
Package ‘projpred’
April 1, 2020

Title Projection Predictive Feature Selection

Version 1.1.6

Maintainer Juho Piironen <juho.t.piironen@gmail.com>

Description Performs projection predictive feature selection for generalized linear models
(see, Piironen, Paasiniemi and Vehtari, 2018, <arXiv:1810.02406>).
The package is compatible with the 'rstanarm' and 'brms' packages, but other
reference models can also be used. See the package vignette for more
information and examples.

Depends R (>= 3.5.0)

Imports loo (>= 2.0.0), ggplot2, Rcpp, utils

LinkingTo Rcpp, RcppArmadillo

License GPL-3

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.0.2

Suggests rstanarm, brms, testthat, knitr, rmarkdown, glmnet, bayesplot
(>= 1.5.0)

URL https://mc-stan.org/projpred, https://discourse.mc-stan.org/

BugReports https://github.com/stan-dev/projpred/issues

NeedsCompilation yes

Author Juho Piironen [cre, aut],
Markus Paasiniemi [aut],
Aki Vehtari [aut],
Jonah Gabry [ctb],
Paul-Christian Bürkner [ctb],
Marco Colombo [ctb]

Repository CRAN

Date/Publication 2020-04-01 14:10:02 UTC

1

https://mc-stan.org/projpred
https://discourse.mc-stan.org/
https://github.com/stan-dev/projpred/issues

2 cv-indices

R topics documented:

cv-indices . 2
cv_varsel . 3
df_binom . 5
df_gaussian . 6
get-refmodel . 6
init_refmodel . 7
mesquite . 10
predict.refmodel . 11
print-vsel . 12
proj-pred . 12
project . 14
projpred . 16
suggest_size . 17
varsel . 18
varsel-statistics . 21

Index 23

cv-indices Create cross-validation indices

Description

Divide indices from 1 to n into subsets for k-fold cross validation. These functions are potentially
useful when creating the cvfits and cvfun arguments for init_refmodel. The returned value is
different for these two methods, see below for details.

Usage

cvfolds(n, k, seed = NULL)

cvind(n, k, out = c("foldwise", "indices"), seed = NULL)

Arguments

n Number of data points.

k Number of folds. Must be at least 2 and not exceed n.

seed Random seed so that the same division could be obtained again if needed.

out Format of the output, either ’foldwise’ (default) or ’indices’. See below for
details.

cv_varsel 3

Value

cvfolds returns a vector of length n such that each element is an integer between 1 and k denoting
which fold the corresponding data point belongs to. The returned value of cvind depends on the
out-argument. If out=’foldwise’, the returned value is a list with k elements, each having fields
tr and ts which give the training and test indices, respectively, for the corresponding fold. If
out=’indices’, the returned value is a list with fields tr and ts each of which is a list with k
elements giving the training and test indices for each fold.

Examples

compute sample means within each fold
n <- 100
y <- rnorm(n)
cv <- cvind(n, k=5)
cvmeans <- lapply(cv, function(fold) mean(y[fold$tr]))

cv_varsel Cross-validate the variable selection (varsel)

Description

Perform cross-validation for the projective variable selection for a generalized linear model.

Usage

cv_varsel(
fit,
method = NULL,
cv_method = NULL,
ns = NULL,
nc = NULL,
nspred = NULL,
ncpred = NULL,
relax = NULL,
nv_max = NULL,
intercept = NULL,
penalty = NULL,
verbose = T,
nloo = NULL,
K = NULL,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
regul = 1e-04,

4 cv_varsel

validate_search = T,
seed = NULL,
...

)

Arguments

fit Same as in varsel.
method Same as in varsel.
cv_method The cross-validation method, either ’LOO’ or ’kfold’. Default is ’LOO’.
ns Number of samples used for selection. Ignored if nc is provided or if method=’L1’.
nc Number of clusters used for selection. Default is 1 and ignored if method=’L1’

(L1-search uses always one cluster).
nspred Number of samples used for prediction (after selection). Ignored if ncpred is

given.
ncpred Number of clusters used for prediction (after selection). Default is 5.
relax Same as in varsel.
nv_max Same as in varsel.
intercept Same as in varsel.
penalty Same as in varsel.
verbose Whether to print out some information during the validation, Default is TRUE.
nloo Number of observations used to compute the LOO validation (anything between

1 and the total number of observations). Smaller values lead to faster computa-
tion but higher uncertainty (larger errorbars) in the accuracy estimation. Default
is to use all observations, but for faster experimentation, one can set this to a
small value such as 100. Only applicable if cv_method = 'LOO'.

