
Characteristic Functions in the prob package

G. Jay Kerns

August 27, 2018

Contents

1 Introduction 2

2 Characteristic functions 2

2.1 Beta distribution: cfbeta(t, shape1, shape2, ncp = 0) 2

2.2 Binomial distribution: cfbinom(t, size, prob) . 3

2.3 Cauchy Distribution: cfcauchy(t, location = 0, scale = 1) 4

2.4 Chi-square Distribution: cfchisq(t, df, ncp = 0) . 4

2.5 Exponential Distribution: cfexp(t, rate = 1) . 4

2.6 F Distribution: cff(t, df1, df2, ncp, kmax = 10) . 5

2.7 Gamma Distribution: cfgamma(t, shape, rate = 1, scale = 1/rate) 6

2.8 Geometric Distribution: cfgeom(t, prob) . 6

2.9 Hypergeometric Distribution: cfhyper(t, m, n, k) . 6

2.10 Logistic Distribution: cflogis(t, location = 0, scale = 1) 7

2.11 Lognormal Distribution: cflnorm(t, meanlog = 0, sdlog = 1) 7

2.12 Negative Binomial Distribution: cfnbinom(t, size, prob, mu) 8

2.13 Normal Distribution: cfnorm(t, mean = 0, sd = 1) . 9

2.14 Poisson Distribution: cfpois(t, lambda) . 9

2.15 Wilcoxon Signed Rank Distribution: cfsignrank(t, n) . 9

2.16 Student’s t Distribution: cft(t, df, ncp) . 10

2.17 Continuous Uniform Distribution: cfunif(t, min = 0, max = 1) 11

2.18 Weibull Distribution: cfweibull(t, shape, scale = 1) . 11

2.19 Wilcoxon Rank Sum Distribution: cfwilcox(t, m, n) . 12

3 R Session information 12

1

1 Introduction

The characteristic function (c.f.) of a random variable X is defined by

φX(t) = EeitX , −∞ < t <∞.

When the distribution of X is discrete with probability mass function (p.m.f.) pX(x), the c.f. takes the form

φX(t) =
∑
x∈SX

eitxpX(x),

where SX is the support of X. When the distribution of X is continuous with probability density function
(p.d.f.) fX(x), the c.f. takes the form

φX(t) =

ˆ
SX

eitxfX(x) dx.

Characteristic functions have many, many useful properties: for example, every c.f. is uniformly continuous
and bounded in modulus (by 1). Furthermore, a random variable has a distribution symmetric about 0 if
and only if its associated c.f. is real-valued. For details, see [7].

Most of the below formulas came from [8, 9, 10]. Some of them involve special mathematical functions and
a classical reference for them is [2], but many of the definitions have made it to Wikipedia (http://www.
wikipedia.org/) and selected links to the respective Wikipedia topics have been listed when appropriate.

Note that the returned value of a characteristic function is a complex number, and is represented as such in
R, even for those c.f.’s which correspond to symmetric distributions. Thus, cfnorm(0) = 1 + 0i, and not
cfnorm(0) = 1. Depending on the application, the respective c.f.’s may need to be wrapped in as.real().

All of the below functions were written in straight R code; it would likely be possible to speed up evaluation
if for example they were written in C or some other language. I would welcome any contributions for
improvement in the prob package.

There are three special cases: the noncentral Beta, noncentral Student’s t, and Weibull distributions. For
these the c.f.’s are integrated numerically and thus are subject to all of numerical integration’s limitations
and idiosyncracies. I would be especially interested in and appreciative of a reference for these cases to be
improved.

2 Characteristic functions

The formulas for all characteristic functions supported in the prob package are listed below, in alphabetical
order of the function name.

2.1 Beta distribution: cfbeta(t, shape1, shape2, ncp = 0)

Let α and β denote the shape1 and shape2 parameters, respectively. The p.d.f. is then

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1,

where Γ is the gamma function defined by

Γ(α) =

ˆ ∞
0

uα−1e−u du, α 6= 0, −1, −2,

The characteristic function is given by

φX(t) = 1F1(α; α+ β; it),

2

http://www.wikipedia.org/
http://www.wikipedia.org/

where 1F1 is Kummer’s confluent hypergeometric function of the first kind, also known as Kummer’s M ,
defined by

1F1(a; b; z) =

∞∑
n=0

(a)nz
n

(b)nn!
,

with (a)n = a(a + 1)(a + 2) · · · (a + n − 1) the rising factorial. We calculate 1F1 using kummerM in the
fAsianOptions package.

