Package 'pwr2ppl'

June 12, 2019

s for Common Designs	(Power to the People	e)	
on			
berson <cla18@humbolo< td=""><td>dt.edu></td><td></td><td></td></cla18@humbolo<>	dt.edu>		
sion, ANOVA, mediatio	on, and logistic regre		
0.4.3), nlme (>= 3.1-139 BESS (>= 4.5.0), lavaar	θ), phia (>= 0.2-0), a	fex	
10			
19-06-12 13:30:02 UTC	C		
mented:			
	on cal power analysis for dession, ANOVA, mediation colors of the second	on oberson <cla18@humboldt.edu> cal power analysis for designs including t-teassion, ANOVA, mediation, and logistic regree (a) <doi:10.4324 9781315171500="">. -0), MASS (>= 7.3-51), dplyr (>= 0.8.0), tid (a) (2) (3) (4) (3) (4) (4) (5) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6</doi:10.4324></cla18@humboldt.edu>	cal power analysis for designs including t-tests, correlations, ssion, ANOVA, mediation, and logistic regression. Functions accompany of various designs including t-tests, correlations, ssion, ANOVA, mediation, and logistic regression. Functions accompany of various designs of various designs. Functions accompany of various designs of various designs. Functions accompany of various designs of various designs. Functions accompany of various de

Index

ChiES	11 12
corr	13
depb	14
depcorr0	15
depcorr1	16
d_prec	16
indb	17
indcorr	18
indR2	19
indt	20
lmm1F	21
lmm1Ftrends	22
lmm1w1b	23
lmm2F	25
	27
LRcat	29
	29
	30
	32
	33
	34
	35
-	36
	37
	38
prop1	
· ·	
propind	
	41
	42
	42
	43
- 1	44
	45
win1bg1	45
win1F	47
win1Ftrends	48
win2F	49
win2Fse	51
	54

anc 3

anc	Compute Power for One or Two Factor ANCOVA with a single covari-
	ate Takes means, sds, and sample sizes for each group. Alpha is .05 by
	default, alternative values may be entered by user

Description

Compute Power for One or Two Factor ANCOVA with a single covariate Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anc(m1.1, m2.1, m1.2, m2.2, m1.3 = NULL, m2.3 = NULL, m1.4 = NULL,
    m2.4 = NULL, s1.1 = NULL, s2.1 = NULL, s1.2 = NULL,
    s2.2 = NULL, s1.3 = NULL, s2.3 = NULL, s1.4 = NULL,
    s2.4 = NULL, r, s = NULL, alpha = 0.05, factors, n)
```

m1.1	Cell mean for First level of Factor A, First level of Factor B
m2.1	Cell mean for Second level of Factor A, First level of Factor B
m1.2	Cell mean for First level of Factor A, Second level of Factor B
m2.2	Cell mean for Second level of Factor A, Second level of Factor B
m1.3	Cell mean for First level of Factor A, Third level of Factor B
m2.3	Cell mean for Second level of Factor A, Third level of Factor B
m1.4	Cell mean for First level of Factor A, Fourth level of Factor B
m2.4	Cell mean for Second level of Factor A, Fourth level of Factor B
s1.1	Cell standard deviation for First level of Factor A, First level of Factor B
s2.1	Cell standard deviation for Second level of Factor A, First level of Factor B
s1.2	Cell standard deviation for First level of Factor A, Second level of Factor B
s2.2	Cell standard deviation for Second level of Factor A, Second level of Factor B
s1.3	Cell standard deviation for First level of Factor A, Third level of Factor B
s2.3	Cell standard deviation for Second level of Factor A, Third level of Factor B
s1.4	Cell standard deviation for First level of Factor A, Fourth level of Factor B
s2.4	Cell standard deviation for Second level of Factor A, Fourth level of Factor B
r	Correlation between covariate and dependent variable.
S	Overall standard deviation. Sets all cell sds equal
alpha	Type I error (default is .05)
factors	Number of factors (1 or 2)
n	Sample Size per cell

4 anova1f_3

Value

Power for One or Two Factor ANCOVA with a single covariate

Examples

```
anc(m1.1=.85,m2.1=2.5, s1.1 = 1.7, s2.1=1, m1.2=0.85, m2.2= 2.5, s1.2 = 1.7, s2.2=1, m1.3=0.0,m2.3=2.5, s1.3 = 1.7, s2.3=1, m1.4=0.6, m2.4 = 2.5, s1.4 = 1.7, s2.4=1, r= 0.4, n=251, factors =2)
```

anova1f_3

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anovalf_3(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL, s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05)
```

Arguments

m1	Mean of first group
m2	Mean of second group
m3	Mean of third group
s1	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
alpha	Type I error (default is .05)

Value

Power for the One Factor ANOVA

```
anova1f_3(m1=80, m2=82, m3=82, s1=10, s2=10, s3=10, n1=60, n2=60, n3=60)
```

anova1f_3c 5

anova1f_3c	Compute power for a One Factor ANOVA with three levels and contrasts. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor ANOVA with three levels and contrasts. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anovalf_3c(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL, s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05, c1 = 0, c2 = 0, c3 = 0)
```

Arguments

m1	Mean of first group
m2	Mean of second group
m3	Mean of third group
s1	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
alpha	Type I error (default is .05)
c1	Weight for Contrast 1 (default is 0)
c2	Weight for Contrast 2 (default is 0)
c3	Weight for Contrast 3 (default is 0)

Value

Power for the One Factor ANOVA

```
anova1f_3c(m1=80, m2=82, m3=82, s1=10, s2=10, s3=10, n1=60, n2=60, n3=60, c1=2, c2=-1, c3=-1, alpha=.05)
```

6 anova1f_4

anova1f 4	Compute power for a One Factor Between Subjects ANOVA with four
anovari_i	levels Takes means, sds, and sample sizes for each group

Description

Compute power for a One Factor Between Subjects ANOVA with four levels Takes means, sds, and sample sizes for each group

Usage

```
anova1f_4(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL,
s2 = NULL, s3 = NULL, s4 = NULL, n1 = NULL, n2 = NULL,
n3 = NULL, n4 = NULL, alpha = 0.05)
```

Arguments

m1	Mean of first group
m2	Mean of second group
m3	Mean of third group
m4	Mean of fourth group
s1	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
s4	Standard deviation of forth group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
n4	Sample size for fourth group
alpha	Type I error (default is .05)

Value

Power for the One Factor Between Subjects ANOVA

```
anova1f_4(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, s4=10, n1=60, n2=60, n3=60, n4=60)
```

anova1f_4c 7

	anova1f_4c	Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user
--	------------	--

Description

Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anovalf_4c(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL, s2 = NULL, s3 = NULL, s4 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL, alpha = 0.05, c1 = 0, c2 = 0, c3 = 0, c4 = 0)
```

m1	Mean of first group
m2	Mean of second group
m3	Mean of third group
m4	Mean of fourth group
s1	Standard deviation of first group
s2	Standard deviation of second group
s3	Standard deviation of third group
s4	Standard deviation of forth group
n1	Sample size for first group
n2	Sample size for second group
n3	Sample size for third group
n4	Sample size for fourth group
alpha	Type I error (default is .05)
c1	Weight for Contrast 1 (default is 0)
c2	Weight for Contrast 2 (default is 0)
c 3	Weight for Contrast 3 (default is 0)
c4	Weight for Contrast 4 (default is 0)

