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add_absolute_targets Add absolute targets

Description

Set targets expressed as the actual value of features in the study area that need to be represented
in the prioritization. For instance, setting a target of 10 requires that the solution secure a set of
planning units for which their summed feature values are equal to or greater than 10.

Usage

add_absolute_targets(x, targets)

## S4 method for signature 'ConservationProblem,numeric'
add_absolute_targets(x, targets)

## S4 method for signature 'ConservationProblem,matrix'
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add_absolute_targets(x, targets)

## S4 method for signature 'ConservationProblem,character'
add_absolute_targets(x, targets)

Arguments

x problem() (i.e. ConservationProblem) object.

targets Object that specifies the targets for each feature. See the Details section for more
information.

Details

Targets are used to specify the minimum amount or proportion of a feature’s distribution that needs
to be protected. Most conservation planning problems require targets with the exception of the max-
imum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective())
problems. Attempting to solve problems with objectives that require targets without specifying tar-
gets will throw an error.

The targets for a problem can be specified in several different ways:

numeric vector of target values for each feature. Additionally, for convenience, this type of ar-
gument can be a single value to assign the same target to each feature. Note that this type of
argument cannot be used to specify targets for problems with multiple zones.

matrix containing a target for each feature in each zone. Here, each row corresponds to a different
feature in argument to x, each column corresponds to a different zone in argument to x, and
each cell contains the target value for a given feature that the solution needs to secure in a
given zone.

character containing the names of fields (columns) in the feature data associated with the argu-
ment to x that contain targets. This type of argument can only be used when the feature data
associated with x is a data.frame. This argument must contain a field (column) name for
each zone.

For problems associated with multiple management zones, this function can be used to set targets
that each pertain to a single feature and a single zone. To set targets which can be met through
allocating different planning units to multiple zones, see the add_manual_targets() function. An
example of a target that could be met through allocations to multiple zones might be where each
management zone is expected to result in a different amount of a feature and the target requires
that the total amount of the feature in all zones must exceed a certain threshold. In other words,
the target does not require that any single zone secure a specific amount of the feature, but the total
amount held in all zones must secure a specific amount. Thus the target could, potentially, be met
through allocating all planning units to any specific management zone, or through allocating the
planning units to different combinations of management zones.

Value

Object (i.e. ConservationProblem) with the targets added to it.
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See Also

targets.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create simple problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_binary_decisions()

# create problem with targets to secure 3 amounts for each feature
p1 <- p %>% add_absolute_targets(3)

# create problem with varying targets for each feature
targets <- c(1, 2, 3, 2, 1)
p2 <- p %>% add_absolute_targets(targets)
## Not run:
# solve problem
s <- stack(solve(p1), solve(p2))

# plot solution
plot(s, main = c("equal targets", "varying targets"), axes = FALSE,

box = FALSE)

## End(Not run)

# create a problem with multiple management zones
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_binary_decisions()

# create a problem with targets that specify an equal amount of each feature
# to be represented in each zone
p4_targets <- matrix(2, nrow = number_of_features(sim_features_zones),

ncol = number_of_zones(sim_features_zones),
dimnames = list(feature_names(sim_features_zones),

zone_names(sim_features_zones)))
print(p4_targets)

p4 <- p3 %>% add_absolute_targets(p4_targets)

# solve problem
## Not run:
# solve problem
s4 <- solve(p4)
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# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s4), main = c("equal targets"))

## End(Not run)
# create a problem with targets that require a varying amount of each
# feature to be represented in each zone
p5_targets <- matrix(rpois(15, 1),

nrow = number_of_features(sim_features_zones),
ncol = number_of_zones(sim_features_zones),
dimnames = list(feature_names(sim_features_zones),

zone_names(sim_features_zones)))
print(p5_targets)

p5 <- p3 %>% add_absolute_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s5 <- solve(p5)

# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s5), main = c("varying targets"))

## End(Not run)

add_binary_decisions Add binary decisions

Description

Add a binary decision to a conservation planning problem(). This is the classic decision of either
prioritizing or not prioritizing a planning unit. Typically, this decision has the assumed action of
buying the planning unit to include in a protected area network. If no decision is added to a problem
then this decision class will be used by default.

Usage

add_binary_decisions(x)

Arguments

x problem() (i.e. ConservationProblem) object.

Details

Conservation planning problems involve making decisions on planning units. These decisions are
then associated with actions (e.g. turning a planning unit into a protected area). If no decision is
explicitly added to a problem, then the binary decision class will be used by default. Only a single
decision should be added to a ConservationProblem object. Note that if multiple decisions are
added to a problem object, then the last one to be added will be used.
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Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

decisions.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution")

## End(Not run)
# build multi-zone conservation problem with binary decisions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

## Not run:
# solve the problem
s2 <- solve(p2)

# print solution
print(s2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_boundary_penalties

Add boundary penalties
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Description

Add penalties to a conservation planning problem() to favor solutions that have planning units
clumped together into contiguous areas.

Usage

add_boundary_penalties(
x,
penalty,
edge_factor = rep(0.5, number_of_zones(x)),
zones = diag(number_of_zones(x)),
data = NULL

)

Arguments

x problem() (i.e. ConservationProblem) object.

penalty numeric penalty that is used to scale the importance of selecting planning units
that are spatially clumped together compared to the main problem objective (e.g.
solution cost when the argument to x has a minimum set objective set using
add_min_set_objective()). Higher penalty values will return solutions with
a higher degree of spatial clumping, and smaller penalty values will return
solutions with a smaller degree of clumping. Note that negative penalty values
will return solutions that are more spread out. This parameter is equivalent to
the boundary length modifier (BLM) parameter in Marxan.

edge_factor numeric proportion to scale planning unit edges (or borders) that do not have
any neighboring planning units. For example, an edge factor of 0.5 is commonly
used for planning units along the coast line. Note that this argument must have
an element for each zone in the argument to x.

zones matrix or Matrix object describing the clumping scheme for different zones.
Each row and column corresponds to a different zone in the argument to x,
and cell values indicate the relative importance of clumping planning units that
are allocated to a pair of zones. Cell values along the diagonal of the matrix
represent the relative importance of clumping planning units that are allocated
to the same zone. Cell values must lay between 1 and -1, where negative values
favor solutions that spread out planning units. The default argument to zones is
an identity matrix (i.e. a matrix with ones along the matrix diagonal and zeros
elsewhere), so that penalties are incurred when neighboring planning units are
not assigned to the same zone. Note that if the cells along the matrix diagonal
contain markedly lower values than cells found elsewhere in the matrix,
then the optimal solution may surround planning units with planning units
that are allocated to different zones.

data NULL, data.frame, matrix, or Matrix object containing the boundary data.
The boundary values correspond to the shared boundary length between differ-
ent planning units and the amount of exposed boundary length that each plan-
ning unit has which is not shared with any other planning unit. Given a certain
penalty value, it is more desirable to select combinations of planning units

https://marxansolutions.org/
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which do not expose larger boundaries that are shared between different plan-
ning units. See the Details section for more information.

Details

This function adds penalties to a conservation planning problem to penalize fragmented solutions.
It was is inspired by Ball et al. (2009) and Beyer et al. (2016). The penalty argument is equivalent
to the boundary length modifier (BLM) used in Marxan. Note that this function can only be used to
represent symmetric relationships between planning units. If asymmetric relationships are required,
use the add_connectivity_penalties() function.

The argument to data can be specified in several different ways:

NULL the boundary data are automatically calculated using the boundary_matrix() function. This
argument is the default. Note that the boundary data must be manually defined using one
of the other formats below when the planning unit data in the argument to x is not spatially
referenced (e.g. in data.frame or numeric format).

matrix, Matrix where rows and columns represent different planning units and the value of each
cell represents the amount of shared boundary length between two different planning units.
Cells that occur along the matrix diagonal represent the amount of exposed boundary associ-
ated with each planning unit that has no neighbor (e.g. these value might pertain the length of
coastline in a planning unit).

data.frame containing the columns "id1", "id2", and "boundary". The values in the column
"boundary" show the total amount of shared boundary between the two planning units indi-
cated the columns "id1" and "id2". This format follows the the standard Marxan input for-
mat. Note that this function requires symmetric boundary data, and so the argument to data
cannot have the columns "zone1" and code"zone2" to specify different amounts of shared
boundary lengths for different zones. Instead, when dealing with problems with multiple
zones, the argument to zones should be used to control the relative importance of spatially
clumping planning units together when they are allocated to different zones.

The boundary penalties are calculated using the following equations. Let I represent the set of
planning units (indexed by i or j), Z represent the set of management zones (indexed by z or y),
and Xiz represent the decision variable for planning unit i for in zone z (e.g. with binary values one
indicating if planning unit is allocated or not). Also, let p represent the argument to penalty, E
represent the argument to edge_factor, B represent the matrix argument to data (e.g. generated
using boundary_matrix()), and W represent the matrix argument to zones.

I∑
i

I∑
j

Z∑
z

(ifelse(i == j, Ez, 1)×p×WzzBij)+

I∑
i

I∑
j

Z∑
z

Z∑
y

(−2×p×Xiz×Xjy×Wzy×Bij)

Note that when the problem objective is to maximize some measure of benefit and not minimize
some measure of cost, the term p is replaced with −p.

Value

Object (i.e. ConservationProblem) with the penalties added to it.

https://marxansolutions.org
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See Also

penalties.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions() %>%
add_default_solver()

# create problem with low boundary penalties
p2 <- p1 %>% add_boundary_penalties(50, 1)

# create problem with high boundary penalties but outer edges receive
# half the penalty as inner edges
p3 <- p1 %>% add_boundary_penalties(500, 0.5)

# create a problem using precomputed boundary data
bmat <- boundary_matrix(sim_pu_raster)
p4 <- p1 %>% add_boundary_penalties(50, 1, data = bmat)

## Not run:
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))

# plot solutions
plot(s, main = c("basic solution", "small penalties", "high penalties",

"precomputed data"), axes = FALSE, box = FALSE)

## End(Not run)
# create minimal problem with multiple zones and limit the run-time for
# solver to 10 seconds so this example doesn't take too long
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.2, nrow = 5, ncol = 3)) %>%
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add_binary_decisions() %>%
add_default_solver(time_limit = 10)

# create zone matrix which favors clumping planning units that are
# allocated to the same zone together - note that this is the default
zm6 <- diag(3)
print(zm6)

# create problem with the zone matrix and low penalties
p6 <- p5 %>% add_boundary_penalties(50, zone = zm6)

# create another problem with the same zone matrix and higher penalties
p7 <- p5 %>% add_boundary_penalties(500, zone = zm6)

# create zone matrix which favors clumping units that are allocated to
# different zones together
zm8 <- matrix(1, ncol = 3, nrow = 3)
diag(zm8) <- 0
print(zm8)

# create problem with the zone matrix
p8 <- p5 %>% add_boundary_penalties(500, zone = zm8)

# create zone matrix which strongly favors clumping units
# that are allocated to the same zone together. It will also prefer
# clumping planning units in zones 1 and 2 together over having
# these planning units with no neighbors in the solution
zm9 <- diag(3)
zm9[upper.tri(zm9)] <- c(0.3, 0, 0)
zm9[lower.tri(zm9)] <- zm9[upper.tri(zm9)]
print(zm9)

# create problem with the zone matrix
p9 <- p5 %>% add_boundary_penalties(500, zone = zm9)

# create zone matrix which favors clumping planning units in zones 1 and 2
# together, and favors planning units in zone 3 being spread out
# (i.e. negative clumping)
zm10 <- diag(3)
zm10[3, 3] <- -1
print(zm10)

# create problem with the zone matrix
p10 <- p5 %>% add_boundary_penalties(500, zone = zm10)

## Not run:
# solve problems
s2 <- stack(category_layer(solve(p5)), category_layer(solve(p6)),

category_layer(solve(p7)), category_layer(solve(p8)),
category_layer(solve(p9)), category_layer(solve(p10)))

# plot solutions
plot(s2, main = c("basic solution", "within zone clumping (low)",
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"within zone clumping (high)", "between zone clumping",
"within + between clumping", "negative clumping"),

axes = FALSE, box = FALSE)

## End(Not run)

add_connectivity_penalties

Add connectivity penalties

Description

Add penalties to a conservation planning problem() to favor solutions that select planning units
with high connectivity between them.

Usage

## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
add_connectivity_penalties(x, penalty, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,Matrix'
add_connectivity_penalties(x, penalty, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,dgCMatrix'
add_connectivity_penalties(x, penalty, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,data.frame'
add_connectivity_penalties(x, penalty, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,array'
add_connectivity_penalties(x, penalty, zones, data)

Arguments

x problem() (i.e. ConservationProblem) object.

penalty numeric penalty that is used to scale the importance of selecting planning units
with strong connectivity between them compared to the main problem objective
(e.g. solution cost when the argument to x has a minimum set objective set using
add_min_set_objective()). Higher penalty values can be used to obtain
solutions with a high degree of connectivity, and smaller penalty values can be
used to obtain solutions with a small degree of connectivity. Note that negative
penalty values can be used to obtain solutions that have very little connectivity.

zones matrix or Matrix object describing the level of connectivity between different
zones. Each row and column corresponds to a different zone in the argument to
x, and cell values indicate the level of connectivity between each combination
of zones. Cell values along the diagonal of the matrix represent the level of
connectivity between planning units allocated to the same zone. Cell values



add_connectivity_penalties 15

must lay between 1 and -1, where negative values favor solutions with weak
connectivity. The default argument to zones is an identity matrix (i.e. a matrix
with ones along the matrix diagonal and zeros elsewhere), so that planning units
are only considered to be connected when they are allocated to the same zone.
This argument is required when the argument to data is a matrix or Matrix
object. If the argument to data is an array or data.frame with zone data, this
argument must explicitly be set to NULL otherwise an error will be thrown.

data matrix, Matrix, data.frame, or array object containing connectivity data.
The connectivity values correspond to the strength of connectivity between dif-
ferent planning units. Thus connections between planning units that are asso-
ciated with higher values are more favorable in the solution. See the Details
section for more information.

Details

This function uses connectivity data to penalize solutions that have low connectivity. It can ac-
commodate symmetric and asymmetric relationships between planning units. Although Marxan
penalizes connections between planning units with high connectivity values, it is important to note
that this function favors connections between planning units with high connectivity values. This
function was inspired by Beger et al. (2010).

The argument to data can be specified in several different ways:

matrix, Matrix where rows and columns represent different planning units and the value of each
cell represents the strength of connectivity between two different planning units. Cells that
occur along the matrix diagonal are treated as weights which indicate that planning units are
more desirable in the solution. The argument to zones can be used to control the strength of
connectivity between planning units in different zones. The default argument for zones is to
treat planning units allocated to different zones as having zero connectivity.

data.frame containing the fields (columns) "id1", "id2", and "boundary". Here, each row de-
notes the connectivity between two planning units following the Marxan format. The data can
be used to denote symmetric or asymmetric relationships between planning units. By default,
input data is assumed to be symmetric unless asymmetric data is also included (e.g. if data
is present for planning units 2 and 3, then the same amount of connectivity is expected for
planning units 3 and 2, unless connectivity data is also provided for planning units 3 and 2).
If the argument to x contains multiple zones, then the columns "zone1" and "zone2" can op-
tionally be provided to manually specify the connectivity values between planning units when
they are allocated to specific zones. If the columns "zone1" and "zone2" are present, then
the argument to zones must be NULL.

array containing four-dimensions where cell values indicate the strength of connectivity between
planning units when they are assigned to specific management zones. The first two dimen-
sions (i.e. rows and columns) indicate the strength of connectivity between different plan-
ning units and the second two dimensions indicate the different management zones. Thus the
data[1,2,3,4] indicates the strength of connectivity between planning unit 1 and planning
unit 2 when planning unit 1 is assigned to zone 3 and planning unit 2 is assigned to zone 4.

The connectivity penalties are calculated using the following equations. Let I represent the set of
planning units (indexed by i or j), Z represent the set of management zones (indexed by z or y),
and Xiz represent the decision variable for planning unit i for in zone z (e.g. with binary values



16 add_connectivity_penalties

one indicating if planning unit is allocated or not). Also, let p represent the argument to penalty,
D represent the argument to data, and W represent the argument to zones.

If the argument to data is supplied as a matrix or Matrix object, then the penalties are calculated
as:

I∑
i

I∑
j

Z∑
z

Z∑
y

(−p×Xiz ×Xjy ×Dij ×Wzy)

Otherwise, if the argument to data is supplied as a data.frame or array object, then the penalties
are calculated as:

I∑
i

I∑
j

Z∑
z

Z∑
y

(−p×Xiz ×Xjy ×Dijzy)

Note that when the problem objective is to maximize some measure of benefit and not minimize
some measure of cost, the term −p is replaced with p.

Value

Object (i.e. ConservationProblem) with the penalties added to it.

References

Beger M, Linke S, Watts M, Game E, Treml E, Ball I, and Possingham, HP (2010) Incorporating
asymmetric connectivity into spatial decision making for conservation, Conservation Letters, 3:
359–368.

See Also

penalties.