K Number of folds in the k-fold cross validation. Default is 5 for genuine ref-
erence models and 10 for datafits (that is, for penalized maximum likelihood
estimation).

lambda_min_ratio

Same as in varsel.
nlambda Same as in varsel.
thresh Same as in varsel.
regul Amount of regularization in the projection. Usually there is no need for regu-

larization, but sometimes for some models the projection can be ill-behaved and
we need to add some regularization to avoid numerical problems.

validate_search

Whether to cross-validate also the selection process, that is, whether to perform
selection separately for each fold. Default is TRUE and we strongly recommend
not setting this to FALSE, because this is known to bias the accuracy estimates
for the selected submodels. However, setting this to FALSE can sometimes be
useful because comparing the results to the case where this parameter is TRUE
gives idea how strongly the feature selection is (over)fitted to the data (the dif-
ference corresponds to the search degrees of freedom or the effective number of
parameters introduced by the selectin process).

df_binom 5

seed Random seed used in the subsampling LOO. By default uses a fixed seed.

... Additional arguments to be passed to the get_refmodel-function.

Value

An object of type cvsel that contains information about the feature selection. The fields are not
meant to be accessed directly by the user but instead via the helper functions (see the vignettes or
type ?projpred to see the main functions in the package.)

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5
x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)
fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
cvs <- cv_varsel(fit)
varsel_plot(cvs)

}

df_binom Binomial toy example.

Description

Binomial toy example.

Usage

df_binom

Format

A simulated classification dataset containing 100 observations.

y target, 0 or 1.

x features, 30 in total.

Source

http://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

http://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

6 get-refmodel

df_gaussian Gaussian toy example.

Description

Gaussian toy example.

Usage

df_gaussian

Format

A simulated regression dataset containing 100 observations.

y target, real-valued.

x features, 20 in total. Mean and sd approximately 0 and 1.

Source

http://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

get-refmodel Get reference model structure

Description

Generic function that can be used to create and fetch the reference model structure for all those
objects that have this method. All these implementations are wrappers to the init_refmodel-
function so the returned object has the same type.

Usage

get_refmodel(object, ...)

S3 method for class 'refmodel'
get_refmodel(object, ...)

S3 method for class 'vsel'
get_refmodel(object, ...)

S3 method for class 'cvsel'
get_refmodel(object, ...)

S3 method for class 'stanreg'
get_refmodel(object, ...)

http://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

init_refmodel 7

S3 method for class 'brmsfit'
get_refmodel(object, ...)

Arguments

object Object based on which the reference model is created. See possible types below.

... Arguments passed to the methods.

Value

An object of type refmodel (the same type as returned by init_refmodel) that can be passed to
all the functions that take the reference fit as the first argument, such as varsel, cv_varsel, project,
proj_predict and proj_linpred.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
dat <- data.frame(y = rnorm(100), x = rnorm(100))
fit <- rstanarm::stan_glm(y ~ x, family = gaussian(), data = dat)
ref <- get_refmodel(fit)
print(class(ref))

variable selection, use the already constructed reference model
vs <- varsel(ref)
this will first construct the reference model and then execute
exactly the same way as the previous command (the result is identical)
vs <- varsel(fit)

}

init_refmodel Custom reference model initialization

Description

Initializes a structure that can be used as a reference fit for the projective variable selection. This
function is provided to allow construction of the reference fit from arbitrary fitted models, because
only limited information is needed for the actual projection and variable selection.

Usage

init_refmodel(
z,
y,
family,

8 init_refmodel

x = NULL,
predfun = NULL,
dis = NULL,
offset = NULL,
wobs = NULL,
wsample = NULL,
intercept = TRUE,
cvfun = NULL,
cvfits = NULL,
...

