Package ‘ps’

May 8, 2020
Version 1.3.3
Title List, Query, Manipulate System Processes

Description List, query and manipulate all system processes, on "'Windows',
'Linux' and 'macOS'".

License BSD_3_clause + file LICENSE
URL https://github.com/r-1ib/psttreadme

BugReports https://github.com/r-1lib/ps/issues
Encoding UTF-8

Depends R (>=3.1)

Imports utils

Suggests callr, covr, curl, pingr, processx (>= 3.1.0), R6, rlang,
testthat, tibble

RoxygenNote 7.0.2.9000
Biarch true
NeedsCompilation yes

Author Jay Loden [aut],
Dave Daeschler [aut],
Giampaolo Rodola' [aut],
Gabor Csardi [aut, cre],
RStudio [cph]

Maintainer Gabor Csardi <csardi.gabor@gmail.com>
Repository CRAN
Date/Publication 2020-05-08 08:50:02 UTC

R topics documented:

PS

https://github.com/r-lib/ps#readme
https://github.com/r-lib/ps/issues

2 CleanupReporter
ps_children e 6
ps_emdline L 7
PS_CONNECLIONS« « v v v vt e bttt e e e e e 8
PS_CPU_COUNE . . . v vt v vttt e e e et e e e e e e e e e 9
PS_CPU_LIMES o ot e e e e e e e e e e e e e e 9
pS_Create_time e e e e e e e 10
Ps_ewd .o 11
PS_ENVITON o vt it e e e e e e e e e e e e e e e e e e 12
PS_EXE . o v o i i e e e e e e e e 13
ps_handle 14
PS_NEITUPL L e e e e e e e e e e 15
PS_S_TUNNING o o e e e e e e 15
ps_kill . . oo 16
ps_mark tree e 17
ps_memory_info L. e e e e 18
PS_NAME L oL e e e e e e e e e e e e e 19
ps_num_fds L 20
ps_num_threads L e e e e e 21
ps_open_files e 22
PS_OS_LYPE . ¢ o o e e e e e e e e 23
PS_PId . . e e e 23
PS_PIAS . . e e e 24
PS_PPId . . 24
PS_TESUIME . . . o v v v e i et e e e e e e e e e e e e e e 25
ps_send_signal e 26
PS_StAtuS L L e e e e e e 27
ps_suspend ... oL oL L 28
ps_terminal e e e e e e 29
PS_terminate L. e e e e e e e e e e 30
PS_uids ... 31
PS_USETNAME . . . o o v v e v e et e e e e e e e e e e e e e e e e e e 32
PS_USETS « . v v o v e i e e e e e e e e e e e e e e e 33
signals L 33

Index 34

CleanupReporter testthat reporter that checks if child processes are cleaned up in tests

Description

CleanupReporter takes an existing testthat Reporter object, and wraps it, so it checks for leftover
child processes, at the specified place, see the proc_unit argument below.

Usage

CleanupReporter(reporter = testthat::ProgressReporter)

CleanupReporter 3

Arguments

reporter A testthat reporter to wrap into a new CleanupReporter class.

Details

Child processes can be reported via a failed expectation, cleaned up silently, or cleaned up and
reported (the default).

The constructor of the CleanupReporter class has options:

Value

file: the output file, if any, this is passed to reporter.
proc_unit: when to perform the child process check and cleanup. Possible values:

— "test": at the end of each testthat::test_that() block (the default),
— "testsuite”: at the end of the test suite.

proc_cleanup: Logical scalar, whether to kill the leftover processes, TRUE by default.

proc_fail: Whether to create an expectation, that fails if there are any processes alive, TRUE
by default.

proc_timeout: How long to wait for the processes to quit. This is sometimes needed, because
even if some kill signals were sent to child processes, it might take a short time for these to
take effect. It defaults to one second.

rconn_unit: When to perform the R connection cleanup. Possible values are "test” and
"testsuite”, like for proc_unit.

rconn_cleanup: Logical scalar, whether to clean up leftover R connections. TRUE by default.
rconn_fail: Whether to fail for leftover R connections. TRUE by default.

file_unit: When to check for open files. Possible values are "test” and "testsuite”, like
for proc_unit.

file_fail: Whether to fail for leftover open files. TRUE by default.

conn_unit: When to check for open network connections. Possible values are "test"” and
"testsuite”, like for proc_unit.

conn_fail: Whether to fail for leftover network connections. TRUE by default.