Examples

# set seed for reproducibility
set.seed(600)

# load Matrix package for visualizing matrices
require(Matrix)

# load data
data(sim_pu_polygons, sim_pu_zones_stack, sim_features, sim_features_zones)

# define function to rescale values between zero and one so that we
# can compare solutions from different connectivity matrices
rescale <- function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {

(x - from[1]) / diff(from) * diff(to) + to[1]
}

# create basic problem
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p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.2)

# create a symmetric connectivity matrix where the connectivity between
# two planning units corresponds to their shared boundary length
b_matrix <- boundary_matrix(sim_pu_polygons)

# standardize matrix values to lay between zero and one
b_matrix[] <- rescale(b_matrix[])

# visualize connectivity matrix
## Not run:
image(b_matrix)

## End(Not run)
# create a symmetric connectivity matrix where the connectivity between
# two planning units corresponds to their spatial proximity
# i.e. planning units that are further apart share less connectivity
centroids <- rgeos::gCentroid(sim_pu_polygons, byid = TRUE)
d_matrix <- (1 / (as(dist(centroids@coords), "Matrix") + 1))

# standardize matrix values to lay between zero and one
d_matrix[] <- rescale(d_matrix[])

# remove connections between planning units without connectivity to
# reduce run-time
d_matrix[d_matrix < 0.7] <- 0

# visualize connectivity matrix
## Not run:
image(d_matrix)

## End(Not run)
# create a symmetric connectivity matrix where the connectivity
# between adjacent two planning units corresponds to their combined
# value in a field in the planning unit attribute data
# for example, this field could describe the extent of native vegetation in
# each planning unit and we could use connectivity penalties to identify
# solutions that cluster planning units together that both contain large
# amounts of native vegetation
c_matrix <- connectivity_matrix(sim_pu_polygons, "cost")

# standardize matrix values to lay between zero and one
c_matrix[] <- rescale(c_matrix[])

# visualize connectivity matrix
## Not run:
image(c_matrix)

## End(Not run)
# create an asymmetric connectivity matrix. Here, connectivity occurs between
# adjacent planning units and, due to rivers flowing southwards
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# through the study area, connectivity from northern planning units to
# southern planning units is ten times stronger than the reverse.
ac_matrix <- matrix(0, length(sim_pu_polygons), length(sim_pu_polygons))
ac_matrix <- as(ac_matrix, "Matrix")
adjacent_units <- rgeos::gIntersects(sim_pu_polygons, byid = TRUE)
for (i in seq_len(length(sim_pu_polygons))) {

for (j in seq_len(length(sim_pu_polygons))) {
# find if planning units are adjacent
if (adjacent_units[i, j]) {

# find if planning units lay north and south of each other
# i.e. they have the same x-coordinate
if (centroids@coords[i, 1] == centroids@coords[j, 1]) {

if (centroids@coords[i, 2] > centroids@coords[j, 2]) {
# if i is north of j add 10 units of connectivity
ac_matrix[i, j] <- ac_matrix[i, j] + 10

} else if (centroids@coords[i, 2] < centroids@coords[j, 2]) {
# if i is south of j add 1 unit of connectivity
ac_matrix[i, j] <- ac_matrix[i, j] + 1

}
}

}
}

}

# standardize matrix values to lay between zero and one
ac_matrix[] <- rescale(ac_matrix[])

# visualize asymmetric connectivity matrix
## Not run:
image(ac_matrix)

## End(Not run)
# create penalties
penalties <- c(10, 25)

# create problems using the different connectivity matrices and penalties
p2 <- list(p1,

p1 %>% add_connectivity_penalties(penalties[1], data = b_matrix),
p1 %>% add_connectivity_penalties(penalties[2], data = b_matrix),
p1 %>% add_connectivity_penalties(penalties[1], data = d_matrix),
p1 %>% add_connectivity_penalties(penalties[2], data = d_matrix),
p1 %>% add_connectivity_penalties(penalties[1], data = c_matrix),
p1 %>% add_connectivity_penalties(penalties[2], data = c_matrix),
p1 %>% add_connectivity_penalties(penalties[1], data = ac_matrix),
p1 %>% add_connectivity_penalties(penalties[2], data = ac_matrix))

# assign names to the problems
names(p2) <- c("basic problem",

paste0("b_matrix (", penalties,")"),
paste0("d_matrix (", penalties,")"),
paste0("c_matrix (", penalties,")"),
paste0("ac_matrix (", penalties,")"))

## Not run:
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# solve problems
s2 <- lapply(p2, solve)

# plot solutions
par(mfrow = c(3, 3))
for (i in seq_along(s2)) {

plot(s2[[i]], main = names(p2)[i], cex = 1.5, col = "white")
plot(s2[[i]][s2[[i]]$solution_1 == 1, ], col = "darkgreen", add = TRUE)

}

## End(Not run)

# create minimal multi-zone problem and limit solver to one minute
# to obtain solutions in a short period of time
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.15, nrow = 5, ncol = 3)) %>%
add_binary_decisions() %>%
add_default_solver(time_limit = 60)

# create matrix showing which planning units are adjacent to other units
a_matrix <- adjacency_matrix(sim_pu_zones_stack)

# visualize matrix
## Not run:
image(a_matrix)

## End(Not run)
# create a zone matrix where connectivities are only present between
# planning units that are allocated to the same zone
zm1 <- as(diag(3), "Matrix")

# print zone matrix
print(zm1)

# create a zone matrix where connectivities are strongest between
# planning units allocated to different zones
zm2 <- matrix(1, ncol = 3, nrow = 3)
diag(zm2) <- 0
zm2 <- as(zm2, "Matrix")

# print zone matrix
print(zm2)

# create a zone matrix that indicates that connectivities between planning
# units assigned to the same zone are much higher than connectivities
# assigned to different zones
zm3 <- matrix(0.1, ncol = 3, nrow = 3)
diag(zm3) <- 1
zm3 <- as(zm3, "Matrix")

# print zone matrix
print(zm3)
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# create a zone matrix that indicates that connectivities between planning
# units allocated to zone 1 are very high, connectivities between planning
# units allocated to zones 1 and 2 are moderately high, and connectivities
# planning units allocated to other zones are low
zm4 <- matrix(0.1, ncol = 3, nrow = 3)
zm4[1, 1] <- 1
zm4[1, 2] <- 0.5
zm4[2, 1] <- 0.5
zm4 <- as(zm4, "Matrix")

# print zone matrix
print(zm4)

# create a zone matrix with strong connectivities between planning units
# allocated to the same zone, moderate connectivities between planning
# unit allocated to zone 1 and zone 2, and negative connectivities between
# planning units allocated to zone 3 and the other two zones
zm5 <- matrix(-1, ncol = 3, nrow = 3)
zm5[1, 2] <- 0.5
zm5[2, 1] <- 0.5
diag(zm5) <- 1
zm5 <- as(zm5, "Matrix")

# print zone matrix
print(zm5)

# create vector of penalties to use creating problems
penalties2 <- c(5, 15)

# create multi-zone problems using the adjacent connectivity matrix and
# different zone matrices
p4 <- list(

p3,
p3 %>% add_connectivity_penalties(penalties2[1], zm1, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[2], zm1, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[1], zm2, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[2], zm2, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[1], zm3, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[2], zm3, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[1], zm4, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[2], zm4, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[1], zm5, a_matrix),
p3 %>% add_connectivity_penalties(penalties2[2], zm5, a_matrix))

# assign names to the problems
names(p4) <- c("basic problem",

paste0("zm", rep(seq_len(5), each = 2), " (",
rep(penalties2, 2), ")"))

## Not run:
# solve problems
s4 <- lapply(p4, solve)
s4 <- lapply(s4, category_layer)
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s4 <- stack(s4)

# plot solutions
plot(s4, main = names(p4), axes = FALSE, box = FALSE)

## End(Not run)

# create an array to manually specify the connectivities between
# each planning unit when they are allocated to each different zone
# for real-world problems, these connectivities would be generated using
# data - but here these connectivity values are assigned as random
# ones or zeros
c_array <- array(0, c(rep(ncell(sim_pu_zones_stack[[1]]), 2), 3, 3))
for (z1 in seq_len(3))

for (z2 in seq_len(3))
c_array[, , z1, z2] <- round(runif(ncell(sim_pu_zones_stack[[1]]) ^ 2,

0, 0.505))

# create a problem with the manually specified connectivity array
# note that the zones argument is set to NULL because the connectivity
# data is an array
p5 <- list(p3,

p3 %>% add_connectivity_penalties(15, zones = NULL, c_array))

# assign names to the problems
names(p5) <- c("basic problem", "connectivity array")
## Not run:
# solve problems
s5 <- lapply(p5, solve)
s5 <- lapply(s5, category_layer)
s5 <- stack(s5)

# plot solutions
plot(s5, main = names(p5), axes = FALSE, box = FALSE)

## End(Not run)

add_contiguity_constraints

Add contiguity constraints

Description

Add constraints to a conservation planning problem() to ensure that all selected planning units are
spatially connected with each other and form a single contiguous unit.

Usage

## S4 method for signature 'ConservationProblem,ANY,ANY'
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add_contiguity_constraints(x, zones, data)

## S4 method for signature 'ConservationProblem,ANY,data.frame'
add_contiguity_constraints(x, zones, data)

## S4 method for signature 'ConservationProblem,ANY,matrix'
add_contiguity_constraints(x, zones, data)

Arguments

x problem() (i.e. ConservationProblem) object.

zones matrix or Matrix object describing the connection scheme for different zones.
Each row and column corresponds to a different zone in the argument to x, and
cell values must contain binary numeric values (i.e. one or zero) that indicate if
connected planning units (as specified in the argument to data) should be still
considered connected if they are allocated to different zones. The cell values
along the diagonal of the matrix indicate if planning units should be subject to
contiguity constraints when they are allocated to a given zone. Note arguments
to zones must be symmetric, and that a row or column has a value of one then
the diagonal element for that row or column must also have a value of one. The
default argument to zones is an identity matrix (i.e. a matrix with ones along the
matrix diagonal and zeros elsewhere), so that planning units are only considered
connected if they are both allocated to the same zone.

data NULL, matrix, Matrix, data.frame object showing which planning units are
connected with each other. The argument defaults to NULL which means that
the connection data is calculated automatically using the adjacency_matrix()
function. See the Details section for more information.

Details

This function uses connection data to identify solutions that form a single contiguous unit. It was
inspired by the mathematical formulations detailed in Önal and Briers (2006).

The argument to data can be specified in several ways:

NULL connection data should be calculated automatically using the adjacency_matrix() function.
This is the default argument. Note that the connection data must be manually defined using
one of the other formats below when the planning unit data in the argument to x is not spatially
referenced (e.g. in data.frame or numeric format).

matrix, Matrix where rows and columns represent different planning units and the value of each
cell indicates if the two planning units are connected or not. Cell values should be binary
numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect
on the solution at all because each planning unit cannot be a connected with itself.

data.frame containing the fields (columns) "id1", "id2", and "boundary". Here, each row de-
notes the connectivity between two planning units following the Marxan format. The field
boundary should contain binary numeric values that indicate if the two planning units spec-
ified in the fields "id1" and "id2" are connected or not. This data can be used to describe
symmetric or asymmetric relationships between planning units. By default, input data is as-
sumed to be symmetric unless asymmetric data is also included (e.g. if data is present for
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planning units 2 and 3, then the same amount of connectivity is expected for planning units 3
and 2, unless connectivity data is also provided for planning units 3 and 2).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Notes

In early versions, this function was named as the add_connected_constraints() function.

References

Önal H and Briers RA (2006) Optimal selection of a connected reserve network. Operations Re-
search, 54: 379–388.

See Also

constraints.

Examples

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with added connected constraints
p2 <- p1 %>% add_contiguity_constraints()
## Not run:
# solve problems
s <- stack(solve(p1), solve(p2))

# plot solutions
plot(s, main = c("basic solution", "connected solution"), axes = FALSE,

box = FALSE)

## End(Not run)
# create minimal problem with multiple zones, and limit the solver to
# 30 seconds to obtain solutions in a feasible period of time
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
add_default_solver(time_limit = 30) %>%
add_binary_decisions()

# create problem with added constraints to ensure that the planning units
# allocated to each zone form a separate contiguous unit
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z4 <- diag(3)
print(z4)
p4 <- p3 %>% add_contiguity_constraints(z4)

# create problem with added constraints to ensure that the planning
# units allocated to each zone form a separate contiguous unit,
# except for planning units allocated to zone 2 which do not need
# form a single contiguous unit
z5 <- diag(3)
z5[3, 3] <- 0
print(z5)
p5 <- p3 %>% add_contiguity_constraints(z5)

# create problem with added constraints that ensure that the planning
# units allocated to zones 1 and 2 form a contiguous unit
z6 <- diag(3)
z6[1, 2] <- 1
z6[2, 1] <- 1
print(z6)
p6 <- p3 %>% add_contiguity_constraints(z6)
## Not run:
# solve problems
s2 <- lapply(list(p3, p4, p5, p6), solve)
s2 <- lapply(s2, category_layer)
s2 <- stack(s2)

# plot solutions
plot(s2, axes = FALSE, box = FALSE,

main = c("basic solution", "p4", "p5", "p6"))

## End(Not run)
# create a problem that has a main "reserve zone" and a secondary
# "corridor zone" to connect up import areas. Here, each feature has a
# target of 30 % of its distribution. If a planning unit is allocated to the
# "reserve zone", then the prioritization accrues 100 % of the amount of
# each feature in the planning unit. If a planning unit is allocated to the
# "corridor zone" then the prioritization accrues 40 % of the amount of each
# feature in the planning unit. Also, the cost of managing a planning unit
# in the "corridor zone" is 45 % of that when it is managed as the
# "reserve zone". Finally, the problem has constraints which
# ensure that all of the selected planning units form a single contiguous
# unit, so that the planning units allocated to the "corridor zone" can
# link up the planning units allocated to the "reserve zone"

# create planning unit data
pus <- sim_pu_zones_stack[[c(1, 1)]]
pus[[2]] <- pus[[2]] * 0.45
print(pus)

# create biodiversity data
fts <- zones(sim_features, sim_features * 0.4,

feature_names = names(sim_features),
zone_names = c("reserve zone", "corridor zone"))
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print(fts)

# create targets
targets <- tibble::tibble(feature = names(sim_features),

zone = list(zone_names(fts))[rep(1, 5)],
target = cellStats(sim_features, "sum") * 0.2,
type = rep("absolute", 5))

print(targets)

# create zones matrix
z7 <- matrix(1, ncol = 2, nrow = 2)
print(z7)

# create problem
p7 <- problem(pus, fts) %>%

add_min_set_objective() %>%
add_manual_targets(targets) %>%
add_contiguity_constraints(z7) %>%
add_binary_decisions()

## Not run:
# solve problems
s7 <- category_layer(solve(p7))

# plot solutions
plot(s7, "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_cuts_portfolio Add Bender’s cuts portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() using Bender’s cuts (dis-
cussed in Rodrigues et al. 2000). This is recommended as a replacement for add_gap_portfolio()
when the Gurobi software is not available.

Usage

add_cuts_portfolio(x, number_solutions = 10L)

Arguments

x problem() (i.e. ConservationProblem) object.

number_solutions

integer number of attempts to generate different solutions. Defaults to 10.
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Details

This strategy for generating a portfolio of solutions involves solving the problem multiple times
and adding additional constraints to forbid previously obtained solutions. In general, this strategy
is most useful when problems take a long time to solve and benefit from having multiple threads
allocated for solving an individual problem.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

Notes

In early versions (< 4.0.1), this function was only compatible with Gurobi (i.e. add_gurobi_solver()).
To provide functionality with exact algorithm solvers, this function now adds constraints to the
problem formulation to generate multiple solutions.

References

Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapt-
ing reserve selection algorithms to more complex conservation problems. Ecography, 23: 565–574.

See Also

portfolios.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with cuts portfolio
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_cuts_portfolio(10) %>%
add_default_solver(gap = 0.2, verbose = FALSE)

## Not run:
# solve problem and generate 10 solutions within 20 % of optimality
s1 <- solve(p1)

# plot solutions in portfolio
plot(stack(s1), axes = FALSE, box = FALSE)

## End(Not run)
# build multi-zone conservation problem with cuts portfolio
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%



add_default_decisions 27

add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
ncol = 3)) %>%

add_binary_decisions() %>%
add_cuts_portfolio(10) %>%
add_default_solver(gap = 0.2, verbose = FALSE)

## Not run:
# solve the problem
s2 <- solve(p2)

# print solution
str(s2, max.level = 1)

# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,

box = FALSE)

## End(Not run)

add_default_decisions Add default decisions

Description

This function adds the default decision types to a conservation planning problem(). The default
types are binary and are added using the add_binary_decisions() function.

Usage

add_default_decisions(x)

Arguments

x problem() (i.e. ConservationProblem) object.

See Also

decisions.
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add_default_solver Default solver

Description

Identify the best solver currently installed on the system and specify that it should be used to solve a
conservation planning problem(). Ranked from best to worst, the available solvers that can be used
are: gurobi (add_gurobi_solver()), then Rsymphony (add_rsymphony_solver()), and finally
lpsymphony (add_lpsymphony_solver()).

Usage

add_default_solver(x, ...)

Arguments

x problem() (i.e. ConservationProblem) object.

... arguments passed to the solver.

Value

Object (i.e. ConservationProblem) with the solver added to it.

See Also

solvers.

add_extra_portfolio Add an extra portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by storing feasible so-
lutions discovered during the optimization process. This method is useful for quickly obtaining
multiple solutions, but does not provide any guarantees on the number of solutions, or the quality
of solutions.

Usage

add_extra_portfolio(x)

Arguments

x problem() (i.e. ConservationProblem) object.
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Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software
suite (i.e. using add_gurobi_solver(). Specifically, version 8.0.0 (or greater) of the gurobi pack-
age must be installed.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

portfolios.