As of the time of this writing, it seems that we must resort to calculating the characteristic function for the
noncentral Beta by numerical integration according to the definition; see the source below. If you are aware
of a way to more quickly/reliably calculate this c.f. with R, I would appreciate it if you would let me know.

Source Code:

function (t, shape1, shape2, ncp = 0)

{

if (shape1 <= 0 || shape2 <= 0)

stop("shape1, shape2 must be positive")

if (identical(all.equal(ncp, 0), TRUE)) {

require(fAsianOptions)

kummerM((0+1i) * t, shape1, shape1 + shape2)

}

else {

fr <- function(x) cos(t * x) * dbeta(x, shape1, shape2,

ncp)

fi <- function(x) sin(t * x) * dbeta(x, shape1, shape2,

ncp)

Rp <- integrate(fr, lower = 0, upper = 1)$value

Ip <- integrate(fi, lower = 0, upper = 1)$value

return(Rp + (0+1i) * Ip)

}

}

<environment: namespace:prob>

2.2 Binomial distribution: cfbinom(t, size, prob)

Let n and p denote the size and prob arguments, respectively. Then the p.m.f. is

pX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n.

The characteristic function is given by

φX(t) =
[
peit + (1− p)

]n
.

Source Code:

function (t, size, prob)

{

if (size <= 0)

stop("size must be positive")

if (prob < 0 || prob > 1)

stop("prob must be in [0,1]")

(prob * exp((0+1i) * t) + (1 - prob))^size

}

<environment: namespace:prob>

3

2.3 Cauchy Distribution: cfcauchy(t, location = 0, scale = 1)

Let θ and σ denote the location and scale parameters, respectively. The p.d.f. is then

fX(x) =
1

πσ

1[
1 + (x−θσ)2

] , −∞ < x <∞.

The characteristic function is given by
φX(t) = eitθ−σ|t|.

Source Code:

function (t, location = 0, scale = 1)

{

if (scale <= 0)

stop("scale must be positive")

exp((0+1i) * location * t - scale * abs(t))

}

<environment: namespace:prob>

2.4 Chi-square Distribution: cfchisq(t, df, ncp = 0)

Let p and δ denote the df and ncp parameters, respectively. The p.d.f. of the central chi-square distribution
(δ = 0) is then

fX(x) =
1

Γ(p/2) · 2p/2
xp/2−1e−x/2, x > 0.

One way to then write the p.d.f. of the noncentral chi-square distribution (δ > 0) is with an infinite series:

fX(x) =

∞∑
k=0

e−δ/2(δ/2)k

k!
fp+2k(x), x > 0,

where fp+2k is the p.d.f. of a central chi-square distribution with p+2k degrees of freedom. The characteristic
function in both cases is given by

φX(t) =
exp

{
iδt

1−2it

}
(1− 2it)p/2

.

Source Code:

function (t, df, ncp = 0)

{

if (df < 0 || ncp < 0)

stop("df and ncp must be nonnegative")

exp((0+1i) * ncp * t/(1 - (0+2i) * t))/(1 - (0+2i) * t)^(df/2)

}

<environment: namespace:prob>

2.5 Exponential Distribution: cfexp(t, rate = 1)

This is the special case of the Gamma distribution when α = 1. See Section 2.7.

4

Source Code:

function (t, rate = 1)

{

cfgamma(t, shape = 1, scale = 1/rate)

}

<environment: namespace:prob>

2.6 F Distribution: cff(t, df1, df2, ncp, kmax = 10)

Let p and q denote the df1 and df2 parameters, respectively, and let λ denote the noncentrality parameter
ncp. We may write the p.d.f. for the central F distribution (λ = 0) with

fX(x) =
Γ[(p+ q)/2]

Γ(p/2)Γ(q/2)

(
p

q

)p/2
xp/2−1

(
1 +

p

q
x

)−(p+q)/2
, x > 0.