)

Arguments

z Predictor matrix of dimension n-by-dz containing the training features for the
reference model. Rows denote the observations and columns the different fea-
tures.

y Vector of length n giving the target variable values.

family family object giving the model family

x Predictor matrix of dimension n-by-dx containing the candidate features for se-
lection (i.e. variables from which to select the submodel). Rows denote the
observations and columns the different features. Notice that this can different
from z. If missing, same as z by default.

predfun Function that takes a nt-by-dz test predictor matrix zt as an input (nt = # test
points, dz = number of features in the reference model) and outputs a nt-by-S
matrix of expected values for the target variable y, each column corresponding
to one posterior draw for the parameters in the reference model (the number
of draws S can also be 1). Notice that the output should be computed without
any offsets, these are automatically taken into account internally, e.g. in cross-
validation. If omitted, then the returned object will be ’data reference’, that is, it
can be used to compute penalized maximum likelihood solutions such as Lasso
(see examples below and in the quickstart vignette.)

dis Vector of length S giving the posterior draws for the dispersion parameter in the
reference model if there is such a parameter in the model family. For Gaussian
observation model this is the noise std sigma.

offset Offset to be added to the linear predictor in the projection. (Same as in function
glm.)

wobs Observation weights. If omitted, equal weights are assumed.

wsample vector of length S giving the weights for the posterior draws. If omitted, equal
weights are assumed.

intercept Whether to use intercept. Default is TRUE.

cvfun Function for performing K-fold cross-validation. The input is an n-element vec-
tor where each value is an integer between 1 and K denoting the fold for each ob-
servation. Should return a list with K elements, each of which is a list with fields
predfun and dis (if the model has a dispersion parameter) which are defined
the same way as the arguments predfun and dis above but are computed using

init_refmodel 9

only the corresponding subset of the data. More precisely, if cvres denotes the
list returned by cvfun, then cvres[[k]]$predfun and cvres[[k]]$dis must
be computed using only data from indices folds != k, where folds is the n-
element input for cvfun. Can be omitted but either cvfun or cvfits is needed
for K-fold cross-validation for genuine reference models. See example below.

cvfits A list with K elements, that has the same format as the value returned by cvind
but each element of cvfits must also contain a field omitted which indicates
the indices that were left out for the corresponding fold. Usually it is easier to
specify cvfun but this can be useful if you have already computed the cross-
validation for the reference model and would like to avoid recomputing it. Can
be omitted but either cvfun or cvfits is needed for K-fold cross-validation for
genuine reference models.

... Currently ignored.

Value

An object that can be passed to all the functions that take the reference fit as the first argument, such
as varsel, cv_varsel, proj_predict and proj_linpred.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
generate some toy data
set.seed(1)
n <- 100
d <- 10
x <- matrix(rnorm(n*d), nrow=n, ncol=d)
b <- c(c(1,1),rep(0,d-2)) # first two variables are relevant
y <- x %*% b + rnorm(n)
data <- data.frame(x=I(x),y=y)

fit the model (this uses rstanarm for posterior inference,
but any other tool could also be used)
fit <- rstanarm::stan_glm(y~x, family=gaussian(), data=data, chains=2, iter=500)
draws <- as.matrix(fit)
a <- draws[,1] # intercept
b <- draws[,2:(ncol(draws)-1)] # regression coefficients
sigma <- draws[,ncol(draws)] # noise std

initialize the reference model structure
predfun <- function(xt) t(b %*% t(xt) + a)
ref <- init_refmodel(x,y, gaussian(), predfun=predfun, dis=sigma)

variable selection based on the reference model
vs <- cv_varsel(ref)
varsel_plot(vs)

pass in the original data as 'reference'; this allows us to compute
traditional estimates like Lasso

10 mesquite

dref <- init_refmodel(x,y,gaussian())
lasso <- cv_varsel(dref, method='l1') # lasso
varsel_plot(lasso, stat='rmse')

}

mesquite Mesquite data set.

Description

The mesquite bushes yields data set from Gelman and Hill (2007) (http://www.stat.columbia.
edu/~gelman/arm/).

Usage

mesquite

Format

The outcome variable is the total weight (in grams) of photosynthetic material as derived from
actual harvesting of the bush. The predictor variables are:

diam1 diameter of the canopy (the leafy area of the bush) in meters, measured along the longer
axis of the bush.

diam2 canopy diameter measured along the shorter axis

canopy height height of the canopy.

total height total height of the bush.

density plant unit density (# of primary stems per plant unit).

group group of measurements (0 for the first group, 1 for the second group)

Source

http://www.stat.columbia.edu/~gelman/arm/examples/

http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/examples/

predict.refmodel 11

predict.refmodel Predict method for reference model objects

Description

Compute the predictions using the reference model, that is, compute the expected value for the next
observation, or evaluate the log-predictive density at a given point.