New reporter class that behaves exactly like reporter, but it checks for, and optionally cleans up
child processes, at the specified granularity.

Examples

This is how to use this reporter in testthat.R:

library(testthat)
library(mypackage)

if (ps::ps_is_supported()) {

reporter <- ps::CleanupReporter(testthat::ProgressReporter)$new(

proc_unit = "test"”, proc_cleanup = TRUE)

} else {
ps does not support this platform
reporter <- "progress”

}

test_check("mypackage"”, reporter = reporter)

Note

Some IDEs, like RStudio, start child processes frequently, and sometimes crash when these are
killed, only use this reporter in a terminal session. In particular, you can always use it in the
idiomatic testthat.R file, that calls test_check() during R CMD check.

errno List of "errno’ error codes

Description

For the errors that are not used on the current platform, value is NA_integer_.

Usage

errno()

Details

A data frame with columns: name, value, description.

Examples

errno()

ps Process table

Description

Process table

Usage

ps(user = NULL, after = NULL)

ps_boot_time 5

Arguments

user Username, to filter the results to matching processes.

after Start time (POSIXt), to filter the results to processes that started after this.
Value

Data frame (tibble), see columns below.

Columns:

e pid: Process ID.

* ppid: Process ID of parent process.

* name: Process name.

¢ username: Name of the user (real uid on POSIX).
* status: Le. running, sleeping, etc.

* user: User CPU time.

* system: System CPU time.

* rss: Resident set size, the amount of memory the process currently uses. Does not include
memory that is swapped out. It does include shared libraries.

* vms: Virtual memory size. All memory the process has access to.
* created: Time stamp when the process was created.

* ps_handle: ps_handle objects, in a list column.

ps_boot_time Boot time of the system

Description

Boot time of the system

Usage

ps_boot_time()

Value

A POSIXct object.

6 ps_children

ps_children List of child processes (process objects) of the process. Note that this
typically requires enumerating all processes on the system, so it is a
costly operation.

Description

List of child processes (process objects) of the process. Note that this typically requires enumerating
all processes on the system, so it is a costly operation.

Usage

ps_children(p, recursive = FALSE)

Arguments

p Process handle.

recursive Whether to include the children of the children, etc.
Value

List of ps_handle objects.

See Also

Other process handle functions: ps_cmdline(), ps_connections(), ps_cpu_times(), ps_create_time(),
ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_parent(ps_handle())
ps_children(p)

ps_cmdline 7

ps_cmdline Command line of the process

Description

Command line of the process, i.e. the executable and the command line arguments, in a character
vector. On Unix the program might change its command line, and some programs actually do it.

Usage

ps_cmdline(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

Value

Character vector.

See Also

Other process handle functions: ps_children(), ps_connections(), ps_cpu_times(), ps_create_time(),
ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p

ps_name(p)
ps_exe(p)
ps_cmdline(p)

8 ps_connections

ps_connections List network connections of a process

Description

For a zombie process it throws a zombie_process error.

Usage

ps_connections(p)

Arguments

p Process handle.

Value
Data frame, or tibble if the tibble package is available, with columns:

 fd: integer file descriptor on POSIX systems, NA on Windows.

» family: Address family, string, typically AF_UNIX, AF_INET or AF_INET6.

* type: Socket type, string, typically SOCK_STREAM (TCP) or SOCK_DGRAM (UDP).
* laddr: Local address, string, NA for UNIX sockets.

e lport: Local port, integer, NA for UNIX sockets.

* raddr: Remote address, string, NA for UNIX sockets. This is always NA for AF_INET sockets
on Linux.

* rport: Remote port, integer, NA for UNIX sockets.
* state: Socket state, e.g. CONN_ESTABLISHED, etc. It is NA for UNIX sockets.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_cpu_times(), ps_create_time(),
ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()

ps_connections(p)

sc <- socketConnection("httpbin.org"”, port = 80)
ps_connections(p)

close(sc)

ps_connections(p)

ps_cpu_count 9

ps_cpu_count Number of logical or physical CPUs

Description

If cannot be determined, it returns NA. It also returns NA on older Windows systems, e.g. Vista or
older and Windows Server 2008 or older.

