
Sensitivity analyses: a brief tutorial with
R package pse

Chalom, A. ∗† Mandai, C.Y. ∗ Prado, P.I. ∗

Version 0.3.1, November 23, 2013

This document presents a brief practical tutorial about the use of sensitivity
analyses tools in the study of ecological models. To read about the underlying
theory, please refer to our work in [1].

We presume for this tutorial that you are already familiar with the R programing
environment and with your chosen model. We will illustrate the techniques using a
simple model of population growth.

You should have installed R 1 along with an interface and text editor of your
liking, and the package “pse”. This package is based on the “sensitivity” package,
and is designed to resemble its uses, so researchers who already use it will be able
to write code with the pse package easily. Major differences will be noted on the
help pages and in this tutorial.

This tutorial focuses on the parameter space exploration of deterministic mod-
els. For a discussion of stochastic models, see the ‘multiple’ vignette on the same
package. For theoretical background as well as a quick tutorial on PLUE analyses,
see our paper in [2].

1 Input parameters

The first thing that must be done is to determine exactly what are the input pa-
rameters to your model. You should list which parameters should be investigated,
what are the probability density functions (PDFs) from which the parameter values
will be calculated, and what are the arguments to these PDFs.

In the examples, we will use a simple model of logistical population growth, in
which a population has an intrinsic rate of growth r, a carrying capacity of K and a
starting population of X0. In each time step, the population may grow or diminish
after the following expression:

Xt+1 = Xt + rXt (1 −Xt/K) (1)

∗Theoretical Ecology Lab, LAGE at Dep. Ecologia, Instituto de Biociências, Universidade de
São Paulo, Rua do Matão travessa 14 nº 321, São Paulo, SP, CEP 05508-900, Brazil.

†email: andrechalom@gmail.com
1This tutorial was written and tested with R version 3.0.1, but it should work with newer

versions

1

We are interested in studying the effects of the parameters r, K and X0 on the
final population. After researching on our databases, we have decided that, for our
species of interest, r and K follow a normal distribution with known parameters.
However, we could not reliably determine what the initial population should be,
so we have used an uniform distribution covering all the reasonable values. The
following table summarizes this:

Parameter Distribution Arguments
r normal µ = 1.7, σ = 0.3
K normal µ = 40, σ = 1
X0 uniform min = 1, max = 50

We next translate this table to three R objects that will be used in the sensitivity
analyses, containing (1) the names of the parameters, (2) the probability density
functions, and (3) a list containing the lists with all the parameters to the density
functions:

> factors <- c("r", "K", "X0")

> q <- c("qnorm", "qnorm", "qunif")

> q.arg <- list(list(mean=1.7, sd=0.3), list(mean=40, sd=1),

+ list(min=1, max=50))

A fundamental question in this stage is to determine whether, inside the as-
cribed parameter ranges, every parameter combination is meaningful. See the next
examples on this:

Example 1:
We would like to run a model for a species abundance distribution (SAD), and

we decided to examine the effect of N , the total number of individuals in the
community, and S, the total number of species. We can run the model with N = 100
and S = 50 or with N = 15 and S = 3, so there is nothing wrong with these values.
However, the combination N = 15, S = 50 is meaningless, as it would imply
that there are more species than individuals. One solution to this problem is to
run the models with the parameters modified as following: N is the total number
of individuals, and ŝ is the average number of individuals for each species. So,
ŝ ∗N = S, and now every combination of N and ŝ is meaningful.

Example 2:
In a model of structured population growth, we have estimated independently

two parameters for each class: S, the probability that a given individual survives
and does not move into the next size class, and G, the probability that a given
individual survives and grows into the next class. We can run the model with
S = 0.2 and G = 0.7, or S = 0.8 and G = 0.1. However, if we try to run the model
with S = 0.8 and G = 0.7, we arrive at the conclusion that, for every individual in
the original size class, in the next time step we will have 0.8 individuals in the same
class and more 0.7 in the next, giving a total of 1.5 individuals! The problem is
that the sum of S and G must be smaller than 1. One way to solve this is to define
new parameters ŝ and ĝ such that ŝ is the survival probability, independently of the

2

individual growing, and ĝ is the growth probability for each surviving individual.
We can relate these parameters to the former ones, as G = ŝ∗ ĝ and S = ŝ∗ (1− ĝ).