Usage

S3 method for class 'refmodel'
predict(
object,
znew,
ynew = NULL,
offsetnew = NULL,
weightsnew = NULL,
type = c("response", "link"),
...

)

Arguments

object The object of class refmodel.

znew Matrix of predictor values used in the prediction.

ynew New (test) target variables. If given, then the log predictive density for the new
observations is computed.

offsetnew Offsets for the new observations. By default a vector of zeros.

weightsnew Weights for the new observations. For binomial model, corresponds to the num-
ber trials per observation. Has effect only if ynew is specified. By default a
vector of ones.

type Scale on which the predictions are returned. Either ’link’ (the latent function
value, from -inf to inf) or ’response’ (the scale on which the target y is measured,
obtained by taking the inverse-link from the latent value).

... Currently ignored.

Value

Returns either a vector of predictions, or vector of log predictive densities evaluated at ynew if ynew
is not NULL.

12 proj-pred

print-vsel Print methods for vsel/cvsel objects

Description

The print methods for vsel/cvsel objects created by varsel or cv_varsel) rely on varsel_stats
to display a summary of the results of the projection predictive variable selection.

Usage

S3 method for class 'vsel'
print(x, digits = 2, ...)

S3 method for class 'cvsel'
print(x, digits = 2, ...)

Arguments

x An object of class vsel/cvsel.

digits Number of decimal places to be reported (2 by default).

... Further arguments passed to varsel_stats.

Value

Returns invisibly the data frame produced by varsel_stats.

proj-pred Extract draws of the linear predictor and draw from the predictive
distribution of the projected submodel

Description

proj_linpred extracts draws of the linear predictor and proj_predict draws from the predictive
distribution of the projected submodel or submodels. If the projection has not been performed, the
functions also perform the projection.

Usage

proj_linpred(
object,
xnew,
ynew = NULL,
offsetnew = NULL,
weightsnew = NULL,
nv = NULL,

proj-pred 13

transform = FALSE,
integrated = FALSE,
...

)

proj_predict(
object,
xnew,
offsetnew = NULL,
weightsnew = NULL,
nv = NULL,
draws = NULL,
seed_samp = NULL,
...

)

Arguments

object Either an object returned by varsel, cv_varsel or init_refmodel, or alternatively
any object that can be converted to a reference model.

xnew The predictor values used in the prediction. If vind is specified, then xnew
should either be a dataframe containing column names that correspond to vind
or a matrix with the number and order of columns corresponding to vind. If
vind is unspecified, then xnew must either be a dataframe containing all the
column names as in the original data or a matrix with the same columns at the
same positions as in the original data.

ynew New (test) target variables. If given, then the log predictive density for the new
observations is computed.

offsetnew Offsets for the new observations. By default a vector of zeros.

weightsnew Weights for the new observations. For binomial model, corresponds to the num-
ber trials per observation. For proj_linpred, this argument matters only if
ynew is specified. By default a vector of ones.

nv Number of variables in the submodel (the variable combination is taken from the
variable selection information). If a vector with several values, then results for
all specified model sizes are returned. Ignored if vind is specified. By default
use the automatically suggested model size.

transform Should the linear predictor be transformed using the inverse-link function? De-
fault is FALSE. For proj_linpred only.

integrated If TRUE, the output is averaged over the parameters. Default is FALSE. For
proj_linpred only.

... Additional argument passed to project if object is an object returned by varsel
or cv_varsel.

draws Number of draws to return from the predictive distribution of the projection. The
default is 1000. For proj_predict only.

seed_samp An optional seed to use for drawing from the projection. For proj_predict
only.

14 project

Value

If the prediction is done for one submodel only (nv has length one or vind is specified) and ynew
is unspecified, a matrix or vector of predictions (depending on the value of integrated). If ynew
is specified, returns a list with elements pred (predictions) and lpd (log predictive densities). If the
predictions are done for several submodel sizes, returns a list with one element for each submodel.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5
x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)

fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
vs <- varsel(fit)

compute predictions with 4 variables at the training points
pred <- proj_linpred(vs, xnew=x, nv = 4)
pred <- proj_predict(vs, xnew=x, nv = 4)

}

project Projection to submodels

Description

Perform projection onto submodels of selected sizes or a specified feature combination.