Usage

ps_cpu_count(logical = TRUE)

Arguments

logical Whether to count logical CPUs.

Value

Integer scalar.

Examples

ps_cpu_count(logical = TRUE)
ps_cpu_count(logical = FALSE)

ps_cpu_times CPU times of the process

Description

All times are measured in seconds:

* user: Amount of time that this process has been scheduled in user mode.
* system: Amount of time that this process has been scheduled in kernel mode

e children_user: On Linux, amount of time that this process’s waited-for children have been
scheduled in user mode.

e children_system: On Linux, Amount of time that this process’s waited-for children have
been scheduled in kernel mode.

Usage

ps_cpu_times(p)

10 ps_create_time

Arguments

p Process handle.

Details

Throws a zombie_process() error for zombie processes.

Value

Named real vector or length four: user, system, children_user, children_system. The last two
are NA on non-Linux systems.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_create_time(),
ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p
ps_cpu_times(p)
proc.time()

ps_create_time Start time of a process

Description

The pid and the start time pair serves as the identifier of the process, as process ids might be reused,
but the chance of starting two processes with identical ids within the resolution of the timer is
minimal.

Usage

ps_create_time(p)

Arguments

p Process handle.

Details

This function works even if the process has already finished.

ps_cwd 11

Value

POSIXct object, start time, in GMT.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p
ps_create_time(p)

ps_cwd Process current working directory as an absolute path.

Description

For a zombie process it throws a zombie_process error.

Usage

ps_cwd(p)

Arguments

p Process handle.

Value

String scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

12 ps_environ

Examples

p <- ps_handle()
p
ps_cwd(p)

ps_environ Environment variables of a process

Description
ps_environ() returns the environment variables of the process, in a named vector, similarly to the
return value of Sys.getenv() (without arguments).

Usage

ps_environ(p)

ps_environ_raw(p)

Arguments

p Process handle.

Details

Note: this usually does not reflect changes made after the process started.

ps_environ_raw() is similar to p$environ() but returns the unparsed "var=value” strings. This
is faster, and sometimes good enough.

These functions throw a zombie_process error for zombie processes.

Value

ps_environ() returns a named character vector (that has a D1ist class, so it is printed nicely),
ps_environ_raw() returns a character vector.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

ps_exe 13

Examples

p <- ps_handle()

p

env <- ps_environ(p)
env[["R_HOME"]]

ps_exe Full path of the executable of a process

Description

Path to the executable of the process. May also be an empty string or NA if it cannot be determined.

Usage

ps_exe(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

Value

Character scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p

ps_name(p)
ps_exe(p)
ps_cmdline(p)

14 ps_handle

ps_handle Create a process handle

Description

Create a process handle
Usage
ps_handle(pid = NULL, time = NULL)

S3 method for class 'ps_handle'
as.character(x, ...)

S3 method for class 'ps_handle'
format(x, ...)

S3 method for class 'ps_handle'

print(x, ...)
Arguments
pid Process id. Integer scalar. NULL means the current R process.
time Start time of the process. Usually NULL and ps will query the start time.
X Process handle.
Not used currently.
Value

ps_handle() returns a process handle (class ps_handle).

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_interrupt(), ps_is_running(),
ps_kill (), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal (),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p

ps_interrupt 15

ps_interrupt Interrupt a process

Description

Sends SIGINT on POSIX, and ’CTRL+C’ or ’CTRL+BREAK’ on Windows.

Usage

ps_interrupt(p, ctrl_c = TRUE)

Arguments
p Process handle.
ctrl_c On Windows, whether to send ’CTRL+C’. If FALSE, then ’CTRL+BREAK’ is
sent. Ignored on non-Windows platforms.
See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_is_running(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

ps_is_running Checks whether a process is running

Description

It returns FALSE if the process has already finished.

Usage

ps_is_running(p)

Arguments

p Process handle.

Details

It uses the start time of the process to work around pid reuse. L.e.

Value

Logical scalar.

16 ps_kill

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_kill(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()

p
ps_is_running(p)

ps_kill Kill a process

Description

Kill the current process with SIGKILL preemptively checking whether PID has been reused. On
Windows it uses TerminateProcess().