The characteristic function for central F is given by

φX(t) =
Γ[(p+ q)/2]

Γ(q/2)
Ψ

(
p

2
, 1− q

2
; −q

p
it

)
,

where Ψ is Kummer’s confluent hypergeometric function of the second kind, also known as Kummer’s U ,
defined by

Ψ(a, b; z) =
π

sin πb

(
1F1(a; b; z)

Γ(1 + a− b)Γ(b)
− z1−b 1F1(1 + a− b; 2− b; z)

Γ(a)Γ(2− b)

)
.

See [1] in the references. Kummer’s U is calculated with kummerU, again from the fAsianOptions package.

The p.d.f. of the noncentral F distribution (λ 6= 0) as

fX(x) = fp,q(x) e−λ/2
∞∑
k=0

{(1
2λpx

q + px

)k
· (p+ q)(p+ q + 2) · · · (p+ q + 2 · k − 1)

k! p(p+ 2) · · · (p+ 2 · k − 1)

}
, x > 0,

where fp,q is the p.d.f. of the central F distribution. The characteristic function for the noncentral F
distribution is given by

φX(t) = e−λ/2
∞∑
k=0

(λ/2)k

k!
1F1

(
p

2
+ k; −q

2
; −qit

p

)
,

where 1F1 is Kummer’s confluent hypergeometric function of the first kind defined above; see Section 2.1.
For the purposes of calculation, we may only use a finite sum to approximate the infinite series, thus the
user should specify an upper value of k to be used, denoted kmax, which has the default value of kmax = 10.

Source Code:

function (t, df1, df2, ncp, kmax = 10)

{

if (df1 <= 0 || df2 <= 0)

stop("df1 and df2 must be positive")

require(fAsianOptions)

if (identical(all.equal(ncp, 0), TRUE)) {

gamma((df1 + df2)/2)/gamma(df2/2) * kummerU(-(0+1i) *

df2 * t/df1, df1/2, 1 - df2/2)

}

else {

5

exp(-ncp/2) * sum((ncp/2)^(0:kmax)/factorial(0:kmax) *

kummerM(-(0+1i) * df2 * t/df1, df1/2 + 0:kmax, -df2/2))

}

}

<environment: namespace:prob>

2.7 Gamma Distribution: cfgamma(t, shape, rate = 1, scale = 1/rate)

Let α and β denote the shape and scale parameters, respectively. The p.d.f. is then

fX(x) =
1

Γ(α)βα
xα−1e−x/β , x > 0.

The characteristic function is given by
φX(t) = (1− βit)−α .

Source Code:

function (t, shape, rate = 1, scale = 1/rate)

{

if (rate <= 0 || scale <= 0)

stop("rate must be positive")

(1 - scale * (0+1i) * t)^(-shape)

}

<environment: namespace:prob>

2.8 Geometric Distribution: cfgeom(t, prob)

This is the special case of the Negative Binomial distribution when r = 1; see Section 2.12.

Source Code:

function (t, prob)

{

cfnbinom(t, size = 1, prob = prob)

}

<environment: namespace:prob>

2.9 Hypergeometric Distribution: cfhyper(t, m, n, k)

The p.m.f. takes the form

pX(x) =

(
m
x

)(
n
k−x
)(

m+n
k

) , x = 0, . . . , k; x ≤ m; k − x ≤ n.

The characteristic function is given by

φX(t) =
2F1

(
−k, −m; n− k + 1; eit

)
2F1 (−k, −m; n− k + 1; 1)

,

6

where 2F1 is the Gaussian hypergeometric series defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

with (a)n the rising factorial defined as above in Section 2.1. See [3] in the References for details concerning

2F1. We calculate it by means of the hypergeo function in the hypergeo package.