8 anova2x2

Examples

```
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, s4=10, n1=60, n2=60, n3=60, n4=60, c1=1, c2=1, c3=-1, c4=-1, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, s4=10, n1=60, n2=60, n3=60, n4=60, c1=1, c2=-1, c3=-0, c4=0, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10, s4=10, n1=60, n2=60, n3=60, n4=60, c1=0, c2=0, c3=1, c4=-1, alpha=.05)
#'@return Power for the One Factor ANOVA
```

anova2x2

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anova2x2(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL,
s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL,
n1.1 = NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL,
alpha = 0.05, all = "OFF")
```

m1.1	Cell mean for First level of Factor A, First level of Factor B
m1.2	Cell mean for First level of Factor A, Second level of Factor B
m2.1	Cell mean for Second level of Factor A, First level of Factor B
m2.2	Cell mean for Second level of Factor A, Second level of Factor B
s1.1	Cell standard deviation for First level of Factor A, First level of Factor B
s1.2	Cell standard deviation for First level of Factor A, Second level of Factor B
s2.1	Cell standard deviation for Second level of Factor A, First level of Factor B
s2.2	Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1	Cell sample size for First level of Factor A, First level of Factor B
n1.2	Cell sample size for First level of Factor A, Second level of Factor B
n2.1	Cell sample size for Second level of Factor A, First level of Factor B
n2.2	Cell sample size for Second level of Factor A, Second level of Factor B
alpha	Type I error (default is .05)
all	Power(ALL) - Power for detecting all predictors in the model at once (default is "OFF")

anova2x2_se

Value

Power for the One Factor ANOVA

Examples

```
anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60, s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7, n1.1=100, n1.2=100, n2.1=100, n2.2=100, alpha=.05) anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60, s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7, n1.1=100, n1.2=100, n2.1=100, n2.2=100, alpha=.05, all="ON")
```

anova2x2_se

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
anova2x2\_se(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL, s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL, n1.1 = NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL, alpha = 0.05)
```

m1.1	Cell mean for First level of Factor A, First level of Factor B
m1.2	Cell mean for First level of Factor A, Second level of Factor B
m2.1	Cell mean for Second level of Factor A, First level of Factor B
m2.2	Cell mean for Second level of Factor A, Second level of Factor B
s1.1	Cell standard deviation for First level of Factor A, First level of Factor B
s1.2	Cell standard deviation for First level of Factor A, Second level of Factor B
s2.1	Cell standard deviation for Second level of Factor A, First level of Factor B
s2.2	Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1	Cell sample size for First level of Factor A, First level of Factor B
n1.2	Cell sample size for First level of Factor A, Second level of Factor B

10 Chi2x2

n2.1	Cell sample size for Second level of Factor A, First level of Factor B
n2.2	Cell sample size for Second level of Factor A, Second level of Factor B
alpha	Type I error (default is .05) examples anova2x2_se(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60, s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7, n1.1=250, n1.2=250, n2.1=250, n2.2=250, alpha=.05)

Value

Power for Simple Effects Tests in a Two By Two ANOVA

Chi2x2 Compute power for an Chi Square 2x2 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered to user

Description

Compute power for an Chi Square 2x2 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
Chi2x2(r1c1, r1c2, r2c1, r2c2, n, alpha = 0.05)
```

Arguments

r1c1	Proportion of overall scores in Row 1, Column 1
r1c2	Proportion of overall scores in Row 1, Column 2
r2c1	Proportion of overall scores in Row 2, Column 1
r2c2	Proportion of overall scores in Row 2, Column 2
n	Total sample size
alpha	Type I error (default is .05)

Value

Power for 2x2 Chi Square

```
Chi2x2(r1c1=.28,r1c2=.22,r2c1=.38,r2c2=.12,n=100)
```

Chi2X3

Chi2X3	Compute power for an Chi Square 2x3 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Chi Square 2x3 Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
Chi2X3(r1c1, r1c2, r1c3, r2c1, r2c2, r2c3, n, alpha = 0.05)
```

Arguments

r1c1	Proportion of overall scores in Row 1, Column 1
r1c2	Proportion of overall scores in Row 1, Column 2
r1c3	Proportion of overall scores in Row 1, Column 3
r2c1	Proportion of overall scores in Row 2, Column 1
r2c2	Proportion of overall scores in Row 2, Column 2
r2c3	Proportion of overall scores in Row 2, Column 3
n	Total sample size
alpha	Type I error (default is .05)

Value

Power for 2x3 Chi Square

Examples

```
Chi2X3(r1c1=.25,r1c2=.25,r1c3=.10, r2c1=.10,r2c2=.25,r2c3=.05,n=200)
```

ChiES	Compute power for Chi Square Based on Effect Size Takes phi, de- grees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for Chi Square Based on Effect Size Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

12 ChiGOF

Usage

```
ChiES(phi, df, nlow, nhigh, by = 1, alpha = 0.05)
```

Arguments

phi	phi coefficient (effect size for 2x2)
df	degrees of freedom
nlow	starting sample size
nhigh	ending sample size
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)
alpha	Type I error (default is .05)

Value

Power for Chi Square Based on Effect Size

Examples

```
ChiES(phi=.3,df=1,nlow=10,nhigh=200,by=10, alpha = .01)
```

Description

Compute power for an Chi Square Goodness of Fit Takes proportions for up to six group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
ChiGOF(groups, po1, po2, po3 = NULL, po4 = NULL, po5 = NULL, po6 = NULL, n, alpha = 0.05)
```

groups	Number of groups
po1	Proportion observed Group 1
po2	Proportion observed Group 2
po3	Proportion observed Group 3
po4	Proportion observed Group 4
po5	Proportion observed Group 5
po6	Proportion observed Group 6
n	Total sample size
alpha	Type I error (default is .05)

corr 13

Value

Power for Chi Square Goodness of Fit

Examples

```
ChiGOF(po1=.25, po2=.20, po3=.20, po4=.35, groups=4,n=100)
```

corr

 $Compute\ power\ for\ Pearson's\ Correlation\ Takes\ correlation\ and\ range$ of values

Description

Compute power for Pearson's Correlation Takes correlation and range of values

Usage

```
corr(r, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
```

Arguments

r	Correlation
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for Pearson's Correlation

```
corr(r=.30, nlow=60, nhigh=100,by=2)
```

14 depb

depb	Power for Comparing Dependent Coefficients in Multiple Regression
	with Two or Three Predictors Requires correlations between all vari-
	ables as sample size. Means, sds, and alpha are option. Also computes
	Power(All)

Description

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

```
depb(ry1, ry2, ry3 = NULL, r12, r13 = NULL, r23 = NULL, n = NULL, alpha = 0.05)
```

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)

Value

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors

```
depb(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25,n=110, alpha=.05)
```

depcorr0 15

depcorr0	Compute Power for Comparing Two Dependent Correlations, No Vari-
	ables in Common Takes correlations and range of values. First vari-
	able in each pair is termed predictor, second is DV

Description

Compute Power for Comparing Two Dependent Correlations, No Variables in Common Takes correlations and range of values. First variable in each pair is termed predictor, second is DV

Usage

```
depcorr0(r12, rxy, r1x, r1y, r2x, r2y, nlow, nhigh, alpha = 0.05,
    tails = 2, by = 1)
```

Arguments

r12	Correlation between the predictor and DV (first set of measures)
rxy	Correlation between the predictor and DV (second set of measures)
r1x	Correlation between the predictor (first measure) and the predictor variable (first measure)
r1y	Correlation between the predictor (first measure) and the dependent variable (second measure)
r2x	Correlation between the DV (first measure) and the predictor variable (first measure) $$
r2y	Correlation between the DV (first measure) and the dependent variable (second measure)
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for Comparing Two Dependent Correlations, No Variables in Common