Note:
When transforming parameters like done on the above examples, it is important

to remember that the new parameters may not have the same probability density
functions as the original ones.

1.1 Optional: More details about the quantiles

The quantile functions used can be any of the built-in quantile functions as qnorm
for normal, qbinom for binomial, qpois for poison, qunif for uniform, etc; less
common distributions can be found on other packages, like the truncated normal
distribution on package “msm”. You can even define other quantile functions, given
that their first argument is the probability, and that they are able to work on a
vector of probabilities. For example:

The quantiles of an empirical data set can be used by creating a wrapper function
for the quantile function:

> qdata <- function(p, data) quantile(x=data, probs=p)

A discrete uniform density function, usefull for parameters that must be integer
numbers, can be given by

> qdunif<-function(p, min, max) floor(qunif(p, min, max))

2 Your model

The model that you wish to analyse must be formulated as an R function that
receives a data.frame, in which every column represent a different parameter, and
every line represents a different combination of values for those parameters. The
function must return an array with the same number of elements as there were lines
in the original data frame, and each entry in the array should correspond to the
result of running the model with the corresponding parameter combination. We
will cover the case in which a model outputs more than a single number in section
4.

If your model is already written in R, and accepts a single combination of values,
it is easy to write a “wrapper” using the function mapply to your model. In the
example below, the function oneRun receives three numbers, corresponding to r,
K and X0, and returns a single value corresponding to the final population. The
function modelRun encapsulates this function, in a manner to receive a data.frame
containing all parameter combinations and returning the results in one array.

Make SURE that the order in which the parameters are defined above is the
same in which they are being passed to the function.

> oneRun <- function (r, K, Xo) {

+ X <- Xo

3

+ for (i in 0:20) {

+ X <- X+r*X*(1-X/K)

+ }

+ return (X)

+ }

> modelRun <- function (my.data) {

+ return(mapply(oneRun, my.data[,1], my.data[,2], my.data[,3]))

+ }

If your model is written in a different language, as C or Fortran, it is possible to
write an interface with Rby compiling your model as a shared library, and dynam-
ically loading this library [3]. Also, you should consider uncoupling the simulation
and the analyses (see section 5).

3 Uncertainty and sensibility analyses

We first use the LHS function to generate a hypercube for your model. The manda-
tory arguments for this function are: model, the function that represents your model;
factors, an array with the parameter names; N, the number of parameter combina-
tions to be generated; q, the names of the PDF functions to generate the parameter
values; and q.arg, a list with the arguments of each pdf. We have already con-
structed suitable objects to pass to this function above, so now we simply call the
LHS function:

> library(pse)

> myLHS <- LHS(modelRun, factors, 200, q, q.arg, nboot=50)

The extra parameter nboot is used to bootstrap the correlation coefficients (see
below).

To access the values of the parameters used in the model, use the function
get.data(myLHS). To access the results, use get.results(myLHS).

With the object returned by the function LHS, we will exemplify in this section
four techniques that can be used: the uncertainty analysis using the ecdf, scatter-
plots of the correlation between each parameter and the result using the function
plotscatter, partial rank correlation using the function plotprcc and agreement
between different hypercube sizes with the function sbma.

4

3.1 ECDF

The ecdf, short for empirical cumulative distribution function, may be used to
illustrate the distribution of the model results, in our case the final population.
With this graph, we can see that the final population for our species is, with high
probability, between 35 and 45.

> plotecdf(myLHS)

25 30 35 40 45 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O1

P
ro

po
rt

io
n

<
=

 x

n:200 m:0

5

3.2 Scatterplots

Here, we can see a scatterplot of the result as a function of each parameter. As all
the parameters are being changed for each run of the model, the scatterplots look
like they were randomly generated, even if the underlying model is deterministic.
Actually, what scatterplots show is the distribution of values returned by the model
in the parameter space sampled by the hypercube and how sensible are these model
responses to the variation of each parameter.

