r3.4_1=.5,
r1.2_2=.5,r1.3_2=.3,r1.4_2=.15, r2.3_2=.5,r2.4_2=.3,r3.4_2=.5)
win1bg1(m1.1 = -. 25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-. 25,m3.2=-.25, m4.2=-.25, s=.4, r = .5, n = 100)
```

```
win1F
```

Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

win1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n, alpha $=0.05$)

Arguments

m1
Mean of first time point
m2
m3
m4 Mean of fourth time point
s1
s2
s3
s4
r12
r13 correlation Time 1 and Time 3
r14 correlation Time 1 and Time 4
r23 correlation Time 2 and Time 3

r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects ANOVA

Examples

```
win1F(m1=-. 25,m2=.00,m3=.10, m4=. 15, s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
win1F(m1=-. 25,m2=.00,m3=.10,m4=.15,s1=.4, s2=.5, s3=2.5, s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)
```

```
win1Ftrends
```

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

win1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, $r 34=$ NULL, n, alpha $=0.05$)

Arguments

m1
Mean of first time point
m2
m3
m4 Mean of fourth time point
s1
s2
s3
s4
r12 correlation Time 1 and Time 2
r13
Mean of second time point
Mean of third time point

Standard deviation of first time point
Standard deviation of second time point
Standard deviation of third time point
Standard deviation of forth time point
correlation Time 1 and Time 3

r14	correlation Time 1 and Time 4
r23	correlation Time 2 and Time 3
r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects Trends

Examples

```
win1Ftrends(m1=-. 25,m2=-. 15,m3=-.05,m4=.05,s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
```

win2F Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

Arguments

m 1.1	Mean of first level factor 1, 1st level factor two
m 2.1	Mean of second level factor 1, 1st level factor two
m 3.1	Mean of third level factor 1,1st level factor two
m 4.1	Mean of fourth level factor 1, 1st level factor two

m1. 2	Mean of first level factor 1, 2nd level factor two
m2. 2	Mean of second level factor 1, 2nd level factor two
m3. 2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1, 1st level factor two
s2. 1	Standard deviation of second level factor 1, 1st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2. 2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two
r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4

r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
s	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the Two Factor Within Subjects ANOVA

Examples

```
win2F(m1.1=-. 25,m2.1=0,m3.1=.10,m4.1=.15,m1.2=-. 25,m2.2=.10,m3.2=.30,m4.2=.35,
s1.1=.4,s2.1=.5,s3.1=2.5,s4.1=2.0, s1.2=.4,s2.2=.5,s3.2=2.5,s4.2=2.0,r=.5,n=80)
win2F(m1.1=-. 25,m2.1=0,m1.2=-. 25,m2.2=.10, s1.1=.4, s2.1=.5, , s1.2=.4, s2.2=.5,
r12=.5,r13=.4,r14=.55,r23=.4,r24=.5,r34=.45,n=200)
```

win2Fse Compute power for Simple Effects in Two Factor Within Subjects
ANOVA with up to two by four levels. Takes means, sds, and sam-
ple sizes for each group. Alpha is .05 by default, alternative values
may be entered by user

Description

Compute power for Simple Effects in Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

Arguments

m1. 1	Mean of first level factor 1,1 st level factor two
m2. 1	Mean of second level factor 1, 1st level factor two
m3. 1	Mean of third level factor 1, 1st level factor two
m4.1	Mean of fourth level factor 1,1 st level factor two
m1. 2	Mean of first level factor 1, 2nd level factor two
m2. 2	Mean of second level factor 1, 2nd level factor two
m3. 2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1,1 st level factor two
s2.1	Standard deviation of second level factor 1,1 st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2. 2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two
r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2

r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
s	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for Simple Effects for Two Factor Within Subjects ANOVA

Examples

$$
\begin{aligned}
& \text { win2Fse (m1.1=-. } 25, m 2.1=0, m 3.1=.10, m 4.1=.15, m 1.2=-.25, m 2.2=.10, m 3.2=.30, m 4.2=.35, \\
& s 1.1=.4, s 2.1=.5, s 3.1=2.5, s 4.1=2.0, s 1.2=.4, s 2.2=.5, s 3.2=2.5, s 4.2=2.0, r=.5, n=220)
\end{aligned}
$$

Index

anc, 3
anova1f_3, 4
anova1f_3c, 5
anova1f_4, 6
anova1f_4c, 7
anova2x2, 8
anova2x2_se, 9
Chi 2×2, 10
Chi2X3, 11
ChiES, 11
ChiGOF, 12
corr, 13
d_prec, 16
depb, 14
depcorr0, 15
depcorr1, 16
indb, 17
indcorr, 18
indR2, 19
indt, 20
lmm1F, 21
lmm1Ftrends, 22
lmm1w1b, 23
1mm2F, 25
lmm2Fse, 27
LRcat, 29
LRcont, 29
MANOVA1f, 30
md_prec, 32
med, 33
MRC, 34
MRC_all, 35
MRC_short2, 36
MRC_shortcuts, 37
pairt, 38
prop1, 39
propind, 40
R2_prec, 42
R2ch, 41
r_prec, 44
regint, 42
regintR2, 43
tfromd, 45
win1bg1, 45
win1F, 47
win1Ftrends, 48
win2F, 49
win2Fse, 51