```
depcorr0(r12=.4,rxy=.7,r1x=.3,r1y=.1,r2x=.45,r2y=.35, nlow=20,nhigh=200,by=10, tails=2)
```

16 d_prec

depcorr1	Compute Power for Comparing Two Dependent Correlations, One Variable in Common Takes correlations and range of values
	fundate in Common lanes correlations and range of rannes

Description

Compute Power for Comparing Two Dependent Correlations, One Variable in Common Takes correlations and range of values

Usage

```
depcorr1(r1y, r2y, r12, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
```

Arguments

Correlation between the first predictor and the dependent variable
Correlation between the second predictor and the dependent variable
Correlation between the first predictor and the second predictor
Starting sample size
Ending sample size
Type I error (default is .05)
one or two-tailed tests (default is 2)
Incremental increase in sample size from low to high

Value

Power for Comparing Dependent Correlations, One Variable in Common

Examples

```
depcorr1(r1y=.3,r2y=.04,r12 = .2, nlow=100,nhigh=300,by=10, tails=2)
```

d_prec

Compute Precision Analyses for Standardized Mean Differences

Description

Compute Precision Analyses for Standardized Mean Differences

Usage

```
d_prec(d, nlow, nhigh, propn1 = 0.5, ci = 0.95, tails = 2, by = 1)
```

indb 17

Arguments

d	Standardized means difference between groups
nlow	starting sample size
nhigh	ending sample size
propn1	Proportion in First Group
ci	Type of Confidence Interval (e.g., .95)
tails	number of tails for test (default is 2)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Precision Analyses for Standardized Mean Differences

Examples

```
d_prec(d=.4,nlow=100, nhigh=2000, propn1=.5, ci=.95, by=100)
```

indb	Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes
	Power(All)

Description

Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

```
indb(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL,
n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL,
n2, alpha = 0.05)
```

ry1_1	Correlation between DV (y) and first predictor (1), first test
ry2_1	Correlation between DV (y) and second predictor (2), first test
ry3_1	Correlation between DV (y) and third predictor (3), first test
r12_1	Correlation between first (1) and second predictor (2), first test
r13_1	Correlation between first (1) and third predictor (3), first test
r23_1	Correlation between second (2) and third predictor (3), first test

18 indcorr

n1	Sample size first test
ry1_2	Correlation between DV (y) and first predictor (1), second test
ry2_2	Correlation between DV (y) and second predictor (2), second test
ry3_2	Correlation between DV (y) and third predictor (3), second test
r12_2	Correlation between first (1) and second predictor (2), second test
r13_2	Correlation between first (1) and third predictor (3), second test
r23_2	Correlation between second (2) and third predictor (3), second test
n2	Sample size second test
alpha	Type I error (default is .05)

Value

Power for Comparing Independent Coefficients in Multiple Regression

Examples

```
indb(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25,
n1=50,n2=50, alpha=.05)
```

indcorr

Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

Description

Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

Usage

```
indcorr(r1, r2, nlow, nhigh, propn1 = 0.5, alpha = 0.05, tails = 2, by = 1)
```

r1	Correlation for Group 1
r2	Correlation for Group 2
nlow	Starting sample size
nhigh	Ending sample size
propn1	Proportion of sample in first group (default is .50 for equally size groups)
alpha	Type I error (default is .05)
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

indR2 19

Value

Power for Comparing Two Independent Correlations

Examples

```
indcorr(r1=.3,r2=.1,nlow=200,nhigh=800,by=50, tails=1)
```

indR2

Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Description

Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

```
indR2(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL,
n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL,
n2, alpha = 0.05, tails = 2)
```

ry1_1	Correlation between DV (y) and first predictor (1), first test
ry2_1	Correlation between DV (y) and second predictor (2), first test
ry3_1	Correlation between DV (y) and third predictor (3), first test
r12_1	Correlation between first (1) and second predictor (2), first test
r13_1	Correlation between first (1) and third predictor (3), first test
r23_1	Correlation between second (2) and third predictor (3), first test
n1	Sample size first test
ry1_2	Correlation between DV (y) and first predictor (1), second test
ry2_2	Correlation between DV (y) and second predictor (2), second test
ry3_2	Correlation between DV (y) and third predictor (3), second test
r12_2	Correlation between first (1) and second predictor (2), second test
r13_2	Correlation between first (1) and third predictor (3), second test
r23_2	Correlation between second (2) and third predictor (3), second test
n2	Sample size second test
alpha	Type I error (default is .05)
tails	number of tails for test (default is 2)

20 indt

Value

Power for Comparing R2 Coefficients in Multiple Regression

Examples

```
indR2(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25, n1=115,n2=115, alpha=.05)
```

indt

Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
indt(m1 = NULL, m2 = NULL, s1 = NULL, s2 = NULL, n1 = NULL,
    n2 = NULL, alpha = 0.05)
```

Arguments

m1	Mean of first group
m2	Mean of second group
s1	Standard deviation of first group
s2	Standard deviation of second group
n1	Sample size for first group
n2	Sample size for second group
alpha	Type I error (default is .05)

Value

Power for Independent Samples t-test

```
indt(m1=22,m2=20,s1=5,s2=5,n1=99,n2=99)
indt(m1=1.3, m2=0, s1=4,s2=1,n1=78,n2=234)
```

lmm1F 21

lmm1F	Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
lmm1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n, alpha = 0.05)
```

Arguments

m1	Mean of first time point
m2	Mean of second time point
m3	Mean of third time point
m4	Mean of fourth time point
s1	Standard deviation of first time point
s2	Standard deviation of second time point
s3	Standard deviation of third time point
s4	Standard deviation of forth time point
r12	correlation Time 1 and Time 2
r13	correlation Time 1 and Time 3
r14	correlation Time 1 and Time 4
r23	correlation Time 2 and Time 3
r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects Linear Mixed Model

22 Imm1Ftrends

Examples

```
lmm1F(m1=-.25,m2=.00,m3=.10,m4=.15,s1=.4,s2=.5,s3=.6,s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
lmm1F(m1=-.25,m2=.00,m3=.10,m4=.15,s1=.4,s2=.5,s3=2.5,s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)
```

lmm1Ftrends

Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
lmm1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL,
    r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL,
    r34 = NULL, n, alpha = 0.05)
```

m1	Mean of first time point
m2	Mean of second time point
m3	Mean of third time point
m4	Mean of fourth time point
s1	Standard deviation of first time point
s2	Standard deviation of second time point
s3	Standard deviation of third time point
s4	Standard deviation of forth time point
r12	correlation Time 1 and Time 2
r13	correlation Time 1 and Time 3
r14	correlation Time 1 and Time 4
r23	correlation Time 2 and Time 3
r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Imm1w1b 23

Value

Power for the One Factor Within Subjects LMM Trends

Examples

```
1mm1Ftrends(m1=-.25,m2=-.15,m3=-.05,m4=.05,s1=.4,s2=.5,s3=.6,s4=.7,r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
```