Examples

## Not run:
# set seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with a portfolio for extra solutions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_extra_portfolio() %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s1 <- solve(p1)

# print number of solutions found
print(length(s1))

# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)

# create multi-zone problem with a portfolio for extra solutions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_extra_portfolio() %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s2 <- solve(p2)

# print number of solutions found
print(length(s2))
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# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,

box = FALSE)

## End(Not run)

add_feature_contiguity_constraints

Add feature contiguity constraints

Description

Add constraints to a problem() to ensure that each feature is represented in a contiguous unit of
dispersible habitat. These constraints are a more advanced version of those implemented in the
add_contiguity_constraints() function, because they ensure that each feature is represented in
a contiguous unit and not that the entire solution should form a contiguous unit. Additionally, this
function can use data showing the distribution of dispersible habitat for each feature to ensure that
all features can disperse through out the areas designated for their conservation.

Usage

## S4 method for signature 'ConservationProblem,ANY,Matrix'
add_feature_contiguity_constraints(x, zones, data)

## S4 method for signature 'ConservationProblem,ANY,data.frame'
add_feature_contiguity_constraints(x, zones, data)

## S4 method for signature 'ConservationProblem,ANY,matrix'
add_feature_contiguity_constraints(x, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY'
add_feature_contiguity_constraints(x, zones, data)

Arguments

x problem() (i.e. ConservationProblem) object.

zones matrix, Matrix or list object describing the connection scheme for different
zones. For matrix or and Matrix arguments, each row and column corresponds
to a different zone in the argument to x, and cell values must contain binary
numeric values (i.e. one or zero) that indicate if connected planning units (as
specified in the argument to data) should be still considered connected if they
are allocated to different zones. The cell values along the diagonal of the matrix
indicate if planning units should be subject to contiguity constraints when they
are allocated to a given zone. Note arguments to zones must be symmetric, and
that a row or column has a value of one then the diagonal element for that row
or column must also have a value of one. If the connection scheme between
different zones should differ among the features, then the argument to zones
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should be a list of matrix or Matrix objects that shows the specific scheme
for each feature using the conventions described above. The default argument
to zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal
and zeros elsewhere), so that planning units are only considered connected if
they are both allocated to the same zone.

data NULL, matrix, Matrix, data.frame or list of matrix, Matrix, or data.frame
objects. The argument to data shows which planning units should be treated
as being connected when implementing constraints to ensure that features are
represented in contiguous units. If different features have different dispersal
capabilities, then it may be desirable to specify which sets of planning units
should be treated as being connected for which features using a list of objects.
The default argument is NULL which means that the connection data is calcu-
lated automatically using the adjacency_matrix() function and so all adjacent
planning units are treated as being connected for all features. See the Details
section for more information.

Details

This function uses connection data to identify solutions that represent features in contiguous units
of dispersible habitat. It was inspired by the mathematical formulations detailed in Önal and Briers
(2006) and Cardeira et al. 2010. For an example that has used these constraints, see Hanson et al.
(2019). Please note that these constraints require the expanded formulation and therefore cannot
be used with feature data that have negative vales. Please note that adding these constraints to a
problem will drastically increase the amount of time required to solve it.

The argument to data can be specified in several ways:

NULL connection data should be calculated automatically using the adjacency_matrix() function.
This is the default argument and means that all adjacent planning units are treated as poten-
tially dispersible for all features. Note that the connection data must be manually defined
using one of the other formats below when the planning unit data in the argument to x is not
spatially referenced (e.g. in data.frame or numeric format).

matrix, Matrix where rows and columns represent different planning units and the value of each
cell indicates if the two planning units are connected or not. Cell values should be binary
numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect
on the solution at all because each planning unit cannot be a connected with itself. Note that
pairs of connected planning units are treated as being potentially dispersible for all features.

data.frame containing the fields (columns) "id1", "id2", and "boundary". Here, each row de-
notes the connectivity between two planning units following the Marxan format. The field
boundary should contain binary numeric values that indicate if the two planning units spec-
ified in the fields "id1" and "id2" are connected or not. This data can be used to describe
symmetric or asymmetric relationships between planning units. By default, input data is as-
sumed to be symmetric unless asymmetric data is also included (e.g. if data is present for
planning units 2 and 3, then the same amount of connectivity is expected for planning units 3
and 2, unless connectivity data is also provided for planning units 3 and 2). Note that pairs of
connected planning units are treated as being potentially dispersible for all features.

list containing matrix, Matrix, or data.frame objects showing which planning units should
be treated as connected for each feature. Each element in the list should correspond to a
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different feature (specifically, a different target in the problem), and should contain a matrix,
Matrix, or data.frame object that follows the conventions detailed above.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

Notes

In early versions, it was named as the add_corridor_constraints function.

References

Önal H and Briers RA (2006) Optimal selection of a connected reserve network. Operations Re-
search, 54: 379–388.

Cardeira JO, Pinto LS, Cabeza M and Gaston KJ (2010) Species specific connectivity in reserve-
network design using graphs. Biological Conservation, 2: 408–415.

Hanson JO, Fuller RA, & Rhodes JR (2019) Conventional methods for enhancing connectivity in
conservation planning do not always maintain gene flow. Journal of Applied Ecology, 56: 913–922.

See Also

constraints.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.3)

# create problem with contiguity constraints
p2 <- p1 %>% add_contiguity_constraints()

# create problem with constraints to represent features in contiguous
# units
p3 <- p1 %>% add_feature_contiguity_constraints()

# create problem with constraints to represent features in contiguous
# units that contain highly suitable habitat values
# (specifically in the top 1.5th percentile)
cm4 <- lapply(seq_len(nlayers(sim_features)), function(i) {

# create connectivity matrix using the i'th feature's habitat data
m <- connectivity_matrix(sim_pu_raster, sim_features[[i]])
# convert matrix to TRUE/FALSE values in top 20th percentile
m <- m > quantile(as.vector(m), 1 - 0.015, names = FALSE)
# convert matrix from TRUE/FALSE to sparse matrix with 0/1s
m <- as(m, "dgCMatrix")
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# remove 0s from the sparse matrix
m <- Matrix::drop0(m)
# return matrix
m

})
p4 <- p1 %>% add_feature_contiguity_constraints(data = cm4)
## Not run:
# solve problems
s1 <- stack(solve(p1), solve(p2), solve(p3), solve(p4))

# plot solutions
plot(s1, axes = FALSE, box = FALSE,

main = c("basic solution", "contiguity constraints",
"feature contiguity constraints",
"feature contiguity constraints with data"))

## End(Not run)
# create minimal problem with multiple zones, and limit the solver to
# 30 seconds to obtain solutions in a feasible period of time
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_default_solver(time_limit = 30) %>%
add_binary_decisions()

# create problem with contiguity constraints that specify that the
# planning units used to conserve each feature in different management
# zones must form separate contiguous units
p6 <- p5 %>% add_feature_contiguity_constraints(diag(3))

# create problem with contiguity constraints that specify that the
# planning units used to conserve each feature must form a single
# contiguous unit if the planning units are allocated to zones 1 and 2
# and do not need to form a single contiguous unit if they are allocated
# to zone 3
zm7 <- matrix(0, ncol = 3, nrow = 3)
zm7[seq_len(2), seq_len(2)] <- 1
print(zm7)
p7 <- p5 %>% add_feature_contiguity_constraints(zm7)

# create problem with contiguity constraints that specify that all of
# the planning units in all three of the zones must conserve first feature
# in a single contiguous unit but the planning units used to conserve the
# remaining features do not need to be contiguous in any way
zm8 <- lapply(seq_len(number_of_features(sim_features_zones)), function(i)

matrix(ifelse(i == 1, 1, 0), ncol = 3, nrow = 3))
print(zm8)
p8 <- p5 %>% add_feature_contiguity_constraints(zm8)
## Not run:
# solve problems
s2 <- lapply(list(p5, p6, p7, p8), solve)
s2 <- stack(lapply(s2, category_layer))
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# plot solutions
plot(s2, main = c("p5", "p6", "p7", "p8"), axes = FALSE, box = FALSE)

## End(Not run)

add_feature_weights Add feature weights

Description

Conservation planning problems that aim to maximize the representation of features given a budget
often will not able to conserve all of the features unless the budget is very high. In such budget-
limited problems, it may be desirable to prefer the representation of some features over other fea-
tures. This information can be incorporated into the problem using weights. Weights can be applied
to a problem to favor the representation of some features over other features when making decisions
about how the budget should be allocated.

Usage

## S4 method for signature 'ConservationProblem,numeric'
add_feature_weights(x, weights)

## S4 method for signature 'ConservationProblem,matrix'
add_feature_weights(x, weights)

Arguments

x problem() (i.e. ConservationProblem) object.

weights numeric or matrix of weights. See the Details section for more information.

Details

Weights can only be applied to problems that have an objective that is budget limited (e.g. add_max_cover_objective()).
#’ They can be applied to problems that aim to maximize phylogenetic representation (add_max_phylo_div_objective())
to favor the representation of specific features over the representation of some phylogenetic branches.
Weights cannot be negative values and must have values that are equal to or larger than zero. Note
that planning unit costs are scaled to 0.01 to identify the cheapest solution among multiple
optimal solutions. This means that the optimization process will favor cheaper solutions over
solutions that meet feature targets (or occurrences) when feature weights are lower than 0.01.

numeric containing weights for each feature. Note that this type of argument cannot be used to
specify weights for problems with multiple zones.

matrix containing weights for each feature in each zone. Here, each row corresponds to a different
feature in argument to x, each column corresponds to a different zone in argument to x, and
each cell contains the weight value for a given feature that the solution can to secure in a given
zone. Note that if the problem contains targets created using add_manual_targets() then a
matrix should be supplied containing a single column that indicates that weight for fulfilling
each target.



add_feature_weights 35

Value

Object (i.e. ConservationProblem) with the weights added to it.

See Also

objectives.

Examples

# load ape package
require(ape)

# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,

sim_features_zones)

# create minimal problem that aims to maximize the number of features
# adequately conserved given a total budget of 3800. Here, each feature
# needs 20 % of its habitat for it to be considered adequately conserved
p1 <- problem(sim_pu_raster, sim_features) %>%

add_max_features_objective(budget = 3800) %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create weights that assign higher importance to features with less
# suitable habitat in the study area
(w2 <- exp((1 / cellStats(sim_features, "sum")) * 200))

# create problem using rarity weights
p2 <- p1 %>% add_feature_weights(w2)

# create manually specified weights that assign higher importance to
# certain features. These weights could be based on a pre-calculated index
# (e.g. an index measuring extinction risk where higher values
# denote higher extinction risk)
w3 <- c(0, 0, 0, 100, 200)
p3 <- p1 %>% add_feature_weights(w3)
## Not run:
# solve problems
s1 <- stack(solve(p1), solve(p2), solve(p3))

# plot solutions
plot(s1, main = c("equal weights", "rarity weights", "manual weights"),

axes = FALSE, box = FALSE)

## End(Not run)

# plot the example phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "simulated phylogeny")
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## End(Not run)
# create problem with a maximum phylogenetic diversity objective,
# where each feature needs 10 % of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p4 <- problem(sim_pu_raster, sim_features) %>%

add_max_phylo_div_objective(1900, sim_phylogeny) %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s4 <- solve(p4)

# plot solution
plot(s4, main = "solution", axes = FALSE, box = FALSE)

# find which features have their targets met
targets_met4 <- cellStats(s4 * sim_features, "sum") >

(0.1 * cellStats(sim_features, "sum"))

# plot the example phylogeny and color the represented features in red
plot(sim_phylogeny, main = "represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met4), "red"))

## End(Not run)
# we can see here that the third feature ("layer.3", i.e.
# sim_features[[3]]) is not represented in the solution. Let us pretend
# that it is absolutely critical this feature is adequately conserved
# in the solution. For example, this feature could represent a species
# that plays important role in the ecosystem, or a species that is
# important commercial activities (e.g. eco-tourism). So, to generate
# a solution that conserves the third feature whilst also aiming to
# maximize phylogenetic diversity, we will create a set of weights that
# assign a particularly high weighting to the third feature
w5 <- c(0, 0, 1000, 0, 0)

# we can see that this weighting (i.e. w5[3]) has a much higher value than
# the branch lengths in the phylogeny so solutions that represent this
# feature be much closer to optimality
print(sim_phylogeny$edge.length)
## Not run:
# create problem with high weighting for the third feature and solve it
s5 <- p4 %>% add_feature_weights(w5) %>% solve()

# plot solution
plot(s5, main = "solution", axes = FALSE, box = FALSE)

# find which features have their targets met
targets_met5 <- cellStats(s5 * sim_features, "sum") >

(0.1 * cellStats(sim_features, "sum"))

# plot the example phylogeny and color the represented features in red
# here we can see that this solution only adequately conserves the
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# third feature. This means that, given the budget, we are faced with the
# trade-off of conserving either the third feature, or a phylogenetically
# diverse set of three different features.
plot(sim_phylogeny, main = "represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met5), "red"))

## End(Not run)
# create multi-zone problem with maximum features objective,
# with 10 % representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
p6 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_features_objective(3000) %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

# create weights that assign equal weighting for the representation
# of each feature in each zone except that it does not matter if
# feature 1 is represented in zone 1 and it really important
# that feature 3 is really in zone 1
w7 <- matrix(1, ncol = 3, nrow = 5)
w7[1, 1] <- 0
w7[3, 1] <- 100

# create problem with weights
p7 <- p6 %>% add_feature_weights(w7)
## Not run:
# solve problems
s6 <- solve(p6)
s7 <- solve(p7)

# plot solutions
plot(stack(category_layer(s6), category_layer(s7)),

main = c("equal weights", "manual weights"), axes = FALSE, box = FALSE)

## End(Not run)
# create minimal problem to show the correct method for setting
# weights for problems with manual targets
p8 <- problem(sim_pu_raster, sim_features) %>%

add_max_features_objective(budget = 1500) %>%
add_manual_targets(data.frame(feature = c("layer.1", "layer.4"),

type = "relative",
target = 0.1)) %>%

add_feature_weights(matrix(c(1, 200), ncol = 1)) %>%
add_binary_decisions()

## Not run:
# solve problem
s8 <- solve(p8)

# plot solution
plot(s8, main = "solution", axes = FALSE, box = FALSE)
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## End(Not run)

add_gap_portfolio Add a gap portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by finding a certain number
of solutions that are all within a pre-specified optimality gap. This method is useful for generating
multiple solutions that can be used to calculate selection frequencies for moderate and large-sized
problems (similar to Marxan).

Usage

add_gap_portfolio(x, number_solutions, pool_gap = 0.1)

Arguments

x problem() (i.e. ConservationProblem) object.

number_solutions

integer number of solutions required.

pool_gap numeric gap to optimality for solutions in the portfolio. This relative gap spec-
ifies a threshold worst-case performance for solutions in the portfolio. For
example, value of 0.1 will result in the portfolio returning solutions that are
within 10% of an optimal solution. Note that the gap specified in the solver
(i.e. add_gurobi_solver() must be less than or equal to the gap specified to
generate the portfolio. Defaults to 0.1.

Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software
suite (i.e. using add_gurobi_solver(). Specifically, version 9.0.0 (or greater) of the gurobi pack-
age must be installed. Note that the number of solutions returned may be less than the argument
to number_solutions, if the total number of solutions that meet the optimality gap is less than the
number of solutions requested.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

portfolios.
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Examples

## Not run:
# set seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with a portfolio containing 10 solutions within 20%
# of optimality
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s1 <- solve(p1)

# print number of solutions found
print(length(s1))

# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)

# create multi-zone problem with a portfolio containing 10 solutions within
# 20% of optimality
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_gap_portfolio(number_solutions = 5, pool_gap = 0.2) %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s2 <- solve(p2)

# print number of solutions found
print(length(s2))

# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,

box = FALSE)

## End(Not run)

add_gurobi_solver Add a Gurobi solver
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Description

Specify that the Gurobi software should be used to solve a conservation planning problem. This
function can also be used to customize the behavior of the solver. It requires the gurobi package.

Usage

add_gurobi_solver(
x,
gap = 0.1,
time_limit = .Machine$integer.max,
presolve = 2,
threads = 1,
first_feasible = 0,
numeric_focus = FALSE,
verbose = TRUE

)

Arguments

x problem() (i.e. ConservationProblem) object.

gap numeric gap to optimality. This gap is relative when solving problems using
gurobi, and will cause the optimizer to terminate when the difference between
the upper and lower objective function bounds is less than the gap times the
upper bound. For example, a value of 0.01 will result in the optimizer stopping
when the difference between the bounds is 1 percent of the upper bound.

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

presolve integer number indicating how intensively the solver should try to simplify the
problem before solving it. Available options are: (-1) automatically determine
the intensity of pre-solving, (0) disable pre-solving, (1) conservative level of
pre-solving, and (2) very aggressive level of pre-solving . The default value is
2.

threads integer number of threads to use for the optimization algorithm. The default
value of 1 will result in only one thread being used.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality. Defaults to FALSE.

numeric_focus logical should extra attention be paid to verifying the accuracy of numerical
calculations? This may be useful when dealing problems that may suffer from
numerical instability issues. Beware that it will likely substantially increase run
time (sets the Gurobi NumericFocus parameter to 3). Defaults to FALSE.

verbose logical should information be printed while solving optimization problems?
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Details

Gurobi is a state-of-the-art commercial optimization software with an R package interface. It is by
far the fastest of the solvers available in this package, however, it is also the only solver that is not
freely available. That said, licenses are available to academics at no cost. The gurobi package is
distributed with the Gurobi software suite. This solver uses the gurobi package to solve problems.