Usage
ps_kill(p)

Arguments

p Process handle.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_kill(p)

p

ps_is_running(p)

px$get_exit_status()

ps_mark_tree 17

ps_mark_tree Mark a process and its (future) child tree

Description

ps_mark_tree() generates a random environment variable name and sets it in the current R pro-
cess. This environment variable will be (by default) inherited by all child (and grandchild, etc.)
processes, and will help finding these processes, even if and when they are (no longer) related to
the current R process. (I.e. they are not connected in the process tree.)

Usage

ps_mark_tree()
with_process_cleanup(expr)
ps_find_tree(marker)

ps_kill_tree(marker, sig = signals()$SIGKILL)

Arguments
expr R expression to evaluate in the new context.
marker String scalar, the name of the environment variable to use to find the marked
processes.
sig The signal to send to the marked processes on Unix. On Windows this argument
is ignored currently.
Details

ps_find_tree() finds the processes that set the supplied environment variable and returns them in
a list.

ps_kill_tree() finds the processes that set the supplied environment variable, and kills them (or
sends them the specified signal on Unix).

with_process_cleanup() evaluates an R expression, and cleans up all external processes that
were started by the R process while evaluating the expression. This includes child processes of
child processes, etc., recursively. It returns a list with entries: result is the result of the expression,
visible is TRUE if the expression should be printed to the screen, and process_cleanup is a
named integer vector of the cleaned pids, names are the process names.

If expr throws an error, then so does with_process_cleanup(), the same error. Nevertheless
processes are still cleaned up.

18 ps_memory_info

Value

ps_mark_tree() returns the name of the environment variable, which can be used as the marker
in ps_kill_tree().

ps_find_tree() returns a list of ps_handle objects.

ps_kill_tree() returns the pids of the killed processes, in a named integer vector. The names are
the file names of the executables, when available.

with_process_cleanup() returns the value of the evaluated expression.

Note

Note that with_process_cleanup() is problematic if the R process is multi-threaded and the
other threads start subprocesses. with_process_cleanup() cleans up those processes as well,
which is probably not what you want. This is an issue for example in RStudio. Do not use
with_process_cleanup(), unless you are sure that the R process is single-threaded, or the other
threads do not start subprocesses. E.g. using it in package test cases is usually fine, because RStudio
runs these in a separate single-threaded process.

The same holds for manually running ps_mark_tree() and then ps_find_tree() orps_kill_tree().

A safe way to use process cleanup is to use the processx package to start subprocesses, and set the
cleanup_tree = TRUE in processx: :run() or the processx::process constructor.

ps_memory_info Memory usage information

Description

A list with information about memory usage. Portable fields:

* rss: "Resident Set Size", this is the non-swapped physical memory a process has used. On
UNIX it matches "top"‘s 'RES’ column (see doc). On Windows this is an alias for wset field
and it matches "Memory" column of taskmgr.exe.

* vmem: "Virtual Memory Size", this is the total amount of virtual memory used by the process.
On UNIX it matches "top"‘s *VIRT column (see doc). On Windows this is an alias for the
pagefile field and it matches the "Working set (memory)" column of taskmgr.exe.

Usage

ps_memory_info(p)

Arguments

p Process handle.

ps_name 19

Details
Non-portable fields:
* shared: (Linux) memory that could be potentially shared with other processes. This matches
"top"‘s "SHR’ column (see doc).

* text: (Linux): aka 'TRS’ (text resident set) the amount of memory devoted to executable
code. This matches "top"‘s "CODE’ column (see doc).

* data: (Linux): aka 'DRS’ (data resident set) the amount of physical memory devoted to other
than executable code. It matches "top"‘s "'DATA’ column (see doc).

e lib: (Linux): the memory used by shared libraries.
e dirty: (Linux): the number of dirty pages.
* pfaults: (macOS): number of page faults.

* pageins: (macOS): number of actual pageins.

For on explanation of Windows fields see the PROCESS_MEMORY_COUNTERS_EX structure.

Throws a zombie_process() error for zombie processes.

