Package ‘psyverse’

March 26, 2020
Type Package

Title Decentralized Unequivocality in Psychological Science
Version 0.1.0

Maintainer Gjalt-Jorn Peters <gjalt-jorn@behaviorchange.eu>
License GPL (>=3)

Description The constructs used to study the human psychology have
many definitions and corresponding instructions for eliciting
and coding qualitative data pertaining to constructs' content and
for measuring the constructs. This plethora of definitions and
instructions necessitates unequivocal reference to specific
definitions and instructions in empirical and secondary research.
This package implements a human- and machine-readable standard for
specifying construct definitions and instructions for measurement
and qualitative research based on "'YAML'. This standard facilitates
systematic unequivocal reference to specific construct definitions
and corresponding instructions in a decentralized manner (i.e.
without requiring central curation; Peters (2020)
<doi:10.31234/osf.io/xebhn>).

BugReports https://gitlab.com/r-packages/psyverse/issues

URL https://r-packages.gitlab.io/psyverse
Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Depends R (>=3.0.0)

Imports stats (>=3.0.0), yaml (>=2.1.19), yum (>= 0.0.1)
Suggests covr, DiagrammeR (>= 1.0.0), knitr, rmarkdown, testthat
VignetteBuilder knitr

NeedsCompilation no

Author Gjalt-Jorn Peters [aut, cre, ctb]

Repository CRAN

Date/Publication 2020-03-26 14:20:02 UTC

https://gitlab.com/r-packages/psyverse/issues
https://r-packages.gitlab.io/psyverse

2 apply_graph_theme

R topics documented:

apply_graph_theme 2
base30toNUMEriC e e e e e 3
cat) . . L e e 4
generate_constmct_overview 4
generate_dct_template Lo 6
generate_id L L e e e e e e 7
nvert_id e e e e e e e e e 7
load _dct dir L e e 8
parse_dCt_SPEeCS e 10
TEPEALSIE L e e e e e 11
VECTXt . . . o e e e e e e 11

Index 13

apply_graph_theme Apply multiple DiagrammeR global graph attributes
Description

Apply multiple DiagrammeR global graph attributes

Usage
apply_graph_theme(dctGraph, ...)
Arguments
dctGraph The DiagrammeR::DiagrammeR graph to apply the attributes to.
One or more character vectors of length three, where the first element is the
attribute, the second the value, and the third, the attribute type (graph, node, or
edge).
Value

The DiagrammeR::DiagrammeR graph.

Examples

exampleSpec <-
system.file("inst",
"extdata",
"example_dct_spec_1.dct",
package="psyverse");
parsedSpecs <- load_dct_specs(exampleSpec);
dctGraph <- parsedSpecs$output$basic_graph;
dctGraph <- apply_graph_theme(dctGraph,
c("color”, "#00QQOAA", "node"),
c("fillcolor"”, "#@OFFFF", "node"));

base30toNumeric 3

base30toNumeric Conversion between basel0 and base30 & base36

Description

The conversion functions from basel0 to base30 are used by the generate_id() functions; the
base36 functions are just left here for convenience.

Usage
base30toNumeric(x)
base36toNumeric(x)

numericToBase30(x)

numericToBase36(x)

Arguments

X The vector to convert (numeric for the numericTo functions, character for the
base30to and base36to funtions).

Details

The symbols to represent the *base 30” system are the 0-9 followed by the alphabet without vowels
but including the y. This vector is available as base30.

Value

The converted vector (numeric for the base30to and base36to funtions, character for the numericTo
functions).

Examples

numericToBase30(654321);
base30toNumeric(numericToBase30(654321));

4 generate_construct_overview

cato Concatenate to screen without spaces

Description

The catO function is to cat what paste(is to paste; it simply makes concatenating many strings
without a separator easier.

Usage
cato(..., sep = "")
Arguments
The character vector(s) to print; passed to cat.
sep The separator to pass to cat, of course, "" by default.
Value

Nothing (invisible NULL, like cat).

Examples

'

cato("The first variable is , names(mtcars)[11, "'.");

generate_construct_overview
Generate construct overviews and instruction overviews

Description

These functions use a DCT specification to generate a construct overview or an instruction overview.

Usage

generate_construct_overview(
dctSpec,
include = c("definition”, "measure_dev"”, "measure_code”, "manipulate_dev”,
"manipulate_code”, "aspect_dev"”, "aspect_code”, "rel"),
hideByDefault = NULL,
divClass = "btn btn-secondary”,
headinglLevel = 3,
hyperlink_ucids = "Markdown",
urlPrefix = "#"

generate_construct_overvi ew 5

generate_definitions_overview(
dctSpecDf,
headinglLevel = 3,
hyperlink_ucids = "Markdown",
urlPrefix = "#"

)

generate_instruction_overview(
dctSpecDf,
type,
headinglLevel = 3,
hyperlink_ucids = "Markdown",
urlPrefix = "#"

)

Arguments
dctSpec The DCT specification, as resulting from a call to load_dct_specs() or load_dct_dir().
include Which elements to include in the construct overview.

hideByDefault Which elements to hide by default.
divClass The class of the button to collapse/expand sections.