1mm1w1b

Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
lmm1w1b(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
    m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
    s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL,
    r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL,
    r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL,
    r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, r = NULL,
    s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first level Within Factor, 1st level Between Factor
m2.1	Mean of second level Within Factor, 1st level Between Factor
m3.1	Mean of third level Within Factor, 1st level Between Factor
m4.1	Mean of fourth level Within Factor, 1st level Between Factor
m1.2	Mean of first level Within Factor, 2nd level Between Factor
m2.2	Mean of second level Within Factor, 2nd level Between Factor
m3.2	Mean of third level Within Factor, 2nd level Between Factor
m4.2	Mean of fourth level Within Factor, 2nd level Between Factor
s1.1	Standard deviation of first level Within Factor, 1st level Between Factor
s2.1	Standard deviation of second level Within Factor, 1st level Between Factor
s3.1	Standard deviation of third level Within Factor, 1st level Between Factor
s4.1	Standard deviation of forth level Within Factor, 1st level Between Factor

24 lmm1w1b

s1.2	Standard deviation of first level Within Factor, 2nd level Between Factor
s2.2	Standard deviation of second level Within Factor, 2nd level Between Factor
s3.2	Standard deviation of third level Within Factor, 2nd level Between Factor
s4.2	Standard deviation of forth level Within Factor, 2nd level Between Factor
r1.2_1	correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between
r1.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r1.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r2.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r2.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r3.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r1.2_2	correlation Within Factor Level 1 and Within Factor, Level 2, 2nd level Between
r1.3_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r1.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r2.3_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r2.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r3.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r	sets same correlations between DVs on all factor levels (seriously, just use this) $ \\$
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects and One Factor Between LMM

```
1mm1w1b(m1.1 = -.25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-.25, m2.2=-.25, m3.2=-.25, m4.2=-.25,
s1.1 = .4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4, s2.2=.5, s3.2=.6, s4.2=.7, n = 50,
r1.2_1=.5,r1.3_1=.3,r1.4_1=.15,r2.3_1=.5,r2.4_1=.3,r3.4_1=.5,
r1.2_2=.5,r1.3_2=.3,r1.4_2=.15, r2.3_2=.5,r2.4_2=.3,r3.4_2=.5)
lmm1w1b(m1.1 = -.25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-.25, m2.2=-.25, m3.2=-.25, m4.2=-.25, s=.4, r = .5, n=100)
```

Imm2F 25

1mm2F

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
lmm2F(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL,
r13 = NULL, r14 = NULL, r15 = NULL, r16 = NULL, r17 = NULL,
r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL,
r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL,
r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL,
r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL,
r68 = NULL, r78 = NULL, r = NULL, s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first level factor 1, 1st level factor two
m2.1	Mean of second level factor 1, 1st level factor two
m3.1	Mean of third level factor 1, 1st level factor two
m4.1	Mean of fourth level factor 1, 1st level factor two
m1.2	Mean of first level factor 1, 2nd level factor two
m2.2	Mean of second level factor 1, 2nd level factor two
m3.2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1, 1st level factor two
s2.1	Standard deviation of second level factor 1, 1st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2.2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two

26 lmm2F

r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the Two Factor Within Subjects LMM

```
lmm2F(m1.1=-.25,m2.1=0,m1.2=-.25,m2.2=.10,s1.1=.4,s2.1=.5,s1.2=.4,s2.2=.5,r=.5,n=200)
```

Imm2Fse 27

_		\sim	_		
- 1	mm	17	H	ς	ρ

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
lmm2Fse(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL,
r13 = NULL, r14 = NULL, r15 = NULL, r16 = NULL, r17 = NULL,
r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL,
r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL,
r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL,
r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL,
r68 = NULL, r78 = NULL, r = NULL, s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first level factor 1, 1st level factor two
m2.1	Mean of second level factor 1, 1st level factor two
m3.1	Mean of third level factor 1, 1st level factor two
m4.1	Mean of fourth level factor 1, 1st level factor two
m1.2	Mean of first level factor 1, 2nd level factor two
m2.2	Mean of second level factor 1, 2nd level factor two
m3.2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1, 1st level factor two
s2.1	Standard deviation of second level factor 1, 1st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2.2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two

28 lmm2Fse

r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for Simple Effects in Two Factor Within Subjects LMM

```
 \begin{array}{l} 1 \text{mm2Fse} \, (\text{m1.1=-.25,m2.1=0,m3.1=.10,m4.1=.15,m1.2=-.25,m2.2=.10,m3.2=.30,m4.2=.35,} \\ \text{s1.1=.4,s2.1=.5,s3.1=2.5,s4.1=2.0,s1.2=.4,s2.2=.5,s3.2=2.5,s4.2=2.0,r=.5,n=220)} \end{array}
```

LRcat 29

LRcat	Compute Power for Logistic Regression with a Single Categorical Predictor

Description

Compute Power for Logistic Regression with a Single Categorical Predictor

Usage

```
LRcat(p0 = NULL, p1 = NULL, prop = 0.5, alpha = 0.05, power, R2 = 0)
```

Arguments

p0	Probability of a Desirable Outcome in the Control Condition
p1	Probability of a Desirable Outcome in the Treatment Condition
prop	Proportion in the Treatment Condition
alpha	Type I error (default is .05)
power	Desired Power
R2	How Well Predictor of Interest is Explained by Other Predictors (default is 0)

Value

Power for Logistic Regression with a Single Categorical Predictor

Examples

```
LRcat(p0=.137, p1=.611, prop = .689, power=.95)
```

LRcont

Compute Power for Logistic Regression with Continuous Predictors

Description

Compute Power for Logistic Regression with Continuous Predictors

Usage

```
LRcont(OR = NA, r = NA, ER = NULL, alpha = 0.05, power = NULL, R2 = 0)
```

30 MANOVA1f

Arguments

OR	Odds Ratio for Predictor of Interest
r	Correlation for Predictor of Interest
ER	Event Ratio Probability of a Desirable Outcome Overall
alpha	Type I error (default is .05)
power	Desired Power
R2	How Well Predictor of Interest is Explained by Other Predictors (default is 0)

Value

Power for Logistic Regression with Continuous Predictors

Examples

```
LRcont(OR = 4.05, ER = .463, power=.95)
```

MAN	OVA	.1	f

Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
MANOVA1f(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA, s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL, r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL, r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL, r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, r = NULL, s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first DV, 1st level Between Factor
m2.1	Mean of second DV, 1st level Between Factor
m3.1	Mean of third DV, 1st level Between Factor
m4.1	Mean of fourth DV, 1st level Between Factor