Note that population sizes bifurcate above a given value of parameter r. This
is a well known behaviour of many population models and will ultimately lead to
chaotic solutions [5, 4].

> plotscatter(myLHS)

1.0 1.5 2.0 2.5

25
30

35
40

45
50

r

O
1

37 38 39 40 41 42 43

25
30

35
40

45
50

K

O
1

0 10 20 30 40 50

25
30

35
40

45
50

X0

O
1

6

3.3 Partial correlation and inclination

The partial (rank) correlation coefficient (pcc or prcc) measures how strong are the
linear associations between the result and each input parameter, after removing the
linear effect of the other parameters.

The confidence intervals shown in this plot are generated by bootstraping.

> plotprcc(myLHS)

PRCC

O
1

r K X0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

In the ecological literature, it is usual to refer to the partial derivatives of the
model response in respect to each parameter as “the sensitivity” of the model re-
sponse in respect to each parameter. One analog measure in stochastic models is
the Partial Inclination Coefficient (pic) of the model response in respect to each
parameter. They represent the β terms in y = α + βx regressions, after removing
the linear effect of the other parameters.

> pic(myLHS, nboot=40)

[[1]]

Call:

pic.default(X = L, y = r, nboot = nboot, conf = conf)

Partial Inclination Coefficients (PIC):

7

original bias std. error min. c.i. max. c.i.

r -1.90799288 0.128319193 1.6951612 -6.3230128 1.5810074

K 1.07256615 0.034158670 0.2028570 0.6415686 1.5568498

X0 -0.00668281 0.003230236 0.0172535 -0.0393534 0.0234695

3.4 Agreement between runs

In order to decide whether our sample size was adequate or insufficient, we calculate
the Symmetric Blest Measure of Agreement (SBMA) between the PRCC coeffients
of two runs with different sample sizes.

> newLHS <- LHS(modelRun, factors, 250, q, q.arg)

> (mySbma <- sbma(myLHS, newLHS))

[1] 0.375

A value of -1 indicates complete disagreement between the runs, and a value of
1 indicates total agreement. As the SBMA seldom reaches 1 for realistic models,
some criterion must be used to indicate when the agreement should be considered
good enough. More details about how the SBMA is calculated can be found on [1].

It should be stressed that there is no “magical” number for deciding how close
to unity the SBMA should be. It is reasonable to expect agreements around 0.7 to
0.9 in well-behaved models, but two cases require attention. If the total number
of factors is very low, the SBMA may converge slowly. Also, if none of the model
parameters happen to be monotonically correlated with the output, the agreement
between runs may stay as low as 0.2 even for very large hypercubes.

8

4 Multiple response variables

In the previous section, we have examined a model that returned a single number,
namely, the final population. However, we might be interested in examining the
effects of the parameters in several distinct responses from the model. The responses
may be (1) different variables, like “total population” and “species richness”, (2) the
same variable in different time points, or (3) the same variable calculated by different
methods.

In our example, we are interested in determining the effect of the parameters
to the population in each of the first 6 time steps. The theory and tools for this
analysis remain mostly the same. We will write our model to return an array now,
as:

> factors <- c("r", "K", "X0")

> q <- c("qnorm", "qnorm", "qunif")

> q.arg <- list(list(mean=1.7, sd=0.3), list(mean=40, sd=1),

+ list(min=1, max=50))

> Time <- 6

> oneRun <- function (r, K, Xo) {

+ X <- array();

+ X[1] <- Xo; # Caution, X1 gets overwritten

+ for (i in 1:Time) {

+ Xl <- X[length(X)]

+ X[i] <- Xl + r*Xl*(1-Xl/K)

+ }

+ return (X)

+ }

> modelRun <- function (dados) {

+ mapply(oneRun, dados[,1], dados[,2], dados[,3])

+ }

The hypercube is generated exactly in the same way. We also have the option
to give names (which will be used in the plots below) to each response variable.