Value

Named real vector.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(), ps_ppid(),
ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

Examples

p <- ps_handle()

p
ps_memory_info(p)

ps_name Process name

Description

The name of the program, which is typically the name of the executable.

Usage

ps_name(p)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms684874(v=vs.85).aspx

20 ps_num_fds

Arguments

p Process handle.

Details

On on Unix this can change, e.g. via an exec*() system call.

ps_name () works on zombie processes.

Value

Character scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_num_fds(), ps_num_threads(), ps_open_files(), ps_pid(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()
p

ps_name(p)
ps_exe(p)
ps_cmdline(p)

ps_num_fds Number of open file descriptors

Description

Note that in some IDEs, e.g. RStudio or R.app on macOS, the IDE itself opens files from other
threads, in addition to the files opened from the main R thread.

Usage
ps_num_fds(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

ps_num_threads 21

Value

Integer scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_threads(), ps_open_files(), ps_pid(),

ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()

ps_num_fds(p)

f <- file(tmp <- tempfile(), "w")
ps_num_fds(p)

close(f)

unlink(tmp)

ps_num_fds(p)

ps_num_threads Number of threads

Description

Throws a zombie_process() error for zombie processes.

Usage

ps_num_threads(p)

Arguments

p Process handle.

Value

Integer scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_open_files(), ps_pid(), ps_ppid(),
ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

22 ps_open_files
Examples

p <- ps_handle()

p
ps_num_threads(p)

ps_open_files Open files of a process

Description
Note that in some IDEs, e.g. RStudio or R.app on macOS, the IDE itself opens files from other
threads, in addition to the files opened from the main R thread.

Usage
ps_open_files(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

Value

Data frame, or tibble if the tibble package is available, with columns: fd and path. fd is numeric
file descriptor on POSIX systems, NA on Windows. path is an absolute path to the file.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_pid(), ps_ppid(),
ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

Examples

p <- ps_handle()

ps_open_files(p)

f <- file(tmp <- tempfile(), "w")
ps_open_files(p)

close(f)

ps_os_type

unlink(tmp)
ps_open_files(p)

23

ps_os_type Query the type of the OS

Description

Query the type of the OS

Usage

ps_os_type()

ps_is_supported()

Value

ps_os_type returns a named logical vector. The rest of the functions return a logical scalar.

ps_is_supported() returns TRUE if ps supports the current platform.

Examples

ps_os_type()
ps_is_supported()

ps_pid Pid of a process handle

Description

This function works even if the process has already finished.

Usage

ps_pid(p)

Arguments

p Process handle.

Value

Process id.

24 ps_ppid

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(),
ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_uids(), ps_username()

Examples

p <- ps_handle()

p

ps_pid(p)

ps_pid(p) == Sys.getpid()

ps_pids Ids of all processes on the system

Description

Ids of all processes on the system

Usage

ps_pids()

Value

Integer vector of process ids.

ps_ppid Parent pid or parent process of a process

Description

ps_ppid() returns the parent pid, ps_parent () returns a ps_handle of the parent.

Usage

ps_ppid(p)
ps_parent(p)

Arguments

p Process handle.

ps_resume 25

Details
On POSIX systems, if the parent process terminates, another process (typically the pid 1 process)
is marked as parent. ps_ppid() and ps_parent() will return this process then.

Both ps_ppid() and ps_parent () work for zombie processes.

Value

ps_ppid() returns and integer scalar, the pid of the parent of p. ps_parent () returns a ps_handle.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

Examples

p <- ps_handle()
p

ps_ppid(p)
ps_parent(p)

ps_resume Resume (continue) a stopped process

Description
Resume process execution with SIGCONT preemptively checking whether PID has been reused.
On Windows this has the effect of resuming all process threads.

Usage

ps_resume(p)

Arguments

p Process handle.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

26 ps_send_signal

Examples

px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_suspend(p)

ps_status(p)

ps_resume(p)

ps_status(p)

ps_kill(p)

ps_send_signal Send signal to a process

Description

Send a signal to the process. Not implemented on Windows. See signals() for the list of signals
on the current platform.