Source Code:

function (t, m, n, k)

{

if (m < 0 || n < 0 || k < 0)

stop("m, n, k must be positive")

hypergeo:::hypergeo(-k, -m, n - k + 1, exp((0+1i) * t))/hypergeo:::hypergeo(-k,

-m, n - k + 1, 1)

}

<environment: namespace:prob>

2.10 Logistic Distribution: cflogis(t, location = 0, scale = 1)

Let µ and σ denote the location and scale parameters, respectively. The p.d.f. is then

fX(x) =
e−(x−µ)/σ

σ
(
1 + e−(x−µ)/σ

)2 , −∞ < x <∞.

The characteristic function is given by

φX(t) = eiµt
πσt

sinh(πσt)
,

where

sinh(x) =
ex − e−x

2
= −i sin ix,

see [4] in the References.

Source Code:

function (t, location = 0, scale = 1)

{

if (scale <= 0)

stop("scale must be positive")

ifelse(identical(all.equal(t, 0), TRUE), return(1), return(exp((0+1i) *

location) * pi * scale * t/sinh(pi * scale * t)))

}

<environment: namespace:prob>

2.11 Lognormal Distribution: cflnorm(t, meanlog = 0, sdlog = 1)

Let µ and σ denote the meanlog and sdlog parameters, respectively. The p.d.f. is then

fX(x) =
1

σ
√

2π

1

x
e−(ln x−µ)

2/2σ2

, −∞ < x <∞.

The characteristic function is uniquely complicated and delicate. See [5] in the References. For fast numerical
computation an algorithm due to Beaulieu is used, see [11].

7

Source Code:

function (t, meanlog = 0, sdlog = 1)

{

if (sdlog <= 0)

stop("sdlog must be positive")

if (identical(all.equal(t, 0), TRUE)) {

return(1 + (0+0i))

}

else {

t <- t * exp(meanlog)

Rp1 <- integrate(function(y) exp(-log(y/t)^2/2/sdlog^2) *

cos(y)/y, lower = 0, upper = t)$value

Rp2 <- integrate(function(y) exp(-log(y * t)^2/2/sdlog^2) *

cos(1/y)/y, lower = 0, upper = 1/t)$value

Ip1 <- integrate(function(y) exp(-log(y/t)^2/2/sdlog^2) *

sin(y)/y, lower = 0, upper = t)$value

Ip2 <- integrate(function(y) exp(-log(y * t)^2/2/sdlog^2) *

sin(1/y)/y, lower = 0, upper = 1/t)$value

return((Rp1 + Rp2 + (0+1i) * (Ip1 + Ip2))/(sqrt(2 * pi) *

sdlog))

}

}

<environment: namespace:prob>

2.12 Negative Binomial Distribution: cfnbinom(t, size, prob, mu)

Let r and p denote the size and prob parameters, respectively. We may write the p.m.f. as

pX(x) =

(
r + x− 1

r − 1

)
pr(1− p)x, x = 0, 1, 2, . . .

The characteristic function is given by

φX(t) =

(
p

1− (1− p)eit

)r
.

Source Code:

function (t, size, prob, mu)

{

if (size <= 0)

stop("size must be positive")

if (prob <= 0 || prob > 1)

stop("prob must be in (0,1]")

if (!missing(mu)) {

if (!missing(prob))

stop("'prob' and 'mu' both specified")

prob <- size/(size + mu)

}

(prob/(1 - (1 - prob) * exp((0+1i) * t)))^size

}

<environment: namespace:prob>

8

2.13 Normal Distribution: cfnorm(t, mean = 0, sd = 1)

Let µ and σ denote the mean and sd parameters, respectively. The p.d.f. is

fX(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

, −∞ < x <∞.

The characteristic function is given by

φX(t) = eiµt+σ
2t2/2.

Source Code:

function (t, mean = 0, sd = 1)

{

if (sd <= 0)

stop("sd must be positive")

exp((0+1i) * mean - (sd * t)^2/2)

}

<environment: namespace:prob>

2.14 Poisson Distribution: cfpois(t, lambda)

Let λ denote the lambda parameter. The p.m.f. is

pX(x) = e−λ
λx

x!
, x = 0, 1, 2, . . .

The characteristic function is given by

φX(t) = exp
{
λ(eit − 1)

}
.