Usage

project(
object,
nv = NULL,
vind = NULL,
relax = NULL,
ns = NULL,
nc = NULL,
intercept = NULL,
seed = NULL,
regul = 1e-04,
...

)

project 15

Arguments

object Either a refmodel-type object created by get_refmodel or init_refmodel, or an
object which can be converted to a reference model using get_refmodel.

nv Number of variables in the submodel (the variable combination is taken from the
varsel information). If a list, then the projection is performed for each model
size. Default is the model size suggested by the variable selection (see function
suggest_size). Ignored if vind is specified.

vind Variable indices onto which the projection is done. If specified, nv is ignored.

relax If TRUE, then the projected coefficients after L1-selection are computed without
any penalization (or using only the regularization determined by regul). If
FALSE, then the coefficients are the solution from the L1-penalized projection.
This option is relevant only if L1-search was used. Default is TRUE for genuine
reference models and FALSE if object is datafit (see init_refmodel).

ns Number of samples to be projected. Ignored if nc is specified. Default is 400.

nc Number of clusters in the clustered projection.

intercept Whether to use intercept. Default is TRUE.

seed A seed used in the clustering (if nc!=ns). Can be used to ensure same results
every time.

regul Amount of regularization in the projection. Usually there is no need for regu-
larization, but sometimes for some models the projection can be ill-behaved and
we need to add some regularization to avoid numerical problems.

... Currently ignored.

Value

A list of submodels (or a single submodel if projection was performed onto a single variable com-
bination), each of which contains the following elements:

kl The kl divergence from the reference model to the submodel.

weights Weights for each draw of the projected model.

dis Draws from the projected dispersion parameter.

alpha Draws from the projected intercept.

beta Draws from the projected weight vector.

vind The order in which the variables were added to the submodel.

intercept Whether or not the model contains an intercept.

family_kl A modified family-object.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5

16 projpred

x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)

fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
vs <- varsel(fit)

project onto the best model with 4 variables
proj4 <- project(vs, nv = 4)

project onto an arbitrary variable combination (variable indices 1, 3 and 5)
proj <- project(fit, vind=c(1,3,5))

}

projpred Projection predictive feature selection

Description

Description

projpred is an R package to perform projection predictive variable selection for generalized linear
models. The package is aimed to be compatible with rstanarm but also other reference models can
be used (see function init_refmodel).

Currently, the supported models (family objects in R) include Gaussian, Binomial and Poisson
families, but more will be implemented later. See the quickstart-vignette for examples.

Functions

varsel, cv_varsel, init_refmodel, suggest_size Perform and cross-validate the variable selection.
init_refmodel can be used to initialize a reference model other than rstanarm-fit.

project Get the projected posteriors of the reduced models.

proj_predict, proj_linpred Make predictions with reduced number of features.

varsel_plot, varsel_stats Visualize and get some key statistics about the variable selection.

References

Dupuis, J. A. and Robert, C. P. (2003). Variable selection in qualitative models via an entropic
explanatory power. Journal of Statistical Planning and Inference, 111(1-2):77–94.

Goutis, C. and Robert, C. P. (1998). Model choice in generalised linear models: a Bayesian ap-
proach via Kullback–Leibler projections. Biometrika, 85(1):29–37.

Juho Piironen and Aki Vehtari (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3):711-735. doi:10.1007/s11222-016-9649-y. (Online).

https://mc-stan.org/projpred/articles/quickstart.html
https://link.springer.com/article/10.1007/s11222-016-9649-y

suggest_size 17

suggest_size Suggest model size

Description

This function can be used for suggesting an appropriate model size based on a certain default rule.
Notice that the decision rules are heuristic and should be interpreted as guidelines. It is recom-
mended that the user studies the results via varsel_plot and/or varsel_stats and makes the final
decision based on what is most appropriate for the given problem.

Usage

suggest_size(
object,
stat = "elpd",
alpha = 0.32,
pct = 0,
type = "upper",
baseline = NULL,
warnings = TRUE,
...

)

Arguments

object The object returned by varsel or cv_varsel.

stat Statistic used for the decision. Default is ’elpd’. See varsel_stats for other
possible choices.

alpha A number indicating the desired coverage of the credible intervals based on
which the decision is made. E.g. alpha=0.32 corresponds to 68% probability
mass within the intervals (one standard error intervals). See details for more
information.

pct Number indicating the relative proportion between baseline model and null model
utilities one is willing to sacrifice. See details for more information.

type Either ’upper’ (default) or ’lower’ determining whether the decisions are based
on the upper or lower credible bounds. See details for more information.

baseline Either ’ref’ or ’best’ indicating whether the baseline is the reference model or
the best submodel found. Default is ’ref’ when the reference model exists, and
’best’ otherwise.

warnings Whether to give warnings if automatic suggestion fails, mainly for internal use.
Default is TRUE, and usually no reason to set to FALSE.