Value

Object (i.e. ConservationProblem) with the solver added to it.

See Also

solvers.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# if the package is installed then add solver and generate solution
if (require("gurobi")) {

# specify solver and generate solution
s <- p %>% add_gurobi_solver(gap = 0.1, presolve = 2, time_limit = 5) %>%

solve()

# plot solutions
plot(stack(sim_pu_raster, s), main = c("planning units", "solution"),

axes = FALSE, box = FALSE)
}

## End(Not run)

add_linear_penalties Add linear penalties

Description

Add penalties to a conservation planning problem() to penalize solutions that select planning units
with higher values from a specific data source (e.g. anthropogenic impact). These penalties assume
a linear trade-off between the penalty values and the primary objective of the conservation planning
problem() (e.g. solution cost for minimum set problems; add_min_set_objective().

http://gurobi.com
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Usage

## S4 method for signature 'ConservationProblem,ANY,character'
add_linear_penalties(x, penalty, data)

## S4 method for signature 'ConservationProblem,ANY,numeric'
add_linear_penalties(x, penalty, data)

## S4 method for signature 'ConservationProblem,ANY,matrix'
add_linear_penalties(x, penalty, data)

## S4 method for signature 'ConservationProblem,ANY,Matrix'
add_linear_penalties(x, penalty, data)

## S4 method for signature 'ConservationProblem,ANY,Raster'
add_linear_penalties(x, penalty, data)

## S4 method for signature 'ConservationProblem,ANY,dgCMatrix'
add_linear_penalties(x, penalty, data)

Arguments

x problem() (i.e. ConservationProblem) object.

penalty numeric penalty value that is used to scale the importance not selecting plan-
ning units with high data values. Higher penalty values can be used to obtain
solutions that are strongly averse to selecting places with high data values, and
smaller penalty values can be used to obtain solutions that only avoid places
with especially high data values. Note that negative penalty values can be
used to obtain solutions that prefer places with high data values. Additionally,
when adding these penalties to problems with multiple zones, the argument to
penalty must have a value for each zone.

data character, numeric, Raster, matrix, or Matrix object containing the data
used to penalize solutions. Planning units that are associated with higher data
values are penalized more strongly in the solution. See the Details section for
more information.

Details

This function penalizes solutions that have higher values according to a specific metric. The argu-
ment to data can be specified in several different ways:

character field (column) name(s) that contain the data for penalizing planning units. This type
of argument is only compatible if the planning units in the argument to x are a Spatial,
sf::sf(), or data.frame object. The fields (columns) must have numeric values, and must
not contain any missing (NA) values. For problems involving multiple zones, the argument to
data must contain a field name for each zone.

numeric vector containing the data for penalizing each planning unit. These values must not
contain any missing (NA) values. Note that this type of argument is only available for planning
units that contain a single zone.
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Raster containing the data for penalizing planning units. This type of argument is only compatible
if the planning units in the argument to x are Spatial, sf::sf(), or or Raster (i.e. they are
in a spatially referenced format). If the planning unit data are a Spatial or sf::sf() object,
then the penalty data are calculated by overlaying the planning units with the argument to
data and calculating the sum of the values. If the planning unit data are in the Raster then the
penalty data are calculated by extracting the cell values (note that the planning unit data and
the argument to codedata must have exactly the same dimensionality, extent, and missingness).
For problems involving multiple zones, the argument to data must contain a layer for each
zone.

matrix, Matrix containing numeric values that specify data for penalizing each planning unit.
Each row corresponds to a planning unit, each column corresponds to a zone, and each cell
indicates the data for penalizing a planning unit when it is allocated to a given zone.

The linear penalties are calculated using the following equations. Let I denote the set of planning
units (indexed by i), Z the set of management zones (indexed by z), and Xiz the decision variable
for allocating planning unit i to zone z (e.g. with binary values one indicating if planning unit is
allocated or not). Also, let Pz represent the penalty scaling value for zones z ∈ Z (argument to
penalty), and Diz the penalty data for allocating planning unit i ∈ I to zones z ∈ Z (argument to
data if supplied as a matrix object).

I∑
i

Z∑
z

Pz ×Diz ×Xiz

Note that when the problem objective is to maximize some measure of benefit and not minimize
some measure of cost, the term Pz is replaced with −Pz .

Examples

# set seed for reproducibility
set.seed(600)

# load data
data(sim_pu_polygons, sim_pu_zones_stack, sim_features, sim_features_zones)

# add a column to contain the penalty data for each planning unit
# e.g. these values could indicate the level of habitat
sim_pu_polygons$penalty_data <- runif(nrow(sim_pu_polygons))

# plot the penalty data to visualise its spatial distribution
spplot(sim_pu_polygons, zcol = "penalty_data", main = "penalty data",

axes = FALSE, box = FALSE)

# create minimal problem with minimum set objective,
# this does not use the penalty data
p1 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# print problem
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print(p1)

# create an updated version of the previous problem,
# with the penalties added to it
p2 <- p1 %>% add_linear_penalties(100, data = "penalty_data")

# print problem
print(p2)

## Not run:
# solve the two problems
s1 <- solve(p1)
s2 <- solve(p2)

# plot the solutions and compare them,
# since we supplied a very high penalty value (i.e. 100), relative
# to the range of values in the penalty data and the objective function,
# the solution in s2 is very sensitive to values in the penalty data
spplot(s1, zcol = "solution_1", main = "solution without penalties",

axes = FALSE, box = FALSE)
spplot(s2, zcol = "solution_1", main = "solution with penalties",

axes = FALSE, box = FALSE)

# for real conservation planning exercises,
# it would be worth exploring a range of penalty values (e.g. ranging
# from 1 to 100 increments of 5) to explore the trade-offs

## End(Not run)

# now, let's examine a conservation planning exercise involving multiple
# management zones

# create targets for each feature within each zone,
# these targets indicate that each zone needs to represent 10% of the
# spatial distribution of each feature
targ <- matrix(0.1, ncol = number_of_zones(sim_features_zones),

nrow = number_of_features(sim_features_zones))

# create penalty data for allocating each planning unit to each zone,
# these data will be generated by simulating values
penalty_stack <- simulate_cost(sim_pu_zones_stack[[1]],

n = number_of_zones(sim_features_zones))

# plot the penalty data, each layer corresponds to a different zone
plot(penalty_stack, main = "penalty data", axes = FALSE, box = FALSE)

# create a multi-zone problem with the minimum set objective
# and penalties for allocating planning units to each zone,
# with a penalty scaling factor of 1 for each zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(targ) %>%
add_linear_penalties(c(1, 1, 1), penalty_stack) %>%
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add_binary_decisions()

# print problem
print(p3)

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "multi-zone solution",

axes = FALSE, box = FALSE)

## End(Not run)

add_locked_in_constraints

Add locked in constraints

Description

Add constraints to a conservation planning problem() to ensure that specific planning units are
selected (or allocated to a specific zone) in the solution. For example, it may be desirable to lock
in planning units that are inside existing protected areas so that the solution fills in the gaps in
the existing reserve network. If specific planning units should be locked out of a solution, use
add_locked_out_constraints(). For problems with non-binary planning unit allocations (e.g.
proportions), the add_manual_locked_constraints() function can be used to lock planning unit
allocations to a specific value.

Usage

add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,numeric'
add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,logical'
add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,matrix'
add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,character'
add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,Spatial'
add_locked_in_constraints(x, locked_in)
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## S4 method for signature 'ConservationProblem,sf'
add_locked_in_constraints(x, locked_in)

## S4 method for signature 'ConservationProblem,Raster'
add_locked_in_constraints(x, locked_in)

Arguments

x problem() (i.e. ConservationProblem) object.

locked_in Object that determines which planning units that should be locked in. See the
Details section for more information.

Details

The locked planning units can be specified in several different ways. Generally, the locked data
should correspond to the planning units in the argument to x. To help make working with Raster
planning unit data easier, the locked data should correspond to cell indices in the Raster data. For
example, integer arguments should correspond to cell indices and logical arguments should have
a value for each cell—regardless of which planning unit cells contain NA values.

integer vector of indices pertaining to which planning units should be locked for the solution.
This argument is only compatible with problems that contain a single zone.

logical vector containing TRUE and/or FALSE values that indicate which planning units should be
locked in the solution. This argument is only compatible with problems that contain a single
zone.

matrix containing logical TRUE and/or FALSE values which indicate if certain planning units are
should be locked to a specific zone in the solution. Each row corresponds to a planning unit,
each column corresponds to a zone, and each cell indicates if the planning unit should be
locked to a given zone. Thus each row should only contain at most a single TRUE value.

character field (column) name(s) that indicate if planning units should be locked for the solution.
This type of argument is only compatible if the planning units in the argument to x are a
Spatial, sf::sf(), or data.frame object. The fields (columns) must have logical (i.e.
TRUE or FALSE) values indicating if the planning unit is to be locked for the solution. For
problems containing multiple zones, this argument should contain a field (column) name for
each management zone.

Spatial or sf::sf() planning units in x that spatially intersect with the argument to y (accord-
ing to intersecting_units() are locked for to the solution. Note that this option is only
available for problems that contain a single management zone.

Raster planning units in x that intersect with non-zero and non-NA raster cells are locked for the
solution. For problems that contain multiple zones, the Raster object must contain a layer
for each zone. Note that for multi-band arguments, each pixel must only contain a non-zero
value in a single band. Additionally, if the cost data in x is a Raster object, we recommend
standardizing NA values in this dataset with the cost data. In other words, the pixels in x that
have NA values should also have NA values in the locked data.

Value

Object (i.e. ConservationProblem) with the constraints added to it.
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See Also

constraints.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_polygons, sim_features, sim_locked_in_raster)

# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with added locked in constraints using integers
p2 <- p1 %>% add_locked_in_constraints(which(sim_pu_polygons$locked_in))

# create problem with added locked in constraints using a field name
p3 <- p1 %>% add_locked_in_constraints("locked_in")

# create problem with added locked in constraints using raster data
p4 <- p1 %>% add_locked_in_constraints(sim_locked_in_raster)

# create problem with added locked in constraints using spatial polygon data
locked_in <- sim_pu_polygons[sim_pu_polygons$locked_in == 1, ]
p5 <- p1 %>% add_locked_in_constraints(locked_in)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)

# plot solutions
par(mfrow = c(3,2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s2, main = "locked in (integer input)")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s3, main = "locked in (character input)")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s4, main = "locked in (raster input)")
plot(s4[s4$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s5, main = "locked in (polygon input)")
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plot(s5[s5$solution_1 == 1, ], col = "darkgreen", add = TRUE)

## End(Not run)

# create minimal multi-zone problem with spatial data
p6 <- problem(sim_pu_zones_polygons, sim_features_zones,

cost_column = c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_absolute_targets(matrix(rpois(15, 1), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

# create multi-zone problem with locked in constraints using matrix data
locked_matrix <- sim_pu_zones_polygons@data[, c("locked_1", "locked_2",

"locked_3")]
locked_matrix <- as.matrix(locked_matrix)

p7 <- p6 %>% add_locked_in_constraints(locked_matrix)
## Not run:
# solve problem
s6 <- solve(p6)

# create new column representing the zone id that each planning unit
# was allocated to in the solution
s6$solution <- category_vector(s6@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s6$solution <- factor(s6$solution)

# plot solution
spplot(s6, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create multi-zone problem with locked in constraints using field names
p8 <- p6 %>% add_locked_in_constraints(c("locked_1", "locked_2", "locked_3"))
## Not run:
# solve problem
s8 <- solve(p8)

# create new column representing the zone id that each planning unit
# was allocated to in the solution
s8$solution <- category_vector(s8@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s8$solution[s8$solution == 1 & s8$solution_1_zone_1 == 0] <- 0
s8$solution <- factor(s8$solution)

# plot solution
spplot(s8, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create multi-zone problem with raster planning units
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p9 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
add_binary_decisions()

# create raster stack with locked in units
locked_in_stack <- sim_pu_zones_stack[[1]]
locked_in_stack[!is.na(locked_in_stack)] <- 0
locked_in_stack <- locked_in_stack[[c(1, 1, 1)]]
locked_in_stack[[1]][1] <- 1
locked_in_stack[[2]][2] <- 1
locked_in_stack[[3]][3] <- 1

# plot locked in stack
## Not run:
plot(locked_in_stack)

## End(Not run)
# add locked in raster units to problem
p9 <- p9 %>% add_locked_in_constraints(locked_in_stack)

## Not run:
# solve problem
s9 <- solve(p9)

# plot solution
plot(category_layer(s9), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_locked_out_constraints

Add locked out constraints

Description

Add constraints to a conservation planning problem() to ensure that specific planning units are not
selected (or allocated to a specific zone) in the solution. For example, it may be useful to lock out
planning units that have been degraded and are not suitable for conserving species. If specific plan-
ning units should be locked in to the solution, use add_locked_out_constraints(). For problems
with non-binary planning unit allocations (e.g. proportions), the add_manual_locked_constraints()
function can be used to lock planning unit allocations to a specific value.

Usage

add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,numeric'
add_locked_out_constraints(x, locked_out)
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## S4 method for signature 'ConservationProblem,logical'
add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,matrix'
add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,character'
add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,Spatial'
add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,sf'
add_locked_out_constraints(x, locked_out)

## S4 method for signature 'ConservationProblem,Raster'
add_locked_out_constraints(x, locked_out)

Arguments

x problem() (i.e. ConservationProblem) object.

locked_out Object that determines which planning units that should be locked out. See the
Details section for more information.

Details

The locked planning units can be specified in several different ways. Generally, the locked data
should correspond to the planning units in the argument to x. To help make working with Raster
planning unit data easier, the locked data should correspond to cell indices in the Raster data. For
example, integer arguments should correspond to cell indices and logical arguments should have
a value for each cell—regardless of which planning unit cells contain NA values.

integer vector of indices pertaining to which planning units should be locked for the solution.
This argument is only compatible with problems that contain a single zone.

logical vector containing TRUE and/or FALSE values that indicate which planning units should be
locked in the solution. This argument is only compatible with problems that contain a single
zone.

matrix containing logical TRUE and/or FALSE values which indicate if certain planning units are
should be locked to a specific zone in the solution. Each row corresponds to a planning unit,
each column corresponds to a zone, and each cell indicates if the planning unit should be
locked to a given zone. Thus each row should only contain at most a single TRUE value.

character field (column) name(s) that indicate if planning units should be locked for the solution.
This type of argument is only compatible if the planning units in the argument to x are a
Spatial, sf::sf(), or data.frame object. The fields (columns) must have logical (i.e.
TRUE or FALSE) values indicating if the planning unit is to be locked for the solution. For
problems containing multiple zones, this argument should contain a field (column) name for
each management zone.
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Spatial or sf::sf() planning units in x that spatially intersect with the argument to y (accord-
ing to intersecting_units() are locked for to the solution. Note that this option is only
available for problems that contain a single management zone.

Raster planning units in x that intersect with non-zero and non-NA raster cells are locked for the
solution. For problems that contain multiple zones, the Raster object must contain a layer
for each zone. Note that for multi-band arguments, each pixel must only contain a non-zero
value in a single band. Additionally, if the cost data in x is a Raster object, we recommend
standardizing NA values in this dataset with the cost data. In other words, the pixels in x that
have NA values should also have NA values in the locked data.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

See Also

constraints.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_polygons, sim_features, sim_locked_out_raster)

# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with added locked out constraints using integers
p2 <- p1 %>% add_locked_out_constraints(which(sim_pu_polygons$locked_out))

# create problem with added locked out constraints using a field name
p3 <- p1 %>% add_locked_out_constraints("locked_out")

# create problem with added locked out constraints using raster data
p4 <- p1 %>% add_locked_out_constraints(sim_locked_out_raster)

# create problem with added locked out constraints using spatial polygon data
locked_out <- sim_pu_polygons[sim_pu_polygons$locked_out == 1, ]
p5 <- p1 %>% add_locked_out_constraints(locked_out)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)
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# plot solutions
par(mfrow = c(3,2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked out")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s2, main = "locked out (integer input)")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s3, main = "locked out (character input)")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s4, main = "locked out (raster input)")
plot(s4[s4$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s5, main = "locked out (polygon input)")
plot(s5[s5$solution_1 == 1, ], col = "darkgreen", add = TRUE)

## End(Not run)

# create minimal multi-zone problem with spatial data
p6 <- problem(sim_pu_zones_polygons, sim_features_zones,

cost_column = c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
add_binary_decisions()

# create multi-zone problem with locked out constraints using matrix data
locked_matrix <- sim_pu_zones_polygons@data[, c("locked_1", "locked_2",

"locked_3")]
locked_matrix <- as.matrix(locked_matrix)

p7 <- p6 %>% add_locked_out_constraints(locked_matrix)
## Not run:
# solve problem
s6 <- solve(p6)

# create new column representing the zone id that each planning unit
# was allocated to in the solution
s6$solution <- category_vector(s6@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s6$solution <- factor(s6$solution)

# plot solution
spplot(s6, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create multi-zone problem with locked out constraints using field names
p8 <- p6 %>% add_locked_out_constraints(c("locked_1", "locked_2",

"locked_3"))
## Not run:
# solve problem
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s8 <- solve(p8)

# create new column in s8 representing the zone id that each planning unit
# was allocated to in the solution
s8$solution <- category_vector(s8@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s8$solution[s8$solution == 1 & s8$solution_1_zone_1 == 0] <- 0
s8$solution <- factor(s8$solution)

# plot solution
spplot(s8, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create multi-zone problem with raster planning units
p9 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_absolute_targets(matrix(rpois(15, 1), nrow = 5, ncol = 3)) %>%
add_binary_decisions()

# create raster stack with locked out units
locked_out_stack <- sim_pu_zones_stack[[1]]
locked_out_stack[!is.na(locked_out_stack)] <- 0
locked_out_stack <- locked_out_stack[[c(1, 1, 1)]]
locked_out_stack[[1]][1] <- 1
locked_out_stack[[2]][2] <- 1
locked_out_stack[[3]][3] <- 1

# plot locked out stack
## Not run:
plot(locked_out_stack)

## End(Not run)
# add locked out raster units to problem
p9 <- p9 %>% add_locked_out_constraints(locked_out_stack)

## Not run:
# solve problem
s9 <- solve(p9)

# plot solution
plot(category_layer(s9), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_loglinear_targets Add targets using log-linear scaling
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Description

Add targets to a conservation planning problem() by log-linearly interpolating the targets between
thresholds based on the total amount of each feature in the study area (Rodrigues et al. 2004).
Additionally, caps can be applied to targets to prevent features with massive distributions from
being over-represented in solutions (Butchart et al. 2015).