Source Code:

function (t, lambda)

{

if (lambda <= 0)

stop("lambda must be positive")

exp(lambda * (exp((0+1i) * t) - 1))

}

<environment: namespace:prob>

2.15 Wilcoxon Signed Rank Distribution: cfsignrank(t, n)

See ?dsignrank for a discussion of the p.m.f. for this distribution; it is sufficient for our purposes to know
that fX is supported on the integers x = 0, 1, . . . , n(n + 1)2. Since the support is finite, we may calculate
the characteristic function according to the definition:

φX(t) =

n(n+1)/2∑
x=0

eitxfX(x),

where fX is given by dsignrank().

9

Source Code:

function (t, n)

{

sum(exp((0+1i) * t * 0:((n + 1) * n/2)) * dsignrank(0:((n +

1) * n/2), n))

}

<environment: namespace:prob>

2.16 Student’s t Distribution: cft(t, df, ncp)

Let p denote the df parameter. The p.d.f. is

fX(x) =
Γ[(p+ 1)/2]
√
pπΓ(p/2)

(
1 +

x2

p

)−(p+1)/2

, −∞ < x <∞.

The formula used for the characteristic function was published by Hurst, see [12]. The characteristic function
is given by

φX(t) =
Kp/2(

√
p|t|) · (√p|t|)p/2

Γ(p/2)2p/2−1
,

where Kν is the modified Bessel Function of the second kind, defined by

Kν(x) =
π

2

I−ν(x)− I−ν(x)

sin(νπ)
,

and Iα is the modified Bessel Function of the first kind, defined by

Iα(x) = i−αJα(ix),

with Jα(x) being a Bessel function of the first kind, defined by

Jα(x) =

∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α

.

Whew! See [6] in the References.

As of the time of this writing, it seems that we must resort to calculating the characteristic function for the
noncentral Student’s t by numerical integration according to the definition; see the source below. If you are
aware of a way to more quickly/reliably calculate this c.f. with R, I would appreciate it if you would let me
know.

Source Code:

function (t, df, ncp)

{

if (missing(ncp))

ncp <- 0

if (df <= 0)

stop("df must be positive")

if (identical(all.equal(ncp, 0), TRUE)) {

ifelse(identical(all.equal(t, 0), TRUE), 1 + (0+0i),

as.complex(besselK(sqrt(df) * abs(t), df/2) * (sqrt(df) *

10

abs(t))^(df/2)/(gamma(df/2) * 2^(df/2 - 1))))

}

else {

fr <- function(x) cos(t * x) * dt(x, df, ncp)

fi <- function(x) sin(t * x) * dt(x, df, ncp)

Rp <- integrate(fr, lower = -Inf, upper = Inf)$value

Ip <- integrate(fi, lower = -Inf, upper = Inf)$value

return(Rp + (0+1i) * Ip)

}

}

<environment: namespace:prob>

2.17 Continuous Uniform Distribution: cfunif(t, min = 0, max = 1)

Let a and b denote the min and max parameters, respectively. The p.d.f. is

fX(x) =
1

b− a
, a < x < b.

The characteristic function is given by

φX(t) =
eitb − eita

(b− a)it
.

Source Code:

function (t, min = 0, max = 1)

{

if (max < min)

stop("min cannot be greater than max")

ifelse(identical(all.equal(t, 0), TRUE), 1 + (0+0i), (exp((0+1i) *

t * max) - exp((0+1i) * t * min))/((0+1i) * t * (max -

min)))

}

<environment: namespace:prob>

2.18 Weibull Distribution: cfweibull(t, shape, scale = 1)

Let a and b denote the shape and scale parameters, respectively. The p.d.f. is

fX(x) =
a

b

(x
b

)a−1
e−(x/b)

a

, 0 < x <∞.

At the time of this writing, we must resort to calculating the characteristic function according to the defini-
tion; see the source below. If you know of a way to more quickly/reliably calculate this c.f. with R, I would
appreciate it if you would let me know.