... Currently ignored.

18 varsel

Details

The suggested model size is the smallest model for which either the lower or upper (depending on
argument type) credible bound of the submodel utility uk with significance level alpha falls above

ubase− pct ∗ (ubase− u0)

Here ubase denotes the utility for the baseline model and u0 the null model utility. The baseline
is either the reference model or the best submodel found (see argument baseline). The lower and
upper bounds are defined to contain the submodel utility with probability 1-alpha (each tail has
mass alpha/2).

By default ratio=0, alpha=0.32 and type='upper' which means that we select the smallest
model for which the upper tail exceeds the baseline model level, that is, which is better than the
baseline model with probability 0.16 (and consequently, worse with probability 0.84). In other
words, the estimated difference between the baseline model and submodel utilities is at most one
standard error away from zero, so the two utilities are considered to be close.

NOTE: Loss statistics like RMSE and MSE are converted to utilities by multiplying them by -
1, so call such as suggest_size(object,stat='rmse',type='upper') should be interpreted as
finding the smallest model whose upper credible bound of the negative RMSE exceeds the cutoff
level (or equivalently has the lower credible bound of RMSE below the cutoff level). This is done
to make the interpretation of the argument type the same regardless of argument stat.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5
x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)

fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
vs <- cv_varsel(fit)
suggest_size(vs)

}

varsel Variable selection for generalized linear models

Description

Perform the projection predictive variable selection for generalized linear models using generic
reference models.

varsel 19

Usage

varsel(
object,
d_test = NULL,
method = NULL,
ns = NULL,
nc = NULL,
nspred = NULL,
ncpred = NULL,
relax = NULL,
nv_max = NULL,
intercept = NULL,
penalty = NULL,
verbose = F,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
regul = 1e-04,
...

)

Arguments

object Either a refmodel-type object created by get_refmodel or init_refmodel, or an
object which can be converted to a reference model using get_refmodel.

d_test A test dataset, which is used to evaluate model performance. If not provided,
training data is used. Currently this argument is for internal use only.

method The method used in the variable selection. Possible options are 'L1' for L1-
search and 'forward' for forward selection. Default is ’forward’ if the number
of variables in the full data is at most 20, and 'L1' otherwise.

ns Number of posterior draws used in the variable selection. Cannot be larger than
the number of draws in the reference model. Ignored if nc is set.

nc Number of clusters to use in the clustered projection. Overrides the ns argument.
Defaults to 1.

nspred Number of samples used for prediction (after selection). Ignored if ncpred is
given.

ncpred Number of clusters used for prediction (after selection). Default is 5.

relax If TRUE, then the projected coefficients after L1-selection are computed with-
out any penalization (or using only the regularization determined by regul).
If FALSE, then the coefficients are the solution from the L1-penalized projec-
tion. This option is relevant only if method=’L1’. Default is TRUE for genuine
reference models and FALSE if object is datafit (see init_refmodel).

nv_max Maximum number of varibles until which the selection is continued. Defaults
to min(20, D, floor(0.4*n)) where n is the number of observations and D the
number of variables.

intercept Whether to use intercept in the submodels. Defaults to TRUE.

20 varsel

penalty Vector determining the relative penalties or costs for the variables. Zero means
that those variables have no cost and will therefore be selected first, whereas
Inf means that those variables will never be selected. Currently works only if
method == ’L1’. By default 1 for each variable.

verbose If TRUE, may print out some information during the selection. Defaults to
FALSE.

lambda_min_ratio

Ratio between the smallest and largest lambda in the L1-penalized search. This
parameter essentially determines how long the search is carried out, i.e., how
large submodels are explored. No need to change the default value unless the
program gives a warning about this.

nlambda Number of values in the lambda grid for L1-penalized search. No need to change
unless the program gives a warning about this.

thresh Convergence threshold when computing L1-path. Usually no need to change
this.

regul Amount of regularization in the projection. Usually there is no need for regu-
larization, but sometimes for some models the projection can be ill-behaved and
we need to add some regularization to avoid numerical problems.