Usage

add_loglinear_targets(
x,
lower_bound_amount,
lower_bound_target,
upper_bound_amount,
upper_bound_target,
cap_amount = NULL,
cap_target = NULL,
abundances = feature_abundances(x, na.rm = FALSE)$absolute_abundance

)

Arguments

x problem() (i.e. ConservationProblem) object.
lower_bound_amount

numeric threshold.
lower_bound_target

numeric relative target that should be applied to features with a total amount
that is less than or equal to lower_bound_amount.

upper_bound_amount

numeric threshold.
upper_bound_target

numeric relative target that should be applied to features with a total amount
that is greater than or equal to upper_bound_amount.

cap_amount numeric total amount at which targets should be capped. Defaults to NULL so
that targets are not capped.

cap_target numeric amount-based target to apply to features which have a total amount
greater than argument to cap_amount. Defaults to NULL so that targets are not
capped.

abundances numeric total amount of each feature to use when calculating the targets. De-
faults to the feature abundances in the study area (calculated using the feature_abundances()
function.

Details

Targets are used to specify the minimum amount or proportion of a feature’s distribution that needs
to be protected. All conservation planning problems require adding targets with the exception of
the maximum cover problem (see add_max_cover_objective()), which maximizes all features in
the solution and therefore does not require targets.



add_loglinear_targets 55

Seven parameters are used to calculate the targets: lower_bound_amount specifies the first range
size threshold, lower_bound_target specifies the relative target required for species with a range
size equal to or less than the first threshold, upper_bound_amount specifies the second range size
threshold, upper_bound_target specifies the relative target required for species with a range size
equal to or greater than the second threshold, cap_amount specifies the third range size threshold,
cap_target specifies the absolute target that is uniformly applied to species with a range size larger
than that third threshold, and finally abundances specifies the range size for each feature that should
be used when calculating the targets.

The target calculations do not account for the size of each planning unit. Therefore, the feature
data should account for the size of each planning unit if this is important (e.g. pixel values in the
argument to features in the function problem() could correspond to amount of land occupied by
the feature in km2 units). Additionally, the function can only be applied to ConservationProblem
objects that are associated with a single zone.

Value

Object (i.e. ConservationProblem) with the targets added to it.

Notes

Early versions (< 5.0.0) used different equations for calculating targets.

References

Rodrigues ASL, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS,
Fishpool LDC, da Fonseca GAB, Gaston KJ, and others (2004) Global gap analysis: priority regions
for expanding the global protected-area network. BioScience, 54: 1092–1100.

Butchart SHM, Clarke M, Smith RJ, Sykes RE, Scharlemann JPW, Harfoot M, Buchanan, GM,
Angulo A, Balmford A, Bertzky B, and others (2015) Shortfalls and solutions for meeting national
and global conservation area targets. Conservation Letters, 8: 329–337.

See Also

targets, loglinear_interpolation().

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem using loglinear targets
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_loglinear_targets(10, 0.9, 100, 0.2) %>%
add_binary_decisions()

## Not run:
# solve problem
s <- solve(p)

# plot solution
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plot(s, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_lsymphony_solver Add a SYMPHONY solver with lpsymphony

Description

Specify that the SYMPHONY software should be used to solve a conservation planning problem
using the lpsymphony package. This function can also be used to customize the behavior of the
solver. It requires the lpsymphony package.

Usage

add_lpsymphony_solver(
x,
gap = 0.1,
time_limit = -1,
first_feasible = 0,
verbose = TRUE

)

Arguments

x problem() (i.e. ConservationProblem) object.
gap numeric gap to optimality. This gap is absolute and expresses the acceptable

deviance from the optimal objective. For example, solving a minimum set ob-
jective problem with a gap of 5 will cause the solver to terminate when the cost
of the solution is within 5 cost units from the optimal solution.

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality.

verbose logical should information be printed while solving optimization problems?
Defaults to TRUE.

Details

SYMPHONY is an open-source integer programming solver that is part of the Computational In-
frastructure for Operations Research (COIN-OR) project, an initiative to promote development of
open-source tools for operations research (a field that includes linear programming). The lpsym-
phony package is distributed through Bioconductor. This functionality is provided because the
lpsymphony package may be easier to install to install on Windows and Mac OSX systems than
the Rsymphony package.

https://projects.coin-or.org/SYMPHONY
https://doi.org/doi:10.18129/B9.bioc.lpsymphony
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Value

Object (i.e. ConservationProblem) with the solver added to it.

See Also

solvers.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# if the package is installed then add solver and generate solution
# note that this solver is skipped on Linux systems due to the fact
# that the lpsymphony package randomly crashes on these systems
if (require(lpsymphony) &

isTRUE(Sys.info()[["sysname"]] != "Linux")) {
# specify solver and generate solution
s <- p %>% add_lpsymphony_solver(time_limit = 5) %>%

solve()

# plot solutions
plot(stack(sim_pu_raster, s), main = c("planning units", "solution"))

}

## End(Not run)

add_mandatory_allocation_constraints

Add mandatory allocation constraints

Description

Add constraints to ensure that every planning unit is allocated to a management zone in the solution.
Note that this function can only be used with problems that contain multiple zones.

Usage

## S4 method for signature 'ConservationProblem'
add_mandatory_allocation_constraints(x)
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Arguments

x problem() (i.e. ConservationProblem) object.

Details

For a conservation planning problem() with multiple management zones, it may sometimes be
desirable to obtain a solution that assigns each and every single planning unit to a zone. For exam-
ple, when developing land-use plans, some decision makers may require that each and every single
parcel of land has been allocated a specific land-use type. In other words are no "left over" areas.
Although it might seem tempting to simply solve the problem and manually assign "left over" plan-
ning units to a default zone afterwards (e.g. an "other", "urban", or "grazing" land-use), this could
result in highly sub-optimal solutions if there penalties for siting the default land-use adjacent to
other zones. Instead, this function can be used to specify that all planning units in a problem with
multiple zones must be allocated to a management zone (i.e. zone allocation is mandatory).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

See Also

constraints.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_zones_stack, sim_features_zones)

# create multi-zone problem with minimum set objective
targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)

# create minimal problem with minimum set objective
p1 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_absolute_targets(targets_matrix) %>%
add_binary_decisions()

# create another problem that is the same as p1, but has constraints
# to mandate that every planning unit in the solution is assigned to
# zone
p2 <- p1 %>% add_mandatory_allocation_constraints()
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)

# convert solutions into category layers, where each pixel is assigned
# value indicating which zone it was assigned to in the zone
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c1 <- category_layer(s1)
c2 <- category_layer(s2)

# plot solution category layers
plot(stack(c1, c2), main = c("default", "mandatory allocation"),

axes = FALSE, box = FALSE)

## End(Not run)

add_manual_bounded_constraints

Add manually specified bounds constraints

Description

Add constraints to a conservation planning problem() to ensure that the planning unit values (e.g.
proportion, binary) in a solution range between specific lower and upper bounds. This function
offers more fine-grained control than the add_manual_locked_constraints() function and is is
most useful for problems involving proportion-type or semi-continuous decisions.

Usage

add_manual_bounded_constraints(x, data)

## S4 method for signature 'ConservationProblem,data.frame'
add_manual_bounded_constraints(x, data)

## S4 method for signature 'ConservationProblem,tbl_df'
add_manual_bounded_constraints(x, data)

Arguments

x problem() (i.e. ConservationProblem) object.

data data.frame or tibble::tibble() object. See the Details section for more
information.

Details

The argument to data must contain the following fields (columns):

"pu" integer planning unit identifier.

"zone" character names of zones. Note that this argument is optional for arguments to x that
contain a single zone.

"lower" numeric values indicating the minimum value that each planning unit can be allocated to
in each zone in the solution.

"upper" numeric values indicating the maximum value that each planning unit can be allocated to
in each zone in the solution.
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Value

Object (i.e. ConservationProblem) with the constraints added to it.

See Also

constraints.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_polygons, sim_features, sim_pu_zones_polygons,

sim_features_zones)

# create minimal problem
p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with locked in constraints using add_locked_constraints
p2 <- p1 %>% add_locked_in_constraints("locked_in")

# create identical problem using add_manual_bounded_constraints
bounds_data <- data.frame(pu = which(sim_pu_polygons$locked_in),

lower = 1, upper = 1)

p3 <- p1 %>% add_manual_bounded_constraints(bounds_data)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

# plot solutions
par(mfrow = c(1,3), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s2, main = "add_locked_in_constraints")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s3, main = "add_bounds_constraints")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)

## End(Not run)
# create minimal problem with multiple zones
p4 <- problem(sim_pu_zones_polygons, sim_features_zones,

c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
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add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,
ncol = 3)) %>%

add_binary_decisions()

# create data.frame with the following constraints:
# planning units 1, 2, and 3 must be allocated to zone 1 in the solution
# planning units 4, and 5 must be allocated to zone 2 in the solution
# planning units 8 and 9 must not be allocated to zone 3 in the solution
bounds_data2 <- data.frame(pu = c(1, 2, 3, 4, 5, 8, 9),

zone = c(rep("zone_1", 3), rep("zone_2", 2),
rep("zone_3", 2)),

lower = c(rep(1, 5), rep(0, 2)),
upper = c(rep(1, 5), rep(0, 2)))

# print bounds data
print(bounds_data2)

# create problem with added constraints
p5 <- p4 %>% add_manual_bounded_constraints(bounds_data2)
## Not run:
# solve problem
s4 <- solve(p4)
s5 <- solve(p5)

# create two new columns representing the zone id that each planning unit
# was allocated to in the two solutions
s4$solution <- category_vector(s4@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s4$solution <- factor(s4$solution)

s4$solution_bounded <- category_vector(s5@data[, c("solution_1_zone_1",
"solution_1_zone_2",
"solution_1_zone_3")])

s4$solution_bounded <- factor(s4$solution_bounded)

# plot solutions
spplot(s4, zcol = c("solution", "solution_bounded"), axes = FALSE,

box = FALSE)

## End(Not run)

add_manual_locked_constraints

Add manually specified locked constraints

Description

Add constraints to a conservation planning problem() to ensure that solutions allocate (or do not
allocate) specific planning units to specific management zones. This function offers more fine-
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grained control than the add_locked_in_constraints() and add_locked_out_constraints()
functions.

Usage

add_manual_locked_constraints(x, data)

## S4 method for signature 'ConservationProblem,data.frame'
add_manual_locked_constraints(x, data)

## S4 method for signature 'ConservationProblem,tbl_df'
add_manual_locked_constraints(x, data)

Arguments

x problem() (i.e. ConservationProblem) object.

data data.frame or tibble::tibble() object. See the Details section for more
information.

Details

The argument to data must contain the following fields (columns):

"pu" integer planning unit identifier.

"zone" character names of zones. Note that this argument is optional for arguments to x that
contain a single zone.

"status" numeric values indicating how much of each planning unit should be allocated to each
zone in the solution. For example, the numeric values could be binary values (i.e. zero or one)
for problems containing binary-type decision variables (using the add_binary_decisions()
function). Alternatively, the numeric values could be proportions (e.g. 0.5) for problems
containing proportion-type decision variables (using the add_proportion_decisions()).

Value

Object (i.e. ConservationProblem) with the constraints added to it.

See Also

constraints.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_polygons, sim_features, sim_pu_zones_polygons,

sim_features_zones)

# create minimal problem
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p1 <- problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with locked in constraints using add_locked_constraints
p2 <- p1 %>% add_locked_in_constraints("locked_in")

# create identical problem using add_manual_locked_constraints
locked_data <- data.frame(pu = which(sim_pu_polygons$locked_in),

status = 1)

p3 <- p1 %>% add_manual_locked_constraints(locked_data)
## Not run:
# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

# plot solutions
par(mfrow = c(1,3), mar = c(0, 0, 4.1, 0))
plot(s1, main = "none locked in")
plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s2, main = "add_locked_in_constraints")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s3, main = "add_manual_constraints")
plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE)

## End(Not run)
# create minimal problem with multiple zones
p4 <- problem(sim_pu_zones_polygons, sim_features_zones,

c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

# create data.frame with the following constraints:
# planning units 1, 2, and 3 must be allocated to zone 1 in the solution
# planning units 4, and 5 must be allocated to zone 2 in the solution
# planning units 8 and 9 must not be allocated to zone 3 in the solution
locked_data2 <- data.frame(pu = c(1, 2, 3, 4, 5, 8, 9),

zone = c(rep("zone_1", 3), rep("zone_2", 2),
rep("zone_3", 2)),

status = c(rep(1, 5), rep(0, 2)))

# print locked constraint data
print(locked_data2)

# create problem with added constraints
p5 <- p4 %>% add_manual_locked_constraints(locked_data2)
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## Not run:
# solve problem
s4 <- solve(p4)
s5 <- solve(p5)

# create two new columns representing the zone id that each planning unit
# was allocated to in the two solutions
s4$solution <- category_vector(s4@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s4$solution <- factor(s4$solution)

s4$solution_locked <- category_vector(s5@data[, c("solution_1_zone_1",
"solution_1_zone_2",
"solution_1_zone_3")])

s4$solution_locked <- factor(s4$solution_locked)

# plot solutions
spplot(s4, zcol = c("solution", "solution_locked"), axes = FALSE,

box = FALSE)

## End(Not run)

add_manual_targets Add manual targets

Description

Set targets for a conservation planning problem() by manually specifying all the required infor-
mation for each target. This function is useful because it can be used to customize all aspects of
a target. For most cases, targets can be specified using the link{add_absolute_targets} and
add_relative_targets() functions. However, this function can be used to (i) mix absolute and
relative targets for different features and zones, (ii) set targets that pertain to the allocations of plan-
ning units in multiple zones, and (iii) set targets that require different senses (e.g. targets which
specify the solution should not exceed a certain quantity using "<=" values).

Usage

add_manual_targets(x, targets)

## S4 method for signature 'ConservationProblem,data.frame'
add_manual_targets(x, targets)

## S4 method for signature 'ConservationProblem,tbl_df'
add_manual_targets(x, targets)
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Arguments

x problem() (i.e. ConservationProblem) object.

targets data.frame or tibble::tibble() object. See the Details section for more
information.

Details

Targets are used to specify the minimum amount or proportion of a feature’s distribution that needs
to be protected. Most conservation planning problems require targets with the exception of the max-
imum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective())
problems. Attempting to solve problems with objectives that require targets without specifying tar-
gets will throw an error.

The targets argument should contain the following fields (columns):

"feature" character name of features in argument to x.

"zone" character name of zones in argument to x. This field (column) is optional for arguments
to x that do not contain multiple zones.

"type" character describing the type of target. Acceptable values include "absolute" and
"relative". These values correspond to add_absolute_targets(), and add_relative_targets()
respectively.

"sense" character sense of the target. Acceptable values include: ">=", "<=", and "=". This
field (column) is optional and if it is missing then target senses will default to ">=" values.

"target" numeric target threshold.

Value

Object (i.e. ConservationProblem) with the targets added to it.