Usage

ps_send_signal(p, sig)

Arguments

p Process handle.

sig Signal number, see signals().
Details

It checks if the process is still running, before sending the signal, to avoid signalling the wrong
process, because of pid reuse.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_status(), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

ps_status

Examples

px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_send_signal(p, signals()$SIGINT)

p

ps_is_running(p)

px$get_exit_status()

27

ps_status Current process status

Description

One of the following:

» "idle": Process being created by fork, macOS only.

* "running": Currently runnable on macOS and Windows. Actually running on Linux.

* "sleeping” Sleeping on a wait or poll.

» "disk_sleep” Uninterruptible sleep, waiting for an I/O operation (Linux only).
* "stopped"” Stopped, either by a job control signal or because it is being traced.
* "tracing_stop"” Stopped for tracing (Linux only).

* "zombie" Zombie. Finished, but parent has not read out the exit status yet.

¢ "dead" Should never be seen (Linux).

* "wake_kill" Received fatal signal (Linux only).

* "waking" Paging (Linux only, not valid since the 2.6.xx kernel).

Usage

ps_status(p)

Arguments

p Process handle.

Details

Works for zombie processes.

Value

Character scalar.

28 ps_suspend

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),

ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_suspend(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

Examples

p <- ps_handle()

p
ps_status(p)

ps_suspend Suspend (stop) the process

Description

Suspend process execution with SIGSTOP preemptively checking whether PID has been reused. On
Windows this has the effect of suspending all process threads.

Usage

ps_suspend(p)

Arguments

p Process handle.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_terminal (), ps_terminate(),
ps_uids(), ps_username()

Examples

px <- processx::process$new(”sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_suspend(p)

ps_status(p)

ps_resume(p)

ps_terminal 29

ps_status(p)
ps_kill(p)

ps_terminal Terminal device of the process

Description
Returns the terminal of the process. Not implemented on Windows, always returns NA_character_.
On Unix it returns NA_character_ if the process has no terminal.

Usage

ps_terminal (p)

Arguments

p Process handle.

Details

Works for zombie processes.

Value

Character scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminate(),
ps_uids(), ps_username()

Examples

p <- ps_handle()

p
ps_terminal (p)

30 ps_terminate

ps_terminate Terminate a Unix process

Description

Send a SIGTERM signal to the process. Not implemented on Windows.

Usage

ps_terminate(p)

Arguments

p Process handle.

Details

Checks if the process is still running, to work around pid reuse.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal(),
ps_uids(), ps_username()

Examples

px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_terminate(p)

p

ps_is_running(p)

px$get_exit_status()

ps_uids 31

ps_uids User ids and group ids of the process

Description
User ids and group ids of the process. Both return integer vectors with names: real, effective
and saved.

Usage

ps_uids(p)

ps_gids(p)

Arguments

p Process handle.

Details

Both work for zombie processes.

They are not implemented on Windows, they throw a not_implemented error.

Value

Named integer vector of length 3, with names: real, effective and saved.

See Also

ps_username () returns a user name and works on all platforms.

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds(), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal (), ps_status(), ps_suspend(), ps_terminal(),
ps_terminate(), ps_username()

Examples

p <- ps_handle()
p

ps_uids(p)
ps_gids(p)

32 ps_username

ps_username Owner of the process

Description

The name of the user that owns the process. On Unix it is calculated from the real user id.

Usage

ps_username(p)

Arguments

p Process handle.

Details

On Unix, a numeric uid id returned if the uid is not in the user database, thus a username cannot be
determined.

Works for zombie processes.

Value

String scalar.

See Also

Other process handle functions: ps_children(), ps_cmdline(), ps_connections(), ps_cpu_times(),
ps_create_time(), ps_cwd(), ps_environ(), ps_exe(), ps_handle(), ps_interrupt(), ps_is_running(),
ps_kill(), ps_memory_info(), ps_name(), ps_num_fds (), ps_num_threads(), ps_open_files(),
ps_pid(), ps_ppid(), ps_resume(), ps_send_signal(), ps_status(), ps_suspend(), ps_terminal (),
ps_terminate(), ps_uids()

Examples

p <- ps_handle()

p
ps_username(p)

ps_users 33

ps_users List users connected to the system

Description

List users connected to the system

Usage

ps_users()

Value

A data frame (tibble) with columns username, tty, hostname, start_time, pid. tty and pid are
NA on Windows. pid is the process id of the login process. For local users the hostname column is
the empty string.

signals List of all supported signals

Description

Only the signals supported by the current platform are included.