Source Code:

function (t, shape, scale = 1)

{

if (shape <= 0 || scale <= 0)

stop("shape and scale must be positive")

fr <- function(x) cos(t * x) * dweibull(x, shape, scale)

11

fi <- function(x) sin(t * x) * dweibull(x, shape, scale)

Rp <- integrate(fr, lower = 0, upper = Inf)$value

Ip <- integrate(fi, lower = 0, upper = Inf)$value

return(Rp + (0+1i) * Ip)

}

<environment: namespace:prob>

2.19 Wilcoxon Rank Sum Distribution: cfwilcox(t, m, n)

See ?dwilcox for a discussion of the p.m.f. for this distribution; it is sufficient for our purposes to know
that fX is supported on the integers x = 0, 1, . . . ,mn. Since the support is finite, we may calculate the
characteristic function according to the definition:

φX(t) =

mn∑
x=0

eitxfX(x),

where fX is given by dwilcox().

Source Code:

function (t, m, n)

{

sum(exp((0+1i) * t * 0:(m * n)) * dwilcox(0:(m * n), m, n))

}

<environment: namespace:prob>

3 R Session information

> toLatex(sessionInfo())

• R version 2.8.1 (2008-12-22), i486-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-
8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-

8;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tcltk, utils

• Other packages: prob 0.9-2, svGUI 0.9-43, svMisc 0.9-45, svSocket 0.9-42

References

[1] http://en.wikipedia.org/wiki/Confluent_hypergeometric_function

[2] Abramowitz, Milton; Stegun, Irene A., eds. (1965) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, New York: Dover

[3] http://en.wikipedia.org/wiki/Hypergeometric_series

[4] http://en.wikipedia.org/wiki/Hyperbolic_function

[5] http://anziamj.austms.org.au/V32/part3/Leipnik.html

12

http://en.wikipedia.org/wiki/Confluent_hypergeometric_function
http://en.wikipedia.org/wiki/Hypergeometric_series
http://en.wikipedia.org/wiki/Hyperbolic_function
http://anziamj.austms.org.au/V32/part3/Leipnik.html

[6] http://en.wikipedia.org/wiki/Bessel_function

[7] Lukacs, E. (1970). Characteristic Functions, Second Edition. London: Griffin.

[8] Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley.

[9] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1.
Wiley, New York.

[10] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 2.
Wiley, New York.

[11] Beaulieu, N.C. (2008) Fast convenient numerical computation of lognormal characteristic functions,
IEEE Transactions on Communications, 56 (3): 331–333.

[12] Hurst, S. (1995) The Characteristic Function of the Student-t Distribution, Financial Mathematics
Research Report No. FMRR006-95, Statistics Research Report No. SRR044-95.

13

http://en.wikipedia.org/wiki/Bessel_function

	1 Introduction
	2 Characteristic functions
	2.1 Beta distribution: cfbeta(t, shape1, shape2, ncp = 0)
	2.2 Binomial distribution: cfbinom(t, size, prob)
	2.3 Cauchy Distribution: cfcauchy(t, location = 0, scale = 1)
	2.4 Chi-square Distribution: cfchisq(t, df, ncp = 0)
	2.5 Exponential Distribution: cfexp(t, rate = 1)
	2.6 F Distribution: cff(t, df1, df2, ncp, kmax = 10)
	2.7 Gamma Distribution: cfgamma(t, shape, rate = 1, scale = 1/rate)
	2.8 Geometric Distribution: cfgeom(t, prob)
	2.9 Hypergeometric Distribution: cfhyper(t, m, n, k)
	2.10 Logistic Distribution: cflogis(t, location = 0, scale = 1)
	2.11 Lognormal Distribution: cflnorm(t, meanlog = 0, sdlog = 1)
	2.12 Negative Binomial Distribution: cfnbinom(t, size, prob, mu)
	2.13 Normal Distribution: cfnorm(t, mean = 0, sd = 1)
	2.14 Poisson Distribution: cfpois(t, lambda)
	2.15 Wilcoxon Signed Rank Distribution: cfsignrank(t, n)
	2.16 Student's t Distribution: cft(t, df, ncp)
	2.17 Continuous Uniform Distribution: cfunif(t, min = 0, max = 1)
	2.18 Weibull Distribution: cfweibull(t, shape, scale = 1)
	2.19 Wilcoxon Rank Sum Distribution: cfwilcox(t, m, n)

	3 R Session information