See Also

targets.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create problem with 10 % relative targets
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)
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# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create equivalent problem using add_manual_targets
p2 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_manual_targets(data.frame(feature = names(sim_features),

type = "relative", sense = ">=",
target = 0.1)) %>%

add_binary_decisions()
## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(s2, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create problem with targets set for only a few features
p3 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_manual_targets(data.frame(

feature = names(sim_features)[1:3], type = "relative",
sense = ">=", target = 0.1)) %>%

add_binary_decisions()
## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(s3, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create problem that aims to secure at least 10 % of the habitat for one
# feature whilst ensuring that the solution does not capture more than
# 20 units habitat for different feature
# create problem with targets set for only a few features
p4 <- problem(sim_pu_raster, sim_features[[1:2]]) %>%

add_min_set_objective() %>%
add_manual_targets(data.frame(

feature = names(sim_features)[1:2], type = "relative",
sense = c(">=", "<="), target = c(0.1, 0.2))) %>%

add_binary_decisions()
## Not run:
# solve problem
s4 <- solve(p4)

# plot solution
plot(s4, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
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# create a multi-zone problem that requires a specific amount of each
# feature in each zone
targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)

p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_absolute_targets(targets_matrix) %>%
add_binary_decisions()

## Not run:
# solve problem
s5 <- solve(p5)

# plot solution
plot(category_layer(s5), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create equivalent problem using add_manual_targets
targets_dataframe <- expand.grid(feature = feature_names(sim_features_zones),

zone = zone_names(sim_features_zones),
sense = ">=", type = "absolute")

targets_dataframe$target <- c(targets_matrix)

p6 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_manual_targets(targets_dataframe) %>%
add_binary_decisions()

## Not run:
# solve problem
s6 <- solve(p6)

# plot solution
plot(category_layer(s6), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create a problem that requires a total of 20 units of habitat to be
# captured for two species. This can be achieved through representing
# habitat in two zones. The first zone represents a full restoration of the
# habitat and a second zone represents a partial restoration of the habitat
# Thus only half of the benefit that would have been gained from the full
# restoration is obtained when planning units are allocated a partial
# restoration

# create data
spp_zone1 <- as.list(sim_features_zones)[[1]][[1:2]]
spp_zone2 <- spp_zone1 * 0.5
costs <- sim_pu_zones_stack[[1:2]]

# create targets
targets_dataframe2 <- tibble::tibble(

feature = names(spp_zone1), zone = list(c("z1", "z2"), c("z1", "z2")),
sense = c(">=", ">="), type = c("absolute", "absolute"),
target = c(20, 20))
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# create problem
p7 <- problem(costs, zones(spp_zone1, spp_zone2,

feature_names = names(spp_zone1),
zone_names = c("z1", "z2"))) %>%

add_min_set_objective() %>%
add_manual_targets(targets_dataframe2) %>%
add_binary_decisions()

## Not run:
# solve problem
s7 <- solve(p7)

# plot solution
plot(category_layer(s7), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_max_cover_objective

Add maximum coverage objective

Description

Set the objective of a conservation planning problem() to represent at least one instance of as many
features as possible within a given budget. This type of objective does not use targets, and feature
weights should be used instead to increase the representation of different features in solutions.

Usage

add_max_cover_objective(x, budget)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.

The maximum coverage objective seeks to find the set of planning units that maximizes the number
of represented features, while keeping cost within a fixed budget. Here, features are treated as being
represented if the reserve system contains at least a single instance of a feature (i.e. an amount
greater than 1). This formulation has often been used in conservation planning problems dealing
with binary biodiversity data that indicate the presence/absence of suitable habitat (e.g. Church &
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Velle 1974). Additionally, weights can be used to favor the representation of certain features over
other features (see add_feature_weights()). Check out the add_max_features_objective()
for a more generalized formulation which can accommodate user-specified representation targets.

This formulation is based on the historical maximum coverage reserve selection formulation (Church
& Velle 1974; Church et al. 1996). The maximum coverage objective for the reserve design prob-
lem can be expressed mathematically for a set of planning units (I indexed by i) and a set of features
(J indexed by j) as:

Maximize

I∑
i=1

−scixi +

J∑
j=1

yjwjsubjectto

I∑
i=1

xirij ≥ yj × 1∀j ∈ J

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1)
or not (0)), rij is the amount of feature j in planning unit i, yj indicates if the solution has meet
the target tj for feature j, and wj is the weight for feature j (defaults to 1 for all features; see
add_feature_weights() to specify weights). Additionally, B is the budget allocated for the so-
lution, ci is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the
problem will return a cheapest solution when there are multiple solutions that represent the same
amount of all features within the budget.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Notes

In early versions (< 3.0.0.0), the mathematical formulation underpinning this function was very
different. Specifically, as described above, the function now follows the formulations outlined in
Church et al. (1996). The old formulation is now provided by the add_max_utility_objective()
function.

References

Church RL and Velle CR (1974) The maximum covering location problem. Regional Science, 32:
101–118.

Church RL, Stoms DM, and Davis FW (1996) Reserve selection as a maximum covering location
problem. Biological Conservation, 76: 105–112.

See Also

add_feature_weights(), objectives.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# threshold the feature data to generate binary biodiversity data
sim_binary_features <- sim_features
thresholds <- raster::quantile(sim_features, probs = 0.95, names = FALSE,
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na.rm = TRUE)
for (i in seq_len(raster::nlayers(sim_features)))

sim_binary_features[[i]] <- as.numeric(raster::values(sim_features[[i]]) >
thresholds[[i]])

# create problem with maximum utility objective
p1 <- problem(sim_pu_raster, sim_binary_features) %>%

add_max_cover_objective(500) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# threshold the multi-zone feature data to generate binary biodiversity data
sim_binary_features_zones <- sim_features_zones
for (z in number_of_zones(sim_features_zones)) {

thresholds <- raster::quantile(sim_features_zones[[z]], probs = 0.95,
names = FALSE, na.rm = TRUE)

for (i in seq_len(number_of_features(sim_features_zones))) {
sim_binary_features_zones[[z]][[i]] <- as.numeric(

raster::values(sim_features_zones[[z]][[i]]) > thresholds[[i]])
}

}

# create multi-zone problem with maximum utility objective that
# has a single budget for all zones
p2 <- problem(sim_pu_zones_stack, sim_binary_features_zones) %>%

add_max_cover_objective(800) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# create multi-zone problem with maximum utility objective that
# has separate budgets for each zone
p3 <- problem(sim_pu_zones_stack, sim_binary_features_zones) %>%

add_max_cover_objective(c(400, 400, 400)) %>%
add_binary_decisions()

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
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plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_max_features_objective

Add maximum feature representation objective

Description

Set the objective of a conservation planning problem() to fulfill as many targets as possible while
ensuring that the cost of the solution does not exceed a budget.

Usage

add_max_features_objective(x, budget)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.

The maximum feature representation objective is an enhanced version of the maximum coverage
objective add_max_cover_objective() because targets can be used to ensure that a certain amount
of each feature is required in order for them to be adequately represented (similar to the minimum set
objective (see add_min_set_objective()). This objective finds the set of planning units that meets
representation targets for as many features as possible while staying within a fixed budget (inspired
by Cabeza and Moilanen 2001). Additionally, weights can be used add_feature_weights()). If
multiple solutions can meet the same number of weighted targets while staying within budget, the
cheapest solution is returned.

The maximum feature objective for the reserve design problem can be expressed mathematically
for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Maximize

I∑
i=1

−scixi +

J∑
j=1

yjwjsubjectto

I∑
i=1

xirij ≥ yjtj∀j ∈ J

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or
not (0)), rij is the amount of feature j in planning unit i, tj is the representation target for feature
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j, yj indicates if the solution has meet the target tj for feature j, and wj is the weight for feature
j (defaults to 1 for all features; see add_feature_weights() to specify weights). Additionally, B
is the budget allocated for the solution, ci is the cost of planning unit i, and s is a scaling factor
used to shrink the costs so that the problem will return a cheapest solution when there are multiple
solutions that represent the same amount of all features within the budget.

Value

Object (i.e. ConservationProblem) with the objective added to it.

References

Cabeza M and Moilanen A (2001) Design of reserve networks and the persistence of biodiversity.
Trends in Ecology & Evolution, 16: 242–248.

See Also

add_feature_weights(), objectives.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# create problem with maximum features objective
p1 <- problem(sim_pu_raster, sim_features) %>%

add_max_features_objective(1800) %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# create multi-zone problem with maximum features objective,
# with 10 % representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_features_objective(3000) %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)
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## End(Not run)
# create multi-zone problem with maximum features objective,
# with 10 % representation targets for each feature, and set
# separate budgets for each management zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_features_objective(c(3000, 3000, 3000)) %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_max_phylo_div_objective

Add maximum phylogenetic diversity objective

Description

Set the objective of a conservation planning problem() to maximize the phylogenetic diversity of
the features represented in the solution subject to a budget. This objective is similar to add_max_features_objective()
except that emphasis is placed on representing a phylogenetically diverse set of species, rather than
as many features as possible (subject to weights). This function was inspired by Faith (1992) and
Rodrigues et al. (2002).

Usage

add_max_phylo_div_objective(x, budget, tree)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

tree phylo() object specifying a phylogenetic tree for the conservation features.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.
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The maximum phylogenetic diversity objective finds the set of planning units that meets represen-
tation targets for a phylogenetic tree while staying within a fixed budget. If multiple solutions can
meet all targets while staying within budget, the cheapest solution is chosen. Note that this objective
is similar to the maximum features objective (add_max_features_objective()) in that it allows
for both a budget and targets to be set for each feature. However, unlike the maximum feature ob-
jective, the aim of this objective is to maximize the total phylogenetic diversity of the targets met in
the solution, so if multiple targets are provided for a single feature, the problem will only need to
meet a single target for that feature for the phylogenetic benefit for that feature to be counted when
calculating the phylogenetic diversity of the solution. In other words, for multi-zone problems, this
objective does not aim to maximize the phylogenetic diversity in each zone, but rather this objective
aims to maximize the phylogenetic diversity of targets that can be met through allocating planning
units to any of the different zones in a problem. This can be useful for problems where targets
pertain to the total amount held for each feature across multiple zones. For example, each feature
might have a non-zero amount of suitable habitat in each planning unit when the planning units are
assigned to a (i) not restored, (ii) partially restored, or (iii) completely restored management zone.
Here each target corresponds to a single feature and can be met through the total amount of habitat
in planning units present to the three zones.

The maximum phylogenetic diversity objective for the reserve design problem can be expressed
mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Maximize

I∑
i=1

−scixi+

J∑
j=1

mblbsubjectto

I∑
i=1

xirij ≥ yjtj∀j ∈ Jmb ≤ yj∀j ∈ T (b)

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or
not (0)), rij is the amount of feature j in planning unit i, tj is the representation target for feature
j, yj indicates if the solution has meet the target tj for feature j. Additionally, T represents a phy-
logenetic tree containing features j and has the branches b associated within lengths lb. The binary
variable mb denotes if at least one feature associated with the branch b has met its representation as
indicated by yj . For brevity, we denote the features j associated with branch b using T (b). Finally,
B is the budget allocated for the solution, ci is the cost of planning unit i, and s is a scaling factor
used to shrink the costs so that the problem will return a cheapest solution when there are multiple
solutions that represent the same amount of all features within the budget.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Notes

In early versions, this function was named as the add_max_phylo_div_objective function.

References

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61:
1–10.

Rodrigues ASL and Gaston KJ (2002) Maximising phylogenetic diversity in the selection of net-
works of conservation areas. Biological Conservation, 105: 103–111.
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See Also

objectives, branch_matrix().

Examples

# load ape package
require(ape)

# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,

sim_features_zones)

# plot the simulated phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "phylogeny")

## End(Not run)
# create problem with a maximum phylogenetic diversity objective,
# where each feature needs 10 % of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p1 <- problem(sim_pu_raster, sim_features) %>%

add_max_phylo_div_objective(1900, sim_phylogeny) %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# find which features have their targets met
r1 <- feature_representation(p1, s1)
r1$target_met <- r1$relative_held > 0.1
print(r1)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(
rep("black", nlayers(sim_features)),
sim_phylogeny$tip.label %in% r1$feature[r1$target_met],
"red"))

## End(Not run)
# rename the features in the example phylogeny for use with the
# multi-zone data
sim_phylogeny$tip.label <- feature_names(sim_features_zones)

# create targets for a multi-zone problem. Here, each feature needs a total
# of 10 units of habitat to be conserved among the three zones to be
# considered adequately conserved
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targets <- tibble::tibble(
feature = feature_names(sim_features_zones),
zone = list(zone_names(sim_features_zones))[rep(1,

number_of_features(sim_features_zones))],
type = rep("absolute", number_of_features(sim_features_zones)),
target = rep(10, number_of_features(sim_features_zones)))

# create a multi-zone problem with a maximum phylogenetic diversity
# objective, where the total expenditure in all zones is 5000.
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_phylo_div_objective(5000, sim_phylogeny) %>%
add_manual_targets(targets) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

# calculate total amount of habitat conserved for each feature among
# all three management zones
amount_held2 <- numeric(number_of_features(sim_features_zones))
for (z in seq_len(number_of_zones(sim_features_zones)))

amount_held2 <- amount_held2 +
cellStats(sim_features_zones[[z]] * s2[[z]], "sum")

# find which features have their targets met
targets_met2 <- amount_held2 >= targets$target
print(targets_met2)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met2), "red"))

## End(Not run)
# create a multi-zone problem with a maximum phylogenetic diversity
# objective, where each zone has a separate budget.
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_phylo_div_objective(c(2500, 500, 2000), sim_phylogeny) %>%
add_manual_targets(targets) %>%
add_binary_decisions()

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

# calculate total amount of habitat conserved for each feature among
# all three management zones
amount_held3 <- numeric(number_of_features(sim_features_zones))
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for (z in seq_len(number_of_zones(sim_features_zones)))
amount_held3 <- amount_held3 +

cellStats(sim_features_zones[[z]] * s3[[z]], "sum")

# find which features have their targets met
targets_met3 <- amount_held3 >= targets$target
print(targets_met3)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met3), "red"))

## End(Not run)

add_max_phylo_end_objective

Add maximum phylogenetic endemism objective

Description

Set the objective of a conservation planning problem() to maximize the phylogenetic endemism of
the features represented in the solution subject to a budget. This objective is similar to add_max_phylo_end_objective()
except that emphasis is placed on representing species with geographically restricted evolutionary
histories, instead representing as much evolutionary history as possible. This function was inspired
by Faith (1992), Rodrigues et al. (2002), and Rosauer et al. (2009).

Usage

add_max_phylo_end_objective(x, budget, tree)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

tree phylo() object specifying a phylogenetic tree for the conservation features.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.

The maximum phylogenetic endemism objective finds the set of planning units that meets repre-
sentation targets for a phylogenetic tree while staying within a fixed budget. If multiple solutions
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can meet all targets while staying within budget, the cheapest solution is chosen. Note that this
objective is similar to the maximum features objective (add_max_features_objective()) in that
it allows for both a budget and targets to be set for each feature. However, unlike the maximum
feature objective, the aim of this objective is to maximize the total phylogenetic endemism of the
targets met in the solution, so if multiple targets are provided for a single feature, the problem will
only need to meet a single target for that feature for the phylogenetic benefit for that feature to be
counted when calculating the phylogenetic endemism of the solution. In other words, for multi-
zone problems, this objective does not aim to maximize the phylogenetic endemism in each zone,
but rather this objective aims to maximize the phylogenetic endemism of targets that can be met
through allocating planning units to any of the different zones in a problem. This can be useful
for problems where targets pertain to the total amount held for each feature across multiple zones.
For example, each feature might have a non-zero amount of suitable habitat in each planning unit
when the planning units are assigned to a (i) not restored, (ii) partially restored, or (iii) completely
restored management zone. Here each target corresponds to a single feature and can be met through
the total amount of habitat in planning units present to the three zones.

The maximum phylogenetic endemism objective for the reserve design problem can be expressed
mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Maximize

I∑
i=1

−scixi+

J∑
j=1

mblb
1

ab
subjectto

I∑
i=1

xirij ≥ yjtj∀j ∈ Jmb ≤ yj∀j ∈ T (b)

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or
not (0)), rij is the amount of feature j in planning unit i, tj is the representation target for feature
j, yj indicates if the solution has meet the target tj for feature j. Additionally, T represents a
phylogenetic tree containing features j and has the branches b associated within lengths lb. Each
branch b ∈ B is associated with a total amount ab indicating the total geographic extent or amount
of habitat. The ab variable for a given branch is calculated by summing the rij data for all features
j ∈ J that are associated with the branch. The binary variable mb denotes if at least one feature
associated with the branch b has met its representation as indicated by yj . For brevity, we denote the
features j associated with branch b using T (b). Finally, B is the budget allocated for the solution,
ci is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the problem
will return a cheapest solution when there are multiple solutions that represent the same amount of
all features within the budget.

Value

Object (i.e. ConservationProblem) with the objective added to it.

References

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61:
1–10.

Rodrigues ASL and Gaston KJ (2002) Maximising phylogenetic diversity in the selection of net-
works of conservation areas. Biological Conservation, 105: 103–111.

Rosauer D, Laffan SW, Crisp, MD, Donnellan SC and Cook LG (2009) Phylogenetic endemism:
a new approach for identifying geographical concentrations of evolutionary history. Molecular
Ecology, 18: 4061–4072.
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See Also

objectives, branch_matrix().