MANOVA1f 31

m1.2	Mean of first DV, 2nd level Between Factor
m2.2	Mean of second DV, 2nd level Between Factor
m3.2	Mean of third DV, 2nd level Between Factor
m4.2	Mean of fourth DV, 2nd level Between Factor
s1.1	Standard deviation of first DV, 1st level Between Factor
s2.1	Standard deviation of second DV, 1st level Between Factor
s3.1	Standard deviation of third DV, 1st level Between Factor
s4.1	Standard deviation of forth DV, 1st level Between Factor
s1.2	Standard deviation of first DV, 2nd level Between Factor
s2.2	Standard deviation of second DV, 2nd level Between Factor
s3.2	Standard deviation of third DV, 2nd level Between Factor
s4.2	Standard deviation of forth DV, 2nd level Between Factor
r1.2_1	correlation DV 1 and DV 2, 1st level Between
r1.3_1	correlation DV 1 and DV 3, 1st level Between
r1.4_1	correlation DV 1 and DV 4, 1st level Between
r2.3_1	correlation DV 1 and DV 3, 1st level Between
r2.4_1	correlation DV 1 and DV 4, 1st level Between
r3.4_1	correlation DV 1 and DV 4, 1st level Between
r1.2_2	correlation DV 1 and DV 2, 2nd level Between
r1.3_2	correlation DV 1 and DV 3, 2nd level Between
r1.4_2	correlation DV 1 and DV 4, 2nd level Between
r2.3_2	correlation DV 1 and DV 3, 2nd level Between
r2.4_2	correlation DV 1 and DV 4, 2nd level Between
r3.4_2	correlation DV 1 and DV 4, 2nd level Between
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects and One Factor Between ANOVA

```
MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,

m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,

s1.1=.4,s2.1=5,s3.1=1.6,s4.1=1.2,

s1.2=.4,s2.2=5,s3.2=1.6,s4.2=1.2,

r1.2_1=.1,r1.3_1=.1,r1.4_1=.1,

r2.3_1=.35,r2.4_1=.45,r3.4_1=.40,
```

32 md_prec

```
r1.2_2=.1,r1.3_2=.1,r1.4_2=.1,

r2.3_2=.35,r2.4_2=.45,r3.4_2=.40,alpha=.05)

MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,

m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,

s=.4,r=.5,alpha=.05)
```

md_prec

Compute Precision Analyses for Mean Differences

Description

Compute Precision Analyses for Mean Differences

Usage

```
md_prec(m1, m2, s1, s2, nlow, nhigh, propn1 = 0.5, ci = 0.95, by = 1)
```

Arguments

m1	Mean of first group
m2	Mean of second group
s1	Standard deviation of first group
s2	Standard deviation of second group
nlow	starting sample size
nhigh	ending sample size
propn1	Proportion in First Group
ci	Type of Confidence Interval (e.g., .95)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Precision Analyses for Mean Differences

```
md_prec(m1=2,m2 =0, s1=5, s2=5,nlow=100, nhigh =1600, propn1=.5, ci=.95, by=100) md_prec(m1=0,m2 =0, s1=5, s2=5,nlow=100, nhigh =40000, propn1=.5, ci=.95, by=1000)
```

med 33

med	Compute Power for Mediated (Indirect) Effects Requires correlations
	between all variables as sample size.

Description

Compute Power for Mediated (Indirect) Effects Requires correlations between all variables as sample size.

Usage

```
med(rxm1, rxm2 = 0, rxm3 = 0, rxm4 = 0, rxy, rym1, rym2 = 0, rym3 = 0, rym4 = 0, rm1m2 = 0, rm1m3 = 0, rm1m4 = 0, rm2m3 = 0, rm2m4 = 0, rm3m4 = 0, alpha = 0.05, mvars, n)
```

Arguments

rxm1	Correlation between predictor (x) and first mediator (m1)
rxm2	Correlation between predictor (x) and second mediator (m2)
rxm3	Correlation between predictor (x) and third mediator (m3)
rxm4	Correlation between predictor (x) and fourth mediator (m4)
rxy	Correlation between DV (y) and predictor (x)
rym1	Correlation between DV (y) and first mediator (m1)
rym2	Correlation between DV (y) and second mediator (m2)
rym3	Correlation DV (y) and third mediator (m3)
rym4	Correlation DV (y) and fourth mediator (m4)
rm1m2	Correlation first mediator (m1) and second mediator (m2)
rm1m3	Correlation first mediator (m1) and third mediator (m3)
rm1m4	Correlation first mediator (m1) and fourth mediator (m4)
rm2m3	Correlation second mediator (m2) and third mediator (m3)
rm2m4	Correlation second mediator (m2) and fourth mediator (m4)
rm3m4	Correlation third mediator (m3) and fourth mediator (m4)
alpha	Type I error (default is .05)
mvars	Number of Mediators
n	Sample size

Value

Power for Mediated (Indirect) Effects

```
med(rxm1=.25, rxy=-.35, rym1=-.5,mvars=1, n=150)
med(rxm1=.3, rxm2=.3, rxm3=.25, rxy=-.35, rym1=-.5,rym2=-.5, rym3 = -.5,
rm1m2=.7, rm1m3=.4,rm2m3=.4, mvars=3, n=150)
```

34 MRC

MRC	Compute power for Multiple Regression with up to Five Predictors Example code below for three predictors. Expand as needed for four
	or five

Description

Compute power for Multiple Regression with up to Five Predictors Example code below for three predictors. Expand as needed for four or five

Usage

```
MRC(ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 = NULL, r12 = NULL, r13 = NULL, r14 = NULL, r15 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r34 = NULL, r35 = NULL, r45 = NULL, n = NULL, alpha = 0.05)
```

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
ry4	Correlation between DV (y) and fourth predictor (4)
ry5	Correlation between DV (y) and fifth predictor (5)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r14	Correlation between first (1) and fourth predictor (4)
r15	Correlation between first (1) and fifth predictor (5)
r23	Correlation between second (2) and third predictor (3)
r24	Correlation between second (2) and fourth predictor (4)
r25	Correlation between second (2) and fifth predictor (5)
r34	Correlation between third (3) and fourth predictor (4)
r35	Correlation between third (3) and fifth predictor (5)
r45	Correlation between fourth (4) and fifth predictor (5)
n	Sample size
alpha	Type I error (default is .05)

Value

Power for Multiple Regression with Two to Five Predictors

MRC_all 35

Examples

```
MRC(ry1=.40, ry2=.40, r12=-.15, n=30)
MRC(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25, n=24)
```

MRC_all Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means,

sds, and alpha are option. Also computes Power(All)

Description

Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

```
MRC_all(ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 = NULL, r12 = NULL, r13 = NULL, r14 = NULL, r15 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r34 = NULL, r35 = NULL, r45 = NULL, n = NULL, alpha = 0.05, rep = 10000)
```

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
ry4	Correlation between DV (y) and fourth predictor (4)
ry5	Correlation between DV (y) and fifth predictor (5)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r14	Correlation between first (1) and fourth predictor (4)
r15	Correlation between first (1) and fifth predictor (5)
r23	Correlation between second (2) and third predictor (3)
r24	Correlation between second (2) and fourth predictor (4)
r25	Correlation between second (2) and fifth predictor (5)
r34	Correlation between third (3) and fourth predictor (4)
r35	Correlation between third (3) and fifth predictor (5)
r45	Correlation between fourth (4) and fifth predictor (5)
n	Sample size
alpha	Type I error (default is .05)
rep	number of replications (default is 10000)

36 MRC_short2

Value

Power for Multiple Regression (ALL)

Examples

```
MRC_all(ry1=.50,ry2=.50,ry3=.50, r12=.2, r13=.3,r23=.4,n=82, rep=10000)
```

MRC_short2

Compute Multiple Regression shortcuts with three predictors for Ind Coefficients Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Description