... Additional arguments to be passed to the get_refmodel-function.

Value

An object of type vsel that contains information about the feature selection. The fields are not
meant to be accessed directly by the user but instead via the helper functions (see the vignettes or
type ?projpred to see the main functions in the package.)

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5
x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)
fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
vs <- varsel(fit)
varsel_plot(vs)

}

varsel-statistics 21

varsel-statistics Plot or fetch summary statistics related to variable selection

Description

varsel_stats can be used to obtain summary statistics related to variable selection. The same
statistics can be plotted with varsel_plot.

Usage

varsel_plot(
object,
nv_max = NULL,
stats = "elpd",
deltas = F,
alpha = 0.32,
baseline = NULL,
...

)

varsel_stats(
object,
nv_max = NULL,
stats = "elpd",
type = c("mean", "se"),
deltas = F,
alpha = 0.32,
baseline = NULL,
...

)

Arguments

object The object returned by varsel or cv_varsel.

nv_max Maximum submodel size for which the statistics are calculated. For varsel_plot
it must be at least 1.

stats One or several strings determining which statistics to calculate. Available statis-
tics are:

• elpd: (Expected) sum of log predictive densities
• mlpd: Mean log predictive density, that is, elpd divided by the number of

datapoints.
• mse: Mean squared error (gaussian family only)
• rmse: Root mean squared error (gaussian family only)
• acc/pctcorr: Classification accuracy (binomial family only)
• auc: Area under the ROC curve (binomial family only)

22 varsel-statistics

Default is elpd.

deltas If TRUE, the submodel statistics are estimated relative to the baseline model (see
argument baseline) instead of estimating the actual values of the statistics.
Defaults to FALSE.

alpha A number indicating the desired coverage of the credible intervals. For example
alpha=0.32 corresponds to 68% probability mass within the intervals, that is,
one standard error intervals.

baseline Either ’ref’ or ’best’ indicating whether the baseline is the reference model or
the best submodel found. Default is ’ref’ when the reference model exists, and
’best’ otherwise.

... Currently ignored.

type One or more items from ’mean’, ’se’, ’lower’ and ’upper’ indicating which of
these to compute (mean, standard error, and lower and upper credible bounds).
The credible bounds are determined so that 1-alpha percent of the mass falls
between them.

Examples

if (requireNamespace('rstanarm', quietly=TRUE)) {
Usage with stanreg objects
n <- 30
d <- 5
x <- matrix(rnorm(n*d), nrow=n)
y <- x[,1] + 0.5*rnorm(n)
data <- data.frame(x,y)

fit <- rstanarm::stan_glm(y~., gaussian(), data=data, chains=2, iter=500)
vs <- cv_varsel(fit)
varsel_plot(vs)

print out some stats
varsel_stats(vs, stats=c('mse'), type = c('mean','se'))

}

Index

∗Topic datasets
df_binom, 5
df_gaussian, 6
mesquite, 10

cv-indices, 2
cv_varsel, 3, 7, 9, 12, 13, 16, 17, 21
cvfolds (cv-indices), 2
cvind (cv-indices), 2

df_binom, 5
df_gaussian, 6

family, 8, 15

get-refmodel, 6
get_refmodel, 15, 19
get_refmodel (get-refmodel), 6

init_refmodel, 2, 6, 7, 7, 13, 15, 16, 19

mesquite, 10

predict.refmodel, 11
print-vsel, 12
print.cvsel (print-vsel), 12
print.vsel (print-vsel), 12
proj-pred, 12
proj_linpred, 7, 9, 16
proj_linpred (proj-pred), 12
proj_predict, 7, 9, 16
proj_predict (proj-pred), 12
project, 7, 13, 14, 16
projpred, 16

suggest_size, 16, 17

varsel, 4, 7, 9, 12, 13, 16, 17, 18, 21
varsel-statistics, 21
varsel_plot, 16
varsel_plot (varsel-statistics), 21
varsel_stats, 12, 16
varsel_stats (varsel-statistics), 21

23

	cv-indices
	cv_varsel
	df_binom
	df_gaussian
	get-refmodel
	init_refmodel
	mesquite
	predict.refmodel
	print-vsel
	proj-pred
	project
	projpred
	suggest_size
	varsel
	varsel-statistics
	Index