headinglLevel The level of the heading in the Markdown output that is produces.

hyperlink_ucids

The type of hyperlinks to generate; must be a valid string. Currently, if the value
is"Markdown" or "HTML", hyperlinks in the corresponding formats are produced,
and if it is "none" (or, actually any other string value), nothing is produced.

urlPrefix The prefix to insert before the URL in the produced hyperlink. The default, "#",
results in a link to an anchor (an HTML a element) on the current page.

dctSpecDf The DCT specification dataframer, as produced by a call to load_dct_specs()
or load_dct_dir (), and stored within the resulting object.

type For instruction overviews, the type of instruction to generate can be specified:

non "non non

must be one of "measure_dev", "measure_code", "manipulate_dev", "manipulate_code",
"aspect_dev", or "aspect_code".

Value

A character string with the overview.

Examples

Add example

generate_dct_template

generate_dct_template DCT templates

Description

These functions can generate one or more empty DCT templates.

Usage

generate_dct_template(

)

prefix = paste(sample(letters, 4), collapse = ""),
output = NULL,

overwrite = FALSE,

createDirs = FALSE,

addComments = TRUE,

stopOnIllegalChars = FALSE

generate_dct_templates(

X)

outputDir = NULL,
createDirs = FALSE,
addComments = FALSE,
stopOnIllegalChars = FALSE

Arguments

prefix, x

output, outputDir
The filename or directory to which to write the templates.

overwrite Whether to overwrite any existing files.

createDirs

outputPath does not yet exist.

The prefix (prefix) or vector of prefixes (x) to use.

Whether to recursively create the directories if the path specified in output or

addComments Whether to add comments to the DCT specification as extra explanation.
stopOnIllegalChars
DCT identifier prefixes can only contain upper- and lowercase letters and un-
derscores. This argument specifies whether to remove illegal characters with a
warning, or whether to throw an error (and stop) if illegal characters are found,
Value

The DCT template(s), either invisibly (if output or outputDir is specified) or visibly.

generate_id 7

generate_id Generate unique identifier(s)

Description

To allow unique reference to constructs, they require unique identifiers. These functions generate
such identifiers by combining one or more identifier prefixes (usually a human-readable construct
name such as ’attitude’) with a unique identifier based on the second the identifier was generated.
The identifier prefix may only contain lowercase and uppercase letters and underscores.

Usage
generate_id(
prefix = paste(sample(letters, 4), collapse = ""),
stopOnIllegalChars = FALSE

)

generate_ids(x, stopOnIllegalChars = FALSE)

Arguments
prefix An identifier prefix.
stopOnIllegalChars
Whether to base: :stop() or produce a base: :warning() when encountering
illegal characters (i.e. anything other than a letter or underscore).
X A vector of identifier prefixes.
Value

a character vector containing the identifier(s).

Examples

generate_id('attitude');

invert_id Invert identifier

Description
Invert the identifier (generated by generate_id() for one or more constructs. This means that the
identifier prefix is stripped and the last part is converted back from base 30 to base 10.

Usage

invert_id(x)

8 load_dct_dir
Arguments
X The identifier(s) as a character vector.
Value
The identifier(s) as a numeric vector.
Examples
invert_id(generate_id('example'));
load_dct_dir Load DCT specifications from a file or multiple files
Description
These function load DCT specifications from the YAML fragments in one (load_dct_specs) or
multiple files (load_dct_dir).
Usage

load_dct_dir(

)

path,

recursive = TRUE,
extension = "rock]|dct"”,
regex,

dctContainer = "dct”,
headinglLevel = 2,

delimiterRegEx = "*---$%",
ignoreOddDelimiters = FALSE,
encoding = "UTF-8",

silent = TRUE

load_dct_specs(

)

S3 method for class 'dct_specs'

text,

file,

delimiterRegEx = "*---$",
dctContainer = "dct”,

headinglLevel = 2,
ignoreOddDelimiters = FALSE,
encoding = "UTF-8",

silent = TRUE

print(x, ...)

load_dct_dir 9

S3 method for class 'dct_specs'

plot(x, ...)
Arguments
path The path containing the files to read.
recursive Whether to also process subdirectories (TRUE) or not (FALSE).
extension The extension of the files to read; files with other extensions will be ignored.
Multiple extensions can be separated by a pipe (|).
regex Instead of specifing an extension, it’s also possible to specify a regular expres-

sion; only files matching this regular expression are read. If specified, regex
takes precedece over extension,

dctContainer The container of the DCT specifications in the YAML fragments. Because only
DCT specifications are read that are stored in this container, the files can contain
YAML fragments with other data, too, without interfering with the parsing of
the DCT specifications.

headinglLevel The level of the Markdown headings that are produced.

delimiterRegEx The regular expression used to locate YAML fragments

ignoreOddDelimiters
Whether to throw an error (FALSE) or delete the last delimiter (TRUE) if an odd
number of delimiters is encountered.

encoding The encoding to use when calling readLines (). Setto NULL to let readLines()
guess.

silent Whether to be silent (TRUE) or informative (FALSE).

text, file As text or file, you can specify a file to read with encoding encoding,

which will then be read using base: :readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base: : readLines()); although if a character vector of one element
and including at least one newline character (\\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a
file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.