Usage
signals()

Value

List of integers, named by signal names.

Index

as.character.ps_handle (ps_handle), 14
CleanupReporter, 2

errno, 4

format.ps_handle (ps_handle), 14

print.ps_handle (ps_handle), 14

processx: :process, /8

processx: :run(), I8

ps, 4

ps_boot_time, 5

ps_children, 6, 7, 8, 10-16, 19-22, 24-26,
28-32

ps_cmdline, 6,7, 8, 10-16, 19-22, 24-26,
28-32

ps_connections, 6, 7, 8, 10-16, 19-22,
24-26, 28-32

ps_cpu_count, 9

ps_cpu_times, 6-8,9, 11-16, 19-22, 24-26,
28-32

ps_create_time, 6-8, 10, 10, 11-16, 19-22,
24-26, 28-32

ps_cwd, 6-8, 10, 11, 11, 12—-16, 19-22, 24-26,
28-32

ps_environ, 6-8, 10, 11, 12, 13-16, 19-22,
24-26, 28-32

ps_environ_raw (ps_environ), 12

ps_exe, 68, 10-12, 13, 14-16, 19-22, 24-26,
28-32

ps_find_tree (ps_mark_tree), 17

ps_gids (ps_uids), 31

ps_handle, 6-8, 10-13, 14, 15, 16, 19-22,
24-26, 28-32

ps_interrupt, 6-8, 10-14, 15, 16, 19-22,
24-26, 28-32

ps_is_running, 6-8, 10-15, 15, 16, 19-22,
24-26, 28-32

ps_is_supported (ps_os_type), 23

34

ps_kill, 6-8, 10-16, 16, 19-22, 24-26, 28-32

ps_kill_tree (ps_mark_tree), 17

ps_mark_tree, 17

ps_memory_info, 6-8, 10-16, 18, 20-22,
24-26, 28-32

ps_name, 6-8, 10-16, 19, 19, 21, 22, 24-26,
28-32

ps_num_fds, 6-8, 10-16, 19, 20, 20, 21, 22,
24-26, 28-32

ps_num_threads, 6-8, 10-16, 19-21, 21, 22,
24-26, 28-32

ps_open_files, 6-8, 10-16, 19-21, 22,
24-26, 28-32

ps_os_type, 23

ps_parent (ps_ppid), 24

ps_pid, 68, 10-16, 19-22, 23, 25, 26, 28-32

ps_pids, 24

ps_ppid, 6-8, 1016, 19-22, 24, 24, 25, 26,
28-32

ps_resume, 68, 10-16, 19-22, 24, 25, 25, 26,
28-32

ps_send_signal, 6-8, 10-16, 19-22, 24, 25,
26, 28-32

ps_status, 6-8, 10-16, 19-22, 24-26, 27,
28-32

ps_suspend, 6-8, 10-16, 19-22, 24-26, 28,
28, 29-32

ps_terminal, 6-8, 10-16, 19-22, 24-26, 28,
29, 30-32

ps_terminate, 6-8, 10-16, 19-22, 24-26, 28
29,30, 31, 32

ps_uids, 6-8, 10-16, 19-22, 24-26, 28-30,
31, 32

ps_username, 6-8, 10-16, 19-22, 24-26,
28-31,32

ps_username(), 31

ps_users, 33

signals, 33
signals(), 26

INDEX

testthat::test_that(), 3

with_process_cleanup (ps_mark_tree), 17

35

	CleanupReporter
	errno
	ps
	ps_boot_time
	ps_children
	ps_cmdline
	ps_connections
	ps_cpu_count
	ps_cpu_times
	ps_create_time
	ps_cwd
	ps_environ
	ps_exe
	ps_handle
	ps_interrupt
	ps_is_running
	ps_kill
	ps_mark_tree
	ps_memory_info
	ps_name
	ps_num_fds
	ps_num_threads
	ps_open_files
	ps_os_type
	ps_pid
	ps_pids
	ps_ppid
	ps_resume
	ps_send_signal
	ps_status
	ps_suspend
	ps_terminal
	ps_terminate
	ps_uids
	ps_username
	ps_users
	signals
	Index