Examples

# load ape package
require(ape)

# load data
data(sim_pu_raster, sim_features, sim_phylogeny, sim_pu_zones_stack,

sim_features_zones)

# plot the simulated phylogeny
## Not run:
par(mfrow = c(1, 1))
plot(sim_phylogeny, main = "phylogeny")

## End(Not run)
# create problem with a maximum phylogenetic endemism objective,
# where each feature needs 10 % of its distribution to be secured for
# it to be adequately conserved and a total budget of 1900
p1 <- problem(sim_pu_raster, sim_features) %>%

add_max_phylo_end_objective(1900, sim_phylogeny) %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# find which features have their targets met
r1 <- feature_representation(p1, s1)
r1$target_met <- r1$relative_held > 0.1
print(r1)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(
rep("black", nlayers(sim_features)),
sim_phylogeny$tip.label %in% r1$feature[r1$target_met],
"red"))

## End(Not run)
# rename the features in the example phylogeny for use with the
# multi-zone data
sim_phylogeny$tip.label <- feature_names(sim_features_zones)

# create targets for a multi-zone problem. Here, each feature needs a total
# of 10 units of habitat to be conserved among the three zones to be
# considered adequately conserved
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targets <- tibble::tibble(
feature = feature_names(sim_features_zones),
zone = list(zone_names(sim_features_zones))[rep(1,

number_of_features(sim_features_zones))],
type = rep("absolute", number_of_features(sim_features_zones)),
target = rep(10, number_of_features(sim_features_zones)))

# create a multi-zone problem with a maximum phylogenetic endemism
# objective, where the total expenditure in all zones is 5000.
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_phylo_end_objective(5000, sim_phylogeny) %>%
add_manual_targets(targets) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

# calculate total amount of habitat conserved for each feature among
# all three management zones
amount_held2 <- numeric(number_of_features(sim_features_zones))
for (z in seq_len(number_of_zones(sim_features_zones)))

amount_held2 <- amount_held2 +
cellStats(sim_features_zones[[z]] * s2[[z]], "sum")

# find which features have their targets met
targets_met2 <- amount_held2 >= targets$target
print(targets_met2)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met2), "red"))

## End(Not run)
# create a multi-zone problem with a maximum phylogenetic endemism
# objective, where each zone has a separate budget.
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_phylo_end_objective(c(2500, 500, 2000), sim_phylogeny) %>%
add_manual_targets(targets) %>%
add_binary_decisions()

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

# calculate total amount of habitat conserved for each feature among
# all three management zones
amount_held3 <- numeric(number_of_features(sim_features_zones))
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for (z in seq_len(number_of_zones(sim_features_zones)))
amount_held3 <- amount_held3 +

cellStats(sim_features_zones[[z]] * s3[[z]], "sum")

# find which features have their targets met
targets_met3 <- amount_held3 >= targets$target
print(targets_met3)

# plot the phylogeny and color the adequately represented features in red
plot(sim_phylogeny, main = "adequately represented features",

tip.color = replace(rep("black", nlayers(sim_features)),
which(targets_met3), "red"))

## End(Not run)

add_max_utility_objective

Add maximum utility objective

Description

Set the objective of a conservation planning problem() to secure as much of the features as pos-
sible without exceeding a budget. This type of objective does not use targets, and feature weights
should be used instead to increase the representation of different features in solutions. Note that
this objective does not aim to maximize as much of each feature as possible and so often results in
solutions that are heavily biased towards specific features.

Usage

add_max_utility_objective(x, budget)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.

The maximum utility objective seeks to find the set of planning units that maximizes the overall
level of representation across a suite of conservation features, while keeping cost within a fixed
budget. Additionally, weights can be used to favor the representation of certain features over other
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features (see add_feature_weights()). This objective can be expressed mathematically for a set
of planning units (I indexed by i) and a set of features (J indexed by j) as:

Maximize

I∑
i=1

−scixi +

J∑
j=1

ajwjsubjecttoaj =

I∑
i=1

xirij∀j ∈ J

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1)
or not (0)), rij is the amount of feature j in planning unit i, Aj is the amount of feature j rep-
resented in in the solution, and wj is the weight for feature j (defaults to 1 for all features; see
add_feature_weights() to specify weights). Additionally, B is the budget allocated for the so-
lution, ci is the cost of planning unit i, and s is a scaling factor used to shrink the costs so that the
problem will return a cheapest solution when there are multiple solutions that represent the same
amount of all features within the budget.

Value

Object (i.e. ConservationProblem) with the objective added to it.

Notes

In early versions (< 3.0.0.0), this function was named as the add_max_cover_objective function.
It was renamed to avoid confusion with existing terminology.

See Also

add_feature_weights(), objectives.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# create problem with maximum utility objective
p1 <- problem(sim_pu_raster, sim_features) %>%

add_max_utility_objective(5000) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0)

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# create multi-zone problem with maximum utility objective that
# has a single budget for all zones
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_utility_objective(5000) %>%
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add_binary_decisions() %>%
add_default_solver(gap = 0)

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# create multi-zone problem with maximum utility objective that
# has separate budgets for each zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_max_utility_objective(c(1000, 2000, 3000)) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0)

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_min_set_objective Add minimum set objective

Description

Set the objective of a conservation planning problem() to minimize the cost of the solution whilst
ensuring that all targets are met. This objective is similar to that used in Marxan and is detailed in
Rodrigues et al. (2000).

Usage

add_min_set_objective(x)

Arguments

x problem() (i.e. ConservationProblem) object.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.
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In the context of systematic reserve design, the minimum set objective seeks to find the set of
planning units that minimizes the overall cost of a reserve network, while meeting a set of repre-
sentation targets for the conservation features. This objective is equivalent to a simplified Marxan
reserve design problem with the Boundary Length Modifier (BLM) set to zero.

The minimum set objective for the reserve design problem can be expressed mathematically for a
set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Minimize

I∑
i=1

xicisubjectto

I∑
i=1

xirij ≥ Tj∀j ∈ J

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1)
or not (0)), ci is the cost of planning unit i, rij is the amount of feature j in planning unit i, and
Tj is the target for feature j. The first term is the objective function and the second is the set of
constraints. In words this says find the set of planning units that meets all the representation targets
while minimizing the overall cost.

Value

Object (i.e. ConservationProblem) with the objective added to it.

References

Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapt-
ing reserve selection algorithms to more complex conservation problems. Ecography, 23: 565–574.

See Also

objectives, targets.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with minimum set objective
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
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# create multi-zone problem with minimum set objective
targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3)

p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_absolute_targets(targets_matrix) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_min_shortfall_objective

Add minimum shortfall objective

Description

Set the objective of a conservation planning problem() to minimize the shortfall for as many targets
as possible while ensuring that the cost of the solution does not exceed a budget.

Usage

add_min_shortfall_objective(x, budget)

Arguments

x problem() (i.e. ConservationProblem) object.

budget numeric value specifying the maximum expenditure of the prioritization. For
problems with multiple zones, the argument to budget can be a single numeric
value to specify a budget for the entire solution or a numeric vector to specify
a budget for each each management zone.

Details

A problem objective is used to specify the overall goal of the conservation planning problem. Please
note that all conservation planning problems formulated in the prioritizr package require the addi-
tion of objectives—failing to do so will return an error message when attempting to solve problem.

The minimum shortfall representation objective aims to find the set of planning units that minimize
the shortfall for the representation targets—that is, the fraction of each target that remains unmet—
for as many features as possible while staying within a fixed budget (inspired by Table 1, equation
IV, Arponen et al. 2005). Additionally, weights can be used to favor the representation of certain
features over other features (see add_feature_weights().
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The minimum shortfall objective for the reserve design problem can be expressed mathematically
for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:

Minimize

J∑
j=1

wj
yj
tj
subjectto

I∑
i=1

xirij + yj ≥ tj∀j ∈ J

I∑
i=1

xici ≤ B

Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or
not (0)), rij is the amount of feature j in planning unit i, tj is the representation target for feature j,
yj denotes the representation shortfall for the target tj for feature j, and wj is the weight for feature
j (defaults to 1 for all features; see add_feature_weights() to specify weights). Additionally, B
is the budget allocated for the solution, ci is the cost of planning unit i. Note that yj is a continuous
variable bounded between zero and infinity, and denotes the shortfall for target j.

Value

Object (i.e. ConservationProblem) with the objective added to it.

References

Arponen A, Heikkinen RK, Thomas CD, and Moilanen A (2005) The value of biodiversity in re-
serve selection: representation, species weighting, and benefit functions. Conservation Biology, 19:
2009–2014.

See Also

add_feature_weights(), objectives.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# create problem with minimum shortfall objective
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_shortfall_objective(1800) %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# create multi-zone problem with minimum shortfall objective,
# with 10 % representation targets for each feature, and set
# a budget such that the total maximum expenditure in all zones
# cannot exceed 3000
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p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_shortfall_objective(3000) %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

## Not run:
# solve problem
s2 <- solve(p2)

# plot solution
plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# create multi-zone problem with minimum shortfall objective,
# with 10 % representation targets for each feature, and set
# separate budgets for each management zone
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_shortfall_objective(c(3000, 3000, 3000)) %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

## Not run:
# solve problem
s3 <- solve(p3)

# plot solution
plot(category_layer(s3), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

add_neighbor_constraints

Add neighbor constraints

Description

Add constraints to a conservation planning problem() to ensure that all selected planning units in
the solution have at least a certain number of neighbors that are also selected in the solution.

Usage

## S4 method for signature 'ConservationProblem,ANY,ANY,ANY'
add_neighbor_constraints(x, k, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,data.frame'
add_neighbor_constraints(x, k, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,matrix'
add_neighbor_constraints(x, k, zones, data)

## S4 method for signature 'ConservationProblem,ANY,ANY,array'
add_neighbor_constraints(x, k, zones, data)
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Arguments

x problem() (i.e. ConservationProblem) object.

k integer minimum number of neighbors for selected planning units in the solu-
tion. For problems with multiple zones, the argument to k must have an element
for each zone.

zones matrix or Matrix object describing the neighborhood scheme for different zones.
Each row and column corresponds to a different zone in the argument to x, and
cell values must contain binary numeric values (i.e. one or zero) that indicate
if neighboring planning units (as specified in the argument to data) should be
considered neighbors if they are allocated to different zones. The cell values
along the diagonal of the matrix indicate if planning units that are allocated to
the same zone should be considered neighbors or not. The default argument to
zones is an identity matrix (i.e. a matrix with ones along the matrix diagonal
and zeros elsewhere), so that planning units are only considered neighbors if
they are both allocated to the same zone.

data NULL, matrix, Matrix, data.frame, or array object showing which planning
units are neighbors with each other. The argument defaults to NULL which means
that the neighborhood data is calculated automatically using the adjacency_matrix()
function. See the Details section for more information.

Details

This function uses neighborhood data identify solutions that surround planning units with a mini-
mum number of neighbors. It was inspired by the mathematical formulations detailed in Billionnet
(2013) and Beyer et al. (2016).

The argument to data can be specified in several ways:

NULL neighborhood data should be calculated automatically using the adjacency_matrix() func-
tion. This is the default argument. Note that the neighborhood data must be manually defined
using one of the other formats below when the planning unit data in the argument to x is not
spatially referenced (e.g. in data.frame or numeric format).

matrix, Matrix where rows and columns represent different planning units and the value of each
cell indicates if the two planning units are neighbors or not. Cell values should be binary
numeric values (i.e. one or zero). Cells that occur along the matrix diagonal have no effect
on the solution at all because each planning unit cannot be a neighbor with itself.

data.frame containing the fields (columns) "id1", "id2", and "boundary". Here, each row de-
notes the connectivity between two planning units following the Marxan format. The field
boundary should contain binary numeric values that indicate if the two planning units spec-
ified in the fields "id1" and "id2" are neighbors or not. This data can be used to describe
symmetric or asymmetric relationships between planning units. By default, input data is as-
sumed to be symmetric unless asymmetric data is also included (e.g. if data is present for
planning units 2 and 3, then the same amount of connectivity is expected for planning units 3
and 2, unless connectivity data is also provided for planning units 3 and 2). If the argument to
x contains multiple zones, then the columns "zone1" and "zone2" can optionally be provided
to manually specify if the neighborhood data pertain to specific zones. The fields "zone1"
and "zone2" should contain the character names of the zones. If the columns "zone1" and
"zone2" are present, then the argument to zones must be NULL.
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array containing four-dimensions where binary numeric values indicate if planning unit should
be treated as being neighbors with every other planning unit when they are allocated to every
combination of management zone. The first two dimensions (i.e. rows and columns) corre-
spond to the planning units, and second two dimensions correspond to the management zones.
For example, if the argument to data had a value of 1 at the index data[1,2,3,4] this would
indicate that planning unit 1 and planning unit 2 should be treated as neighbors when they are
allocated to zones 3 and 4 respectively.

Value

Object (i.e. ConservationProblem) with the constraints added to it.

References

Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning prob-
lems with integer linear programming. Ecological Modelling, 228: 14–22.

Billionnet A (2013) Mathematical optimization ideas for biodiversity conservation. European Jour-
nal of Operational Research, 231: 514–534.

See Also

constraints.

Examples

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1)

# create problem with constraints that require 1 neighbor
# and neighbors are defined using a rook-style neighborhood
p2 <- p1 %>% add_neighbor_constraints(1)

# create problem with constraints that require 2 neighbor
# and neighbors are defined using a rook-style neighborhood
p3 <- p1 %>% add_neighbor_constraints(2)

# create problem with constraints that require 3 neighbor
# and neighbors are defined using a queen-style neighborhood
p4 <- p1 %>% add_neighbor_constraints(3,

data = adjacency_matrix(sim_pu_raster, directions = 8))

## Not run:
# solve problems
s1 <- stack(list(solve(p1), solve(p2), solve(p3), solve(p4)))

# plot solutions
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plot(s1, box = FALSE, axes = FALSE,
main = c("basic solution", "1 neighbor", "2 neighbors", "3 neighbors"))

## End(Not run)
# create minimal problem with multiple zones
p5 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.1, ncol = 3, nrow = 5))

# create problem where selected planning units require at least 2 neighbors
# for each zone and planning units are only considered neighbors if they
# are allocated to the same zone
z6 <- diag(3)
print(z6)
p6 <- p5 %>% add_neighbor_constraints(rep(2, 3), z6)

# create problem where the planning units in zone 1 don't explicitly require
# any neighbors, planning units in zone 2 require at least 1 neighbors, and
# planning units in zone 3 require at least 2 neighbors. As before, planning
# units are still only considered neighbors if they are allocated to the
# same zone
p7 <- p5 %>% add_neighbor_constraints(c(0, 1, 2), z6)

# create problem given the same constraints as outlined above, except
# that when determining which selected planning units are neighbors,
# planning units that are allocated to zone 1 and zone 2 can also treated
# as being neighbors with each other
z8 <- diag(3)
z8[1, 2] <- 1
z8[2, 1] <- 1
print(z8)
p8 <- p5 %>% add_neighbor_constraints(c(0, 1, 2), z8)
## Not run:
# solve problems
s2 <- list(p5, p6, p7, p8)
s2 <- lapply(s2, solve)
s2 <- lapply(s2, category_layer)
s2 <- stack(s2)
names(s2) <- c("basic problem", "p6", "p7", "p8")

# plot solutions
plot(s2, main = names(s2), box = FALSE, axes = FALSE)

## End(Not run)

add_proportion_decisions

Add proportion decisions
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Description

Add a proportion decision to a conservation planning problem(). This is a relaxed decision where
a part of a planning unit can be prioritized as opposed to the entire planning unit. Typically, this
decision has the assumed action of buying a fraction of a planning unit to include in decisions will
solve much faster than problems that use binary-type decisions

Usage

add_proportion_decisions(x)

Arguments

x problem() (i.e. ConservationProblem) object.

Details

Conservation planning problems involve making decisions on planning units. These decisions are
then associated with actions (e.g. turning a planning unit into a protected area). If no decision is
explicitly added to a problem, then the binary decision class will be used by default. Only a single
decision should be added to a ConservationProblem object. Note that if multiple decisions are
added to a problem object, then the last one to be added will be used.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

decisions.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with proportion decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_proportion_decisions()

## Not run:
# solve problem
s1 <- solve(p1)

# plot solutions
plot(s1, main = "solution")

## End(Not run)
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# build multi-zone conservation problem with proportion decisions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_proportion_decisions()

## Not run:
# solve the problem
s2 <- solve(p2)

# print solution
print(s2)

# plot solution
# panels show the proportion of each planning unit allocated to each zone
plot(s2, axes = FALSE, box = FALSE)

## End(Not run)

add_relative_targets Add relative targets

Description

Set targets as a proportion (between 0 and 1) of the maximum level of representation of features in
the study area. Please note that proportions are scaled according to the features’ total abundances in
the study area (including any locked out planning units, or planning units with NA cost data) using
the feature_abundances() function.

Usage

add_relative_targets(x, targets)

## S4 method for signature 'ConservationProblem,numeric'
add_relative_targets(x, targets)

## S4 method for signature 'ConservationProblem,matrix'
add_relative_targets(x, targets)

## S4 method for signature 'ConservationProblem,character'
add_relative_targets(x, targets)

Arguments

x problem() (i.e. ConservationProblem) object.

targets Object that specifies the targets for each feature. See the Details section for more
information.
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Details

Targets are used to specify the minimum amount or proportion of a feature’s distribution that needs
to be protected. Most conservation planning problems require targets with the exception of the max-
imum cover (see add_max_cover_objective()) and maximum utility (see add_max_utility_objective())
problems. Attempting to solve problems with objectives that require targets without specifying tar-
gets will throw an error.

The targets for a problem can be specified in several different ways:

numeric vector of target values for each feature. Additionally, for convenience, this type of ar-
gument can be a single value to assign the same target to each feature. Note that this type of
argument cannot be used to specify targets for problems with multiple zones.

matrix containing a target for each feature in each zone. Here, each row corresponds to a different
feature in argument to x, each column corresponds to a different zone in argument to x, and
each cell contains the target value for a given feature that the solution needs to secure in a
given zone.

character containing the names of fields (columns) in the feature data associated with the argu-
ment to x that contain targets. This type of argument can only be used when the feature data
associated with x is a data.frame. This argument must contain a field (column) name for
each zone.

For problems associated with multiple management zones, this function can be used to set targets
that each pertain to a single feature and a single zone. To set targets which can be met through
allocating different planning units to multiple zones, see the add_manual_targets() function. An
example of a target that could be met through allocations to multiple zones might be where each
management zone is expected to result in a different amount of a feature and the target requires
that the total amount of the feature in all zones must exceed a certain threshold. In other words,
the target does not require that any single zone secure a specific amount of the feature, but the total
amount held in all zones must secure a specific amount. Thus the target could, potentially, be met
through allocating all planning units to any specific management zone, or through allocating the
planning units to different combinations of management zones.

Value

Object (i.e. ConservationProblem) with the targets added to it.