> res.names <- paste("Time",1:Time)

> myLHS <- LHS(modelRun, factors, 100, q, q.arg, res.names, nboot=50)

9

4.1 ECDF

The first plot we will produce will, again, be the ECDF. We may produce several
plots using the parameter “stack=FALSE”, or stack all the plots in the same graph,
using “stack=TRUE”:

> plotecdf(myLHS, stack=TRUE)

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

obj results

P
ro

po
rt

io
n

<
=

 x

n:600 m:0

1

2

3

4

5

6

We may notice that the population values are spread over a wider range in the
first time steps, but converge to a narrow distribution on time 6.

10

4.2 Scatterplots

Next, we investigate the correlation plots for the variables with each input parame-
ter. To reduce the number of plots, we will present results just for the time steps 1,
3 and 6, using the “index.res” parameter, and supress the linear model from being
ploted with the parameter “add.lm”:

> plotscatter(myLHS, index.res=c(1,3,6), add.lm=FALSE)

1.0 1.5 2.0 2.5

10
20

30
40

r

T
im

e
1

1.0 1.5 2.0 2.5

20
30

40

r

T
im

e
3

1.0 1.5 2.0 2.5

30
35

40
45

r

T
im

e
6

38 39 40 41 42

10
20

30
40

K

T
im

e
1

38 39 40 41 42

20
30

40

K

T
im

e
3

38 39 40 41 42

30
35

40
45

K

T
im

e
6

0 10 20 30 40 50

10
20

30
40

X0

T
im

e
1

0 10 20 30 40 50

20
30

40

X0

T
im

e
3

0 10 20 30 40 50

30
35

40
45

X0

T
im

e
6

11

4.3 Partial correlation

The partial correlation plots also accept the “index.res” argument:

> plotprcc(myLHS, index.res=c(1,3,6))

PRCC

T
im

e
1

r K X0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PRCC
T

im
e

3

r K X0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PRCC

T
im

e
6

r K X0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

12

4.4 Agreement between runs

We have seen how the function sbma measures the agreement between two runs
in the previous section. Now, we will use the function target.sbma to run several
hypercubes until a pair of runs provides us with an agreement equal to or better
than a limit specified in its first argument.

> targetLHS <- target.sbma (target=0.3, modelRun, factors,

+ q, q.arg, res.names, FUN=min)

[1] "INFO: initial run..."

[1] "INFO: LHS with N = 105"

[1] "sbma of -1 (target 0.3)"

[1] "INFO: LHS with N = 205"

[1] "sbma of 0.375 (target 0.3)"

As the SBMA is calculated for each response variable independently, we must
decide how to combine these values. The argument “FUN=min” is telling the
function to consider only the minimum value, and may be ignored for models that
return a single response variable.

5 Uncoupling simulation and analysis

In many scenarios, it is necessary to run the simulation and the analyses at different
times, and even in different computers. It may be the case, for example, that
your lab computer is not fast enough to run the simulations, but that the high-
performance cluster in which the simulations are to be run does not have R installed.
In order to do this, however, you must generate the Latin Hypercube in the lab
computer, transfer this information to the cluster, run the simulations there, transfer
the results back to the lab computer, and then run the analyses.

In order to generate the samples without running a model, use the function LHS
with the parameter model=NULL and save the samples in the desired format:

> uncoupledLHS <- LHS(model=NULL, factors, 50, q, q.arg)

> write.csv(get.data(uncoupledLHS), file="mydata.csv")

Then run the model using the data. To incorporate the results into the LHS
object, use the function tell: 2

> coupledLHS <- tell(uncoupledLHS, myresults)

Then you may proceed with the analyses using prcc, ecdf, etc.

2Please note that the tell method implemented in the sensitivity package alters its argument.
This is not the case with the LHS tell method.

13

References

[1] A. Chalom and P.I.K.L. Prado, Parameter space exploration of ecological models,
arXiv:1210.6278 [q-bio.QM], 2012.

[2] A. Chalom and P.I.K.L. Prado, Uncertainty analysis and composite hypothesis
under the likelihood paradigm, arXiv:1508.03354 [q-bio.QM], 2015.

[3] C. Geyer, Calling C and Fortran from R, https://github.com/cjgeyer/foo

[4] J.D. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisci-
plinary Applied Mathematics, Springer, New York, NY, USA,2002.

[5] R.M. May, Simple mathematical models with very complicated dynamics, Nature
261: 459–466, 1976.

14