X The parsed parsed_dct object.

Any other arguments are passed to the print command.

Details

load_dct_dir simply identifies all files and then calls load_dct_specs for each of them. load_dct_specs
loads the YAML fragments containing the DCT specifications using yum: : load_yaml_fragments()

and then parses the DCT specifications into a visual representation as a DiagrammeR::DiagrammeR

graph and Markdown documents with the instructions for creating measurement instruments or ma-
nipulations, and for coding measurement instruments, manipulations, or aspects of a construct.

10 parse_dct_specs

Value

An object with the DiagrammeR::DiagrammeR graph stored in output$basic_graph, a Diagram-
meR::DiagrammeR graph with a summary of which specifications are provided for each construct
in output$completeness_graph and the instructions in output$instr.

Examples

exampleSpec <-
system.file("inst",
"extdata",
"example_dct_spec_1.dct",
package="psyverse");
load_dct_specs(exampleSpec);

Not run:
psyverse: :load_dct_dir(path="A:/some/path");

End(Not run)

parse_dct_specs Parse DCT specifications

Description

This function parses DCT specifications; it’s normally called by load_dct_dir() or load_dct_specs(),
so you won’t have to use it directly.

Usage

parse_dct_specs(
dctSpecs,
headinglLevel = 2,
hyperlink_ucids = "Markdown",
urlPrefix = "#"

Arguments

dctSpecs The DCT specifications (a list).

headinglLevel The heading level for Markdown output.

hyperlink_ucids, urlPrefix
Passed on to the generate_instruction_overview() and generate_construct_overview()
functions.

Value

The object of parsed DCT specifications.

repeatStr 11

repeatStr Repeat a string a number of times

Description

Repeat a string a number of times

Usage
repeatStr(n = 1, str =" ")
Arguments
n, str Normally, respectively the frequency with which to repeat the string and the
string to repeat; but the order of the inputs can be switched as well.
Value

A character vector of length 1.

Examples
10 spaces:
repStr(10);

Three euro symbols:
repStr(”\u20ac”, 3);

vecTxt Easily parse a vector into a character value

Description

Easily parse a vector into a character value

Usage

vecTxt(
vector,
delimiter = ", "

’ ’
nn

useQuote = ,
firstDelimiter = NULL,
lastDelimiter = " & ",
firstElements = 0,
lastElements = 1,
lastHasPrecedence = TRUE

12 vecTxt
)
vecTxtQ(vector, useQuote = "'", ...)

Arguments
vector The vector to process.

delimiter, firstDelimiter, lastDelimiter

useQuote

The delimiters to use for respectively the middle, first firstElements, and last
lastElements elements.

This character string is pre- and appended to all elements; so use this to quote
all elements (useQuote="""), doublequote all elements (useQuote="'""), or
anything else (e.g. useQuote='|"). The only difference between vecTxt and
vecTxtQ is that the latter by default quotes the elements.

nan

firstElements, lastElements

The number of elements for which to use the first respective last delimiters

lastHasPrecedence

Value

If the vector is very short, it’s possible that the sum of firstElements and lastEle-
ments is larger than the vector length. In that case, downwardly adjust the num-
ber of elements to separate with the first delimiter (TRUE) or the number of ele-
ments to separate with the last delimiter (FALSE)?

Any addition arguments to vecTxtQ are passed on to vecTxt.

A character vector of length 1.

Examples

vecTxtQ(names(mtcars));

Index

apply_graph_theme, 2

base30and36conversion
(base30toNumeric), 3

base30@toNumeric, 3

base36toNumeric (base3@toNumeric), 3

base: :readLines(), 9

base: :stop(),”7

base::strsplit(), 9

base::warning(), 7

cat, 4
cato, 4

DiagrammeR: :DiagrammeR, 2, 9, 10

generate_construct_overview, 4
generate_construct_overview(), /10
generate_dct_template, 6
generate_dct_templates
(generate_dct_template), 6
generate_definitions_overview

(generate_construct_overview),

4
generate_id, 7
generate_id(), 3,7
generate_ids (generate_id), 7
generate_instruction_overview

(generate_construct_overview),

4
generate_instruction_overview(), 10

invert_id, 7

load_dct_dir, 8
load_dct_dir(), 5, 10
load_dct_specs (load_dct_dir), 8
load_dct_specs(), 5, 10

numericToBase30 (base3@toNumeric), 3
numericToBase36 (base3@toNumeric), 3

13

parse_dct_specs, 10
plot.dct_specs (load_dct_dir), 8
print.dct_specs (load_dct_dir), 8

readLines(), 9
repeatStr, 11
repStr (repeatStr), 11

vecTxt, 11
vecTxtQ (vecTxt), 11

yum: : load_yaml_fragments(), 9

	apply_graph_theme
	base30toNumeric
	cat0
	generate_construct_overview
	generate_dct_template
	generate_id
	invert_id
	load_dct_dir
	parse_dct_specs
	repeatStr
	vecTxt
	Index