Compute Multiple Regression shortcuts with three predictors for Ind Coefficients Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Usage

```
MRC_short2(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL, n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL, n2, alpha = 0.05, my_1 = 0, m1_1 = 0, m2_1 = 0, m3_1 = 0, s1_1 = 1, s2_1 = 1, s3_1 = 1, sy_1 = 1, my_2 = 0, m1_2 = 0, m2_2 = 0, m3_2 = 0, s1_2 = 1, s2_2 = 1, s3_2 = 1, sy_2 = 1)
```

ry1_1	Correlation between DV (y) and first predictor (1), first group
ry2_1	Correlation between DV (y) and second predictor (2), first group
ry3_1	Correlation between DV (y) and third predictor (3), first group
r12_1	Correlation between first (1) and second predictor (2), first group
r13_1	Correlation between first (1) and third predictor (3), first group
r23_1	Correlation between second (2) and third predictor (3), first group
n1	Sample size, first group
ry1_2	Correlation between DV (y) and first predictor (1), second group
ry2_2	Correlation between DV (y) and second predictor (2), second group
ry3_2	Correlation between DV (y) and third predictor (3), second group
r12_2	Correlation between first (1) and second predictor (2), second group
r13_2	Correlation between first (1) and third predictor (3), second group
r23_2	Correlation between second (2) and third predictor (3), second group
n2	Sample size, second group
alpha	Type I error (default is .05)

MRC_shortcuts 37

my_1	Mean of DV (default is 0), first group
m1_1	Mean of first predictor (default is 0), first group
m2_1	Mean of second predictor (default is 0), first group
m3_1	Mean of third predictor (default is 0), first group
s1_1	Standard deviation of first predictor (default is 1), first group
s2_1	Standard deviation of second predictor (default is 1), first group
s3_1	Standard deviation of third predictor (default is 1), first group
sy_1	Standard deviation of DV (default is 1), first group
my_2	Mean of DV (default is 0), second group
m1_2	Mean of first predictor (default is 0), second group
m2_2	Mean of second predictor (default is 0), second group
m3_2	Mean of third predictor (default is 0), second group
s1_2	Standard deviation of first predictor (default is 1), second group
s2_2	Standard deviation of second predictor (default is 1), second group
s3_2	Standard deviation of third predictor (default is 1), second group
sy_2	Standard deviation of DV (default is 1), second group

Value

Multiple Regression shortcuts with three predictors for Ind Coefficients

Examples

```
MRC_short2(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25, ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25, n1=50,n2=50,alpha=.05,my_1=1,m1_1=1,m2_1=1,m3_1=1, sy_1=7,s1_1=1,s2_1=1,s3_1=2, my_2=1,m1_2=1,m2_2=1,m3_2=1,sy_2=7,s1_2=1,s2_2=1,s3_2=2)
```

MRC_shortcuts

Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

Description

Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

```
MRC_shortcuts(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL, r13 = NULL, r23 = NULL, n = 100, alpha = 0.05, my = 0, m1 = 0, m2 = 0, m3 = 0, s1 = 1, s2 = 1, s3 = 1, sy = 1)
```

38 pairt

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)
my	Mean of DV (default is 0)
m1	Mean of first predictor (default is 0)
m2	Mean of second predictor (default is 0)
m3	Mean of third predictor (default is 0)
s1	Standard deviation of first predictor (default is 1)
s2	Standard deviation of second predictor (default is 1)
s3	Standard deviation of third predictor (default is 1)
sy	Standard deviation of DV (default is 1)

Value

Multiple Regression shortcuts with three predictors

Examples

```
MRC_shortcuts(ry1=.40,ry2=.40,ry3=-.40, r12=-.15, r13=-.60,r23=.25, n=110, my=1,m1=1,m2=1,m3=1,sy=7,s1=1,s2=1,s3=2)
```

pairt

Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is .05 by default, alternative values may be entered by user. correlation (r) defaults to .50.

Description

Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is .05 by default, alternative values may be entered by user. correlation (r) defaults to .50.

```
pairt(m1 = NULL, m2 = NULL, s = NULL, n = NULL, r = NULL, alpha = 0.05)
```

prop1 39

Arguments

m1	Mean for Pre Test
m2	Mean for Post Test
S	Standard deviation
n	Sample size
r	Correlation pre-post measures (default is .50)
alpha	Type I error (default is .05)

Value

Power for the Paired t-test

Examples

```
pairt(m1=25, m2=20, s = 5, n = 25, r = .5)
```

prop1	Compute power for a single sample proportion test Takes phi, degrees
	of freedom, and a range of sample sizes. Alpha is .05 by default, alter-
	native values may be entered by user

Description

Compute power for a single sample proportion test Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Usage

```
prop1(p1, p0, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
```

Arguments

p1	expected proportion (a.k.a. alternative proportion)
p0	null proportion
nlow	starting sample size
nhigh	ending sample size
alpha	Type I error (default is .05)
tails	number of tails for test (default is 2)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Power for Tests of Single Proportion

40 propind

Examples

```
prop1(p1=.60, p0=.42,nlow=20,nhigh=100, tails=1, by=10)
```

Description

Compute power for Tests of Two Independent Proportions Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

Usage

```
propind(p1, p2, nlow, nhigh, nratio = 0.5, alpha = 0.05, tails = 2,
   by = 1)
```

Arguments

p1	expected proportion Group 1
p2	expected proportion Group 2
nlow	starting sample size
nhigh	ending sample size
nratio	ratio of sample size of first group to second (default is .5 for equally sized groups)
alpha	Type I error (default is .05)
tails	number of tails for test (default is 2)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Power for Tests of Two Independent Proportions

```
propind(p1=.62, p2=.55,nlow=200,nhigh=2500, by=100,nratio=.2)
```

R2ch 41

R2ch	Compute power for R2 change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size.
	Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

Description

Compute power for R2 change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

Usage

```
R2ch(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL, r13 = NULL, r23 = NULL, n = NULL, alpha = 0.05, my = 0, m1 = 0, m2 = 0, m3 = 0, s1 = 1, s2 = 1, s3 = 1, sy = 1)
```

Arguments

ry1	Correlation between DV (y) and first predictor (1)
ry2	Correlation between DV (y) and second predictor (2)
ry3	Correlation between DV (y) and third predictor (3)
r12	Correlation between first (1) and second predictor (2)
r13	Correlation between first (1) and third predictor (3)
r23	Correlation between second (2) and third predictor (3)
n	Sample size
alpha	Type I error (default is .05)
my	Mean of DV (default is 0)
m1	Mean of first predictor (default is 0)
m2	Mean of second predictor (default is 0)
m3	Mean of third predictor (default is 0)
s1	Standard deviation of first predictor (default is 1)
s2	Standard deviation of second predictor (default is 1)
s3	Standard deviation of third predictor (default is 1)
sy	Standard deviation of DV (default is 1)

Value

Power for R2 change in Multiple Regression (up to three predictors)

```
R2ch(ry1=.40,ry2=.40,ry3=-.40, r12=-.15, r13=-.60,r23=.25,n=24)
```

42 regint

R2_prec	Compute Precision Analyses for R-Squared This approach simply loops a function from MBESS
	1 0

Description

Compute Precision Analyses for R-Squared This approach simply loops a function from MBESS

Usage

```
R2_{prec}(R2, nlow, nhigh, pred, ci = 0.95, by = 1)
```

Arguments

R2	R-squared
nlow	starting sample size
nhigh	ending sample size
pred	Number of Predictors
ci	Type of Confidence Interval (e.g., .95)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Precision Analyses for R-Squared

Examples

```
R2_prec(R2=.467, nlow=24, nhigh=100, pred=3, by=4)
```

regint	Compute Power for Regression Interaction (Correlation/Coefficient Approach)

