The goal of puzzle is assembling pharmacometric ready data sets from tabulated files.
You can install the released version of puzzle from CRAN with:
or download the development version from Github:
This is a basic example which shows you how to solve a common problem:
library(puzzle)
nm = list(pk = list(parent=as.data.frame(puzzle::df_pk_start)),
dose=as.data.frame(puzzle::df_dose_start),
cov=as.data.frame(puzzle::df_cov_start))
df = puzzle(directory=file.path(getwd()),
order=c(0),
pk=list(data=nm$pk),
dose=list(data=nm$dose),
cov=list(data=nm$cov),
username = "Mario Gonzalez Sales")
#> Automatic coercion to numeric for CMT
#> 1=parent
#> Automatic coercion to numeric for SEX
#> 0=F
#> 1=M
#> Assembling date and time: 2019-10-30 21:46:58
#> Time zone: Europe/Paris
#> Number of individuals: 2
#> Number of observations: 12
#> Dose levels: "100", "200"
#> This data set was assembled by Mario Gonzalez Sales
A portion of the pharmacometrics ready data set obtained with the code showed above is presented below:
C | ID | TIME | TAD | AMT | CMT | EVID | DV | LDV | MDV | AGE | SEX |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0 | 0.0 | 100 | 1 | 1 | NA | NA | 1 | 77 | 1 | |
1 | 0.0 | 0.0 | NA | 1 | 0 | 0.0 | NA | 0 | 77 | 1 | |
1 | 1.0 | 1.0 | NA | 1 | 0 | 10.8 | 2.3795461 | 0 | 77 | 1 | |
1 | 4.0 | 4.0 | NA | 1 | 0 | 7.6 | 2.0281482 | 0 | 77 | 1 | |
1 | 12.0 | 12.0 | NA | 1 | 0 | 2.3 | 0.8329091 | 0 | 77 | 1 | |
1 | 24.0 | 0.0 | 200 | 1 | 1 | NA | NA | 1 | 77 | 1 | |
1 | 24.0 | 0.0 | NA | 1 | 0 | 0.0 | NA | 0 | 77 | 1 | |
1 | 25.0 | 1.0 | NA | 1 | 0 | 24.2 | 3.1863526 | 0 | 77 | 1 | |
2 | 0.0 | 0.0 | 100 | 1 | 1 | NA | NA | 1 | 82 | 0 | |
2 | 0.0 | 0.0 | NA | 1 | 0 | 0.0 | NA | 0 | 82 | 0 | |
2 | 0.9 | 0.9 | NA | 1 | 0 | 7.3 | 1.9878743 | 0 | 82 | 0 | |
2 | 3.8 | 3.8 | NA | 1 | 0 | 4.0 | 1.3862944 | 0 | 82 | 0 | |
2 | 12.2 | 12.2 | NA | 1 | 0 | 1.1 | 0.0953102 | 0 | 82 | 0 | |
2 | 24.0 | 0.0 | 200 | 1 | 1 | NA | NA | 1 | 82 | 0 | |
2 | 24.0 | 0.0 | NA | 1 | 0 | 0.0 | NA | 0 | 82 | 0 | |
2 | 25.1 | 1.1 | NA | 1 | 0 | 14.1 | 2.6461748 | 0 | 82 | 0 |