Description

Compute Power for Regression Interaction (Correlation/Coefficient Approach)

```
regint(Group1, Group2, sx1 = 1, sx2 = 1, sy1 = 1, sy2 = 1, nlow, nhigh, alpha = 0.05, Prop_n1 = 0.5, by = 2, Estimates = 1)
```

regintR2

Arguments

Group1	Estimates (r or b) for Group 1
Group2	Estimates (r or b) for Group 2
sx1	Standard deviation of predictor, group 1 (defaults to 1)
sx2	Standard deviation of predictor, group 2 (defaults to 1)
sy1	Standard deviation of outcome, group 1 (defaults to 1)
sy2	Standard deviation of outcome, group 2 (defaults to 1)
nlow	starting sample size
nhigh	ending sample size
alpha	Type I error (default is .05)
Prop_n1	Proportion of Sample in First Group (defaults to equal sample sizes)
by	incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)
Estimates	1 for Correlations (default), 2 for coefficients

Value

Power for Regression Interaction (Correlation/Coefficient Approach)

Examples

```
regint(Group1=-.26,Group2=.25, alpha=.05,Prop_n1=0.5,nlow=110, nhigh=140,by=2,Estimates=1)
```

regintR2	Compute Power for Regression Interaction (R2 Change Approach)

Description

Compute Power for Regression Interaction (R2 Change Approach)

Usage

```
regintR2(R2Mod, R2Ch, mod_pred, ch_pred, nlow, nhigh, by = 1,
   alpha = 0.05)
```

Arguments

R2Mod

R2Ch	Change in R2 Added by Interaction
mod_pred	Full Model Number of Predictors
ch_pred	Change Model Number of Predictors
nlow	starting sample size

Full Model R2

r_prec

nhigh ending sample size

by incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces

estimates of 10, 12, and 14)

alpha Type I error (default is .05)

Value

Power for Regression Interaction (R2 Change Approach)

Examples

```
regintR2(R2Mod=.092,R2Ch=.032,mod_pred=3, ch_pred=1,nlow=100,nhigh=400,by=20)
```

r_prec Compute Precision Analyses for Correlations This approach simply loops a function from MBESS

Description

Compute Precision Analyses for Correlations This approach simply loops a function from MBESS

Usage

```
r_prec(r, nlow, nhigh, ci = 0.95, by = 1)
```

Arguments

r	Correlation
nlow	starting sample size
nhigh	ending sample size
ci	Type of Confidence Interval (e.g., .95)
by	Incremental increase in sample (e.g. $nlow = 10$, $nhigh = 24$, $by = 2$, produces estimates of 10, 12, and 14)

Value

Precision Analyses for Correlations

```
r_prec(r=.3, nlow=80, nhigh=400, by=20, ci=.95)
```

tfromd 45

tfromd	Compute power for a t test using d statistic Takes d, sample size range, type of test, and tails.

Description

Compute power for a t test using d statistic Takes d, sample size range, type of test, and tails.

Usage

```
tfromd(d, nlow, nhigh, alpha = 0.05, test = "I", tails = 2, by = 1)
```

Arguments

d	standardize mean difference (Cohen's d)
nlow	Starting sample size
nhigh	Ending sample size
alpha	Type I error (default is .05)
test	"I" for independent, "P" for paired
tails	one or two-tailed tests (default is 2)
by	Incremental increase in sample size from low to high

Value

Power for the t-test from d statistic

Examples

```
tfromd(d=.2,nlow=10,nhigh=200,by=10, test="P") tfromd(d=.2,nlow=10,nhigh=200,by=10, test="I")
```

win1bg1

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

46 win1bg1

Usage

```
win1bg1(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
    m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
    s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL,
    r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL,
    r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL,
    r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, r = NULL,
    s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first level Within Factor, 1st level Between Factor
m2.1	Mean of second level Within Factor, 1st level Between Factor
m3.1	Mean of third level Within Factor, 1st level Between Factor
m4.1	Mean of fourth level Within Factor, 1st level Between Factor
m1.2	Mean of first level Within Factor, 2nd level Between Factor
m2.2	Mean of second level Within Factor, 2nd level Between Factor
m3.2	Mean of third level Within Factor, 2nd level Between Factor
m4.2	Mean of fourth level Within Factor, 2nd level Between Factor
s1.1	Standard deviation of first level Within Factor, 1st level Between Factor
s2.1	Standard deviation of second level Within Factor, 1st level Between Factor
s3.1	Standard deviation of third level Within Factor, 1st level Between Factor
s4.1	Standard deviation of forth level Within Factor, 1st level Between Factor
s1.2	Standard deviation of first level Within Factor, 2nd level Between Factor
s2.2	Standard deviation of second level Within Factor, 2nd level Between Factor
s3.2	Standard deviation of third level Within Factor, 2nd level Between Factor
s4.2	Standard deviation of forth level Within Factor, 2nd level Between Factor
r1.2_1	correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between
r1.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r1.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r2.3_1	correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r2.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r3.4_1	correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
r1.2_2	correlation Within Factor Level 1 and Within Factor, Level 2, 2nd level Between
r1.3_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r1.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r2.3_2	correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between
r2.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r3.4_2	correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

win1F 47

Value

Power for the One Factor Within Subjects and One Factor Between ANOVA

Examples

```
win1bg1(m1.1 = -.25, m2.1=0, m3.1=0.10, m4.1=.15, m1.2=-.25,m2.2=-.25,m3.2=-.25, m4.2=-.25, s1.1 = .4, s2.1=.5, s3.1=0.6, s4.1=.7, s1.2=.4,s2.2=.5,s3.2=.6, s4.2=.7,n = 50, r1.2_1=.5,r1.3_1=.3,r1.4_1=.15,r2.3_1=.5,r2.4_1=.3,r3.4_1=.5, r1.2_2=.5,r1.3_2=.3,r1.4_2=.15, r2.3_2=.5,r2.4_2=.3,r3.4_2=.5) win1bg1(m1.1 = -.25, m2.1=0, m3.1=0.10, m4.1=.15, m1.2=-.25,m2.2=-.25,m3.2=-.25, m4.2=-.25, s=.4, r = .5, n = 100)
```

win1F

Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
win1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12,
    r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n,
    alpha = 0.05)
```

m1	Mean of first time point
m2	Mean of second time point
m3	Mean of third time point
m4	Mean of fourth time point
s1	Standard deviation of first time point
s2	Standard deviation of second time point
s3	Standard deviation of third time point
s4	Standard deviation of forth time point
r12	correlation Time 1 and Time 2
r13	correlation Time 1 and Time 3
r14	correlation Time 1 and Time 4
r23	correlation Time 2 and Time 3

48 win1Ftrends

r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects ANOVA

Examples

```
win1F(m1=-.25,m2=.00,m3=.10,m4=.15,s1=.4,s2=.5,s3=.6,s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
win1F(m1=-.25,m2=.00,m3=.10,m4=.15,s1=.4,s2=.5,s3=2.5,s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)
```

win1Ftrends

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
win1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n, alpha = 0.05)
```

m1	Mean of first time point
m2	Mean of second time point
m3	Mean of third time point
m4	Mean of fourth time point
s1	Standard deviation of first time point
s2	Standard deviation of second time point
s3	Standard deviation of third time point
s4	Standard deviation of forth time point
r12	correlation Time 1 and Time 2
r13	correlation Time 1 and Time 3

win2F

r14	correlation Time 1 and Time 4
r23	correlation Time 2 and Time 3
r24	correlation Time 2 and Time 4
r34	correlation Time 3 and Time 4
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the One Factor Within Subjects Trends

Examples

```
win1Ftrends(m1=-.25,m2=-.15,m3=-.05,m4=.05,s1=.4,s2=.5,s3=.6,s4=.7,r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
```

win2F

Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Usage

```
win2F(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
    m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
    s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL,
    r13 = NULL, r14 = NULL, r15 = NULL, r16 = NULL, r17 = NULL,
    r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL,
    r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL,
    r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL,
    r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL,
    r68 = NULL, r78 = NULL, r = NULL, s = NULL, n, alpha = 0.05)
```

m1.1	Mean of first level factor 1, 1st level factor two
m2.1	Mean of second level factor 1, 1st level factor two
m3.1	Mean of third level factor 1, 1st level factor two
m4.1	Mean of fourth level factor 1, 1st level factor two

50 win2F

m1.2	Mean of first level factor 1, 2nd level factor two
m2.2	Mean of second level factor 1, 2nd level factor two
m3.2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1, 1st level factor two
s2.1	Standard deviation of second level factor 1, 1st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2.2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two
r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2
r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2. Level 1 and Factor 2. Level 4

win2Fse 51

r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for the Two Factor Within Subjects ANOVA

Examples

```
win2F(m1.1=-.25,m2.1=0,m3.1=.10,m4.1=.15,m1.2=-.25,m2.2=.10,m3.2=.30,m4.2=.35, s1.1=.4,s2.1=.5,s3.1=2.5,s4.1=2.0,s1.2=.4,s2.2=.5,s3.2=2.5,s4.2=2.0,r=.5,n=80) win2F(m1.1=-.25,m2.1=0,m1.2=-.25,m2.2=.10,s1.1=.4,s2.1=.5,,s1.2=.4,s2.2=.5, r12=.5,r13=.4,r14=.55,r23=.4,r24=.5,r34=.45,n=200)
```

win2Fse

Compute power for Simple Effects in Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

Description

Compute power for Simple Effects in Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

```
win2Fse(m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA,
    m4.2 = NA, s1.1 = NA, s2.1 = NA, s3.1 = NA, s4.1 = NA,
    s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r12 = NULL,
    r13 = NULL, r14 = NULL, r15 = NULL, r16 = NULL, r17 = NULL,
    r18 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r26 = NULL,
    r27 = NULL, r28 = NULL, r34 = NULL, r35 = NULL, r36 = NULL,
    r37 = NULL, r38 = NULL, r45 = NULL, r46 = NULL, r47 = NULL,
    r48 = NULL, r56 = NULL, r57 = NULL, r58 = NULL, r67 = NULL,
    r68 = NULL, r78 = NULL, r = NULL, s = NULL, n, alpha = 0.05)
```

52 win2Fse

m1.1	Mean of first level factor 1, 1st level factor two
m2.1	Mean of second level factor 1, 1st level factor two
m3.1	Mean of third level factor 1, 1st level factor two
m4.1	Mean of fourth level factor 1, 1st level factor two
m1.2	Mean of first level factor 1, 2nd level factor two
m2.2	Mean of second level factor 1, 2nd level factor two
m3.2	Mean of third level factor 1, 2nd level factor two
m4.2	Mean of fourth level factor 1, 2nd level factor two
s1.1	Standard deviation of first level factor 1, 1st level factor two
s2.1	Standard deviation of second level factor 1, 1st level factor two
s3.1	Standard deviation of third level factor 1, 1st level factor two
s4.1	Standard deviation of forth level factor 1, 1st level factor two
s1.2	Standard deviation of first level factor 1, 2nd level factor two
s2.2	Standard deviation of second level factor 1, 2nd level factor two
s3.2	Standard deviation of third level factor 1, 2nd level factor two
s4.2	Standard deviation of forth level factor 1, 2nd level factor two
r12	correlation Factor 1, Level 1 and Factor 1, Level 2
r13	correlation Factor 1, Level 1 and Factor 1, Level 3
r14	correlation Factor 1, Level 1 and Factor 1, Level 4
r15	correlation Factor 1, Level 1 and Factor 2, Level 1
r16	correlation Factor 1, Level 1 and Factor 2, Level 2
r17	correlation Factor 1, Level 1 and Factor 2, Level 3
r18	correlation Factor 1, Level 1 and Factor 2, Level 4
r23	correlation Factor 1, Level 2 and Factor 1, Level 3
r24	correlation Factor 1, Level 2 and Factor 1, Level 4
r25	correlation Factor 1, Level 2 and Factor 2, Level 1
r26	correlation Factor 1, Level 2 and Factor 2, Level 2
r27	correlation Factor 1, Level 2 and Factor 2, Level 3
r28	correlation Factor 1, Level 2 and Factor 2, Level 4
r34	correlation Factor 1, Level 3 and Factor 1, Level 4
r35	correlation Factor 1, Level 3 and Factor 2, Level 1
r36	correlation Factor 1, Level 3 and Factor 2, Level 2
r37	correlation Factor 1, Level 3 and Factor 2, Level 3
r38	correlation Factor 1, Level 3 and Factor 2, Level 4
r45	correlation Factor 1, Level 4 and Factor 2, Level 1
r46	correlation Factor 1, Level 4 and Factor 2, Level 2

win2Fse 53

r47	correlation Factor 1, Level 4 and Factor 2, Level 3
r48	correlation Factor 1, Level 4 and Factor 2, Level 4
r56	correlation Factor 2, Level 1 and Factor 2, Level 2
r57	correlation Factor 2, Level 1 and Factor 2, Level 3
r58	correlation Factor 2, Level 1 and Factor 2, Level 4
r67	correlation Factor 2, Level 2 and Factor 2, Level 3
r68	correlation Factor 2, Level 2 and Factor 2, Level 4
r78	correlation Factor 2, Level 3 and Factor 2, Level 4
r	sets same correlations between DVs on all factor levels (seriously, just use this)
S	sets same standard deviation for factor levels (see comment above)
n	Sample size for first group
alpha	Type I error (default is .05)

Value

Power for Simple Effects for Two Factor Within Subjects ANOVA

```
win2Fse(m1.1=-.25,m2.1=0,m3.1=.10,m4.1=.15,m1.2=-.25,m2.2=.10,m3.2=.30,m4.2=.35, s1.1=.4,s2.1=.5,s3.1=2.5,s4.1=2.0,s1.2=.4,s2.2=.5,s3.2=2.5,s4.2=2.0,r=.5,n=220)
```

Index

anc, 3 anovalf_3, 4 anovalf_3c, 5 anovalf_4, 6 anovalf_4c, 7 anova2x2, 8 anova2x2_se, 9	prop1, 39 propind, 40 R2_prec, 42 R2ch, 41 r_prec, 44 regint, 42 regintR2, 43
Chi2x2, 10 Chi2X3, 11 ChiES, 11 ChiGOF, 12 corr, 13	tfromd, 45 win1bg1, 45 win1F, 47 win1Ftrends, 48
d_prec, 16 depb, 14 depcorr0, 15 depcorr1, 16	win2F, 49 win2Fse, 51
indb, 17 indcorr, 18 indR2, 19 indt, 20	
<pre>lmm1F, 21 lmm1Ftrends, 22 lmm1w1b, 23 lmm2F, 25 lmm2Fse, 27 LRcat, 29 LRcont, 29</pre>	
MANOVA1f, 30 md_prec, 32 med, 33 MRC, 34 MRC_all, 35 MRC_short2, 36 MRC_shortcuts, 37	
pairt, 38	