See Also

targets.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features)

# create base problem
p <- problem(sim_pu_raster, sim_features) %>%
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add_min_set_objective() %>%
add_binary_decisions()

# create problem with 10 % targets
p1 <- p %>% add_relative_targets(0.1)

# create problem with varying targets for each feature
targets <- c(0.1, 0.2, 0.3, 0.4, 0.5)
p2 <- p %>% add_relative_targets(targets)
## Not run:
# solve problem
s <- stack(solve(p1), solve(p2))

# plot solution
plot(s, main = c("10 % targets", "varying targets"), axes = FALSE,

box = FALSE)

## End(Not run)
# create a problem with multiple management zones
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_binary_decisions()

# create a problem with targets that specify an equal amount of each feature
# to be represented in each zone
p4_targets <- matrix(0.1, nrow = 5, ncol = 3,

dimnames = list(feature_names(sim_features_zones),
zone_names(sim_features_zones)))

print(p4_targets)

p4 <- p3 %>% add_relative_targets(p4_targets)

# solve problem
## Not run:
# solve problem
s4 <- solve(p4)

# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s4), main = c("equal targets"))

## End(Not run)
# create a problem with targets that require a varying amount of each
# feature to be represented in each zone
p5_targets <- matrix(runif(15, 0.01, 0.2), nrow = 5, ncol = 3,

dimnames = list(feature_names(sim_features_zones),
zone_names(sim_features_zones)))

print(p5_targets)

p5 <- p3 %>% add_relative_targets(p4_targets)
# solve problem
## Not run:
# solve problem
s5 <- solve(p5)
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# plot solution (pixel values correspond to zone identifiers)
plot(category_layer(s5), main = c("varying targets"))

## End(Not run)

add_rsymphony_solver Add a SYMPHONY solver with Rsymphony

Description

Specify that the SYMPHONY software should be used to solve a conservation planning problem
using the Rsymphony package. This function can also be used to customize the behavior of the
solver. It requires the Rsymphony package.

Usage

add_rsymphony_solver(
x,
gap = 0.1,
time_limit = -1,
first_feasible = 0,
verbose = TRUE

)

Arguments

x problem() (i.e. ConservationProblem) object.

gap numeric gap to optimality. This gap is absolute and expresses the acceptable
deviance from the optimal objective. For example, solving a minimum set ob-
jective problem with a gap of 5 will cause the solver to terminate when the cost
of the solution is within 5 cost units from the optimal solution.

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality.

verbose logical should information be printed while solving optimization problems?
Defaults to TRUE.
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Details

SYMPHONY is an open-source integer programming solver that is part of the Computational In-
frastructure for Operations Research (COIN-OR) project, an initiative to promote development of
open-source tools for operations research (a field that includes linear programming). The Rsym-
phony package provides an interface to COIN-OR and is available on CRAN. This solver uses the
Rsymphony package to solve problems.

Value

Object (i.e. ConservationProblem) with the solver added to it.

See Also

solvers.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# if the package is installed then add solver and generate solution
if (require("Rsymphony")) {

# specify solver and generate solution
s <- p %>% add_rsymphony_solver(time_limit = 10) %>%

solve()

# plot solutions
plot(stack(sim_pu_raster, s), main = c("planning units", "solution"),

axes = FALSE, box = FALSE)
}

## End(Not run)

add_semicontinuous_decisions

Add semi-continuous decisions

https://projects.coin-or.org/SYMPHONY
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Description

Add a semi-continuous decision to a conservation planning problem(). This is a relaxed deci-
sion where a part of a planning unit can be prioritized, as opposed to the entire planning unit,
which is the default function (see add_binary_decisions()). This decision is similar to the
add_proportion_decisions() function except that it has an upper bound parameter. By default,
the decision can range from prioritizing none (0%) to all (100%) of a planning unit. However, an
upper bound can be specified to ensure that at most only a fraction (e.g. 80%) of a planning unit
can be preserved. This type of decision may be useful when it is not practical to conserve entire
planning units.

Usage

add_semicontinuous_decisions(x, upper_limit)

Arguments

x problem() (i.e. ConservationProblem) object.

upper_limit numeric value specifying the maximum proportion of a planning unit that can
be reserved (e.g. set to 0.8 for 80%).

Details

Conservation planning problems involve making decisions on planning units. These decisions are
then associated with actions (e.g. turning a planning unit into a protected area). If no decision is
explicitly added to a problem, then the binary decision class will be used by default. Only a single
decision should be added to a ConservationProblem object. Note that if multiple decisions are
added to a problem object, then the last one to be added will be used.

Value

Object (i.e. ConservationProblem) with the decisions added to it.

See Also

decisions.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with semi-continuous decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_semicontinuous_decisions(0.5)

## Not run:
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# solve problem
s1 <- solve(p1)

# plot solutions
plot(s1, main = "solution")

## End(Not run)
# build multi-zone conservation problem with semi-continuous decisions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_semicontinuous_decisions(0.5)

## Not run:
# solve the problem
s2 <- solve(p2)

# print solution
print(s2)

# plot solution
# panels show the proportion of each planning unit allocated to each zone
plot(s2, axes = FALSE, box = FALSE)

## End(Not run)

add_shuffle_portfolio Add a shuffle portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by randomly reordering the
data prior to solving the problem. This is recommended as a replacement for add_top_portfolio()
when the Gurobi software is not available.

Usage

add_shuffle_portfolio(
x,
number_solutions = 10L,
threads = 1L,
remove_duplicates = TRUE

)

Arguments

x problem() (i.e. ConservationProblem) object.
number_solutions

integer number of attempts to generate different solutions. Defaults to 10.
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threads integer number of threads to use for the generating the solution portfolio. De-
faults to 1.

remove_duplicates

logical should duplicate solutions be removed? Defaults to TRUE.

Details

This strategy for generating a portfolio of solutions often results in different solutions, depending on
optimality gap, but may return duplicate solutions. In general, this strategy is most effective when
problems are quick to solve and multiple threads are available for solving each problem separately.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

portfolios.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with shuffle portfolio
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
add_default_solver(gap = 0.2, verbose = FALSE)

## Not run:
# solve problem and generate 10 solutions within 20 % of optimality
s1 <- solve(p1)

# plot solutions in portfolio
plot(stack(s1), axes = FALSE, box = FALSE)

## End(Not run)
# build multi-zone conservation problem with shuffle portfolio
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions() %>%
add_shuffle_portfolio(10, remove_duplicates = FALSE) %>%
add_default_solver(gap = 0.2, verbose = FALSE)

## Not run:



100 add_top_portfolio

# solve the problem
s2 <- solve(p2)

# print solution
str(s2, max.level = 1)

# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,

box = FALSE)

## End(Not run)

add_top_portfolio Add a top portfolio

Description

Generate a portfolio of solutions for a conservation planning problem() by finding a pre-specified
number of solutions that are closest to optimality (i.e the top solutions).

Usage

add_top_portfolio(x, number_solutions)

Arguments

x problem() (i.e. ConservationProblem) object.
number_solutions

integer number of solutions required.

Details

This strategy for generating a portfolio requires problems to be solved using the Gurobi software
suite (i.e. using add_gurobi_solver(). Specifically, version 9.0.0 (or greater) of the gurobi pack-
age must be installed. Note that the number of solutions returned may be less than the argument to
number_solutions, if the total number of feasible solutions is less than the number of solutions
requested.

Value

Object (i.e. ConservationProblem) with the portfolio added to it.

See Also

portfolios.
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Examples

## Not run:
# set seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with a portfolio for the top 5 solutions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.05) %>%
add_top_portfolio(number_solutions = 5) %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s1 <- solve(p1)

# print number of solutions found
print(length(s1))

# plot solutions
plot(stack(s1), axes = FALSE, box = FALSE)

# create multi-zone problem with a portfolio for the top 5 solutions
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_top_portfolio(number_solutions = 5) %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve problem and generate portfolio
s2 <- solve(p2)

# print number of solutions found
print(length(s2))

# plot solutions in portfolio
plot(stack(lapply(s2, category_layer)), main = "solution", axes = FALSE,

box = FALSE)

## End(Not run)

adjacency_matrix Adjacency matrix

Description

Create a matrix showing which planning units are spatially adjacent to each other. Note that this
also include planning units that overlap with each other too.
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Usage

adjacency_matrix(x, ...)

## S3 method for class 'Raster'
adjacency_matrix(x, directions = 4L, ...)

## S3 method for class 'SpatialPolygons'
adjacency_matrix(x, ...)

## S3 method for class 'SpatialLines'
adjacency_matrix(x, ...)

## S3 method for class 'SpatialPoints'
adjacency_matrix(x, ...)

## S3 method for class 'sf'
adjacency_matrix(x, ...)

## Default S3 method:
adjacency_matrix(x, ...)

Arguments

x Raster, SpatialPolygons, SpatialLines, or sf::sf() object representing
planning units.

... not used.

directions integer If x is a Raster object, the number of directions in which cells should
be considered adjacent: 4 (rook’s case), 8 (queen’s case), 16 (knight and one-cell
queen moves), or "bishop" to for cells with one-cell diagonal moves.

Details

Spatial processing is completed using sf::st_intersects() for Spatial and sf::sf() objects,
and raster::adjacent() for Raster objects.

Value

dsCMatrix sparse symmetric matrix. Each row and column represents a planning unit. Cells values
indicate if different planning units are adjacent to each other or not (using ones and zeros). To
reduce computational burden, cells among the matrix diagonal are set to zero. Furthermore, if the
argument to x is a Raster object, then cells with NA values are set to zero too.

Notes

In earlier versions (< 5.0.0), this function was named as the connected_matrix function. It has
been renamed to be consistent with other spatial association matrix functions.
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Examples

# load data
data(sim_pu_raster, sim_pu_sf, sim_pu_lines)

# create adjacency matrix using raster data
## crop raster to 9 cells
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))

## make adjacency matrix
am_raster <- adjacency_matrix(r)

# create adjacency matrix using polygons (sf) data
## subset 9 polygons
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]

## make adjacency matrix
am_ply <- adjacency_matrix(ply)

# create adjacency matrix using lines (Spatial) data
## subset 9 lines
lns <- sim_pu_lines[c(1:2, 10:12, 20:22), ]

## make adjacency matrix
am_lns <- adjacency_matrix(lns)

# plot data and the adjacency matrices
## Not run:
par(mfrow = c(4,2))

## plot raster and adjacency matrix
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_raster)), main = "adjacency matrix", axes = FALSE,

box = FALSE)

## plot polygons (sf) and adjacency matrix
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_ply)), main = "adjacency matrix", axes = FALSE,

box = FALSE)

## plot lines (Spatial) and adjacency matrix
plot(r, main = "lines (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(am_lns)), main = "adjacency matrix", axes = FALSE,

box = FALSE)

## End(Not run)

ArrayParameter-class Array parameter prototype
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Description

This prototype is used to represent a parameter has multiple values. Each value is has a label to
differentiate values. Only experts should interact directly with this prototype.

Fields

$id character identifier for parameter.
$name character name of parameter.
$value numeric vector of values.
$label character vector of names for each value.
$default numeric vector of default values.
$length integer number of values.
$class character class of values.
$lower_limit numeric vector specifying the minimum permitted values.
$upper_limit numeric vector specifying the maximum permitted values.
$widget function used to construct a shiny::shiny() interface for modifying values.

Usage

x$print()

x$show()

x$repr()

x$validate(tbl)

x$get()

x$set(tbl)

x$reset()

x$render(...)

Arguments

tbl data.frame() containing new parameter values with row names indicating the labels and a
column called "values" containing the new parameter values.

... arguments passed to function in widget field.

Details

print print the object.
show show the object.
repr character representation of object.
validate check if a proposed new set of parameters are valid.
get return a base::data.frame() containing the parameter values.
set update the parameter values using a base::data.frame().
reset update the parameter values to be the default values.
render create a shiny::shiny() widget to modify parameter values.
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See Also

ScalarParameter, Parameter.

array_parameters Array parameters

Description

Create parameters that consist of multiple numbers. If an attempt is made to create a parameter with
conflicting settings then an error will be thrown.

Usage

proportion_parameter_array(name, value, label)

binary_parameter_array(name, value, label)

integer_parameter_array(
name,
value,
label,
lower_limit = rep(as.integer(-.Machine$integer.max), length(value)),
upper_limit = rep(as.integer(.Machine$integer.max), length(value))

)

numeric_parameter_array(
name,
value,
label,
lower_limit = rep(.Machine$double.xmin, length(value)),
upper_limit = rep(.Machine$double.xmax, length(value))

)

Arguments

name character name of parameter.

value vector of values.

label character vector of labels for each value.

lower_limit vector of values denoting the minimum acceptable value for each element in
value. Defaults to the smallest possible number on the system.

upper_limit vector of values denoting the maximum acceptable value for each element in
value. Defaults to the largest possible number on the system.
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Details

Below is a list of parameter generating functions and a brief description of each.

proportion_parameter_array a parameter that consists of multiple numeric values that are be-
tween zero and one.

binary_parameter_array a parameter that consists of multiple integer values that are either zero
or one.

integer_parameter_array a parameter that consists of multiple integer values.

numeric_parameter_array a parameter that consists of multiple numeric values.

Value

ArrayParameter object.

Examples

# proportion parameter array
p1 <- proportion_parameter_array('prop_array', c(0.1, 0.2, 0.3),

letters[1:3])
print(p1) # print it
p1$get() # get value
p1$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p1$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0.4, 0.5, 0.6), row.names=letters[1:3]) # valid
p1$validate(valid) # check valid input is valid
p1$set(valid) # change value to valid input
print(p1)

# binary parameter array
p2 <- binary_parameter_array('bin_array', c(0L, 1L, 0L), letters[1:3])
print(p2) # print it
p2$get() # get value
p2$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p2$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0L, 0L, 0L), row.names=letters[1:3]) # valid
p2$validate(valid) # check valid input is valid
p2$set(valid) # change value to valid input
print(p2)

# integer parameter array
p3 <- integer_parameter_array('int_array', c(1:3), letters[1:3])
print(p3) # print it
p3$get() # get value
p3$id # get id
invalid <- data.frame(value = rnorm(3), row.names=letters[1:3]) # invalid
p3$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = 5:7, row.names=letters[1:3]) # valid
p3$validate(valid) # check valid input is valid
p3$set(valid) # change value to valid input
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print(p3)

# numeric parameter array
p4 <- numeric_parameter_array('dbl_array', c(0.1, 4, -5), letters[1:3])
print(p4) # print it
p4$get() # get value
p4$id # get id
invalid <- data.frame(value = c(NA, 1, 2), row.names=letters[1:3]) # invalid
p4$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(1, 2, 3), row.names=letters[1:3]) # valid
p4$validate(valid) # check valid input is valid
p4$set(valid) # change value to valid input
print(p4)

# numeric parameter array with lower bounds
p5 <- numeric_parameter_array('b_dbl_array', c(0.1, 4, -5), letters[1:3],

lower_limit=c(0, 1, 2))
print(p5) # print it
p5$get() # get value
p5$id# get id
invalid <- data.frame(value = c(-1, 5, 5), row.names=letters[1:3]) # invalid
p5$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0, 1, 2), row.names=letters[1:3]) # valid
p5$validate(valid) # check valid input is valid
p5$set(valid) # change value to valid input
print(p5)

as.Id Coerce object to another object

Description

Coerce an object.

Usage

as.Id(x, ...)

## S3 method for class 'character'
as.Id(x, ...)

## S3 method for class 'Parameters'
as.list(x, ...)

## S3 method for class 'Zones'
as.list(x, ...)
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Arguments

x Object.

... unused arguments.

Value

An object.

as.list.OptimizationProblem

Convert OptimizationProblem to list

Description

Convert OptimizationProblem to list

Usage

## S3 method for class 'OptimizationProblem'
as.list(x, ...)

Arguments

x OptimizationProblem object.

... not used.

Value

list() object.

binary_stack Binary stack

Description

Convert a RasterLayer object containing categorical identifiers into a RasterStack object where
each layer corresponds to a different identifier and values indicate the presence/absence of that
category in the input object.

Usage

binary_stack(x)

Arguments

x Raster object containing a single layer.
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Details

This function is provided to help manage data that encompass multiple management zones. For in-
stance, this function may be helpful for preparing raster data for add_locked_in_constraints()
and add_locked_out_constraints() since they require binary RasterStack objects as input ar-
guments.

Value

RasterStack object.

See Also

category_layer().

Examples

# create raster with categorical identifers
x <- raster(matrix(c(1, 2, 3, 1, NA, 1), nrow = 3))

# convert to binary stack
y <- binary_stack(x)

# plot categorical raster and binary stack representation
## Not run:
plot(stack(x, y), main = c("x", "y[[1]]", "y[[2]]", "y[[3]]"), nr = 1)

## End(Not run)

boundary_matrix Boundary matrix

Description

Generate a matrix describing the amount of shared boundary length between different planning
units, and the amount of exposed edge length each planning unit exhibits.

Usage

boundary_matrix(x, str_tree)

## S3 method for class 'Raster'
boundary_matrix(x, str_tree = FALSE)

## S3 method for class 'SpatialPolygons'
boundary_matrix(x, str_tree = FALSE)

## S3 method for class 'SpatialLines'
boundary_matrix(x, str_tree = FALSE)
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## S3 method for class 'SpatialPoints'
boundary_matrix(x, str_tree = FALSE)

## S3 method for class 'sf'
boundary_matrix(x, str_tree = FALSE)

## Default S3 method:
boundary_matrix(x, str_tree = FALSE)

Arguments

x Raster, SpatialLines, SpatialPolygons, sf::sf() object representing plan-
ning units. If x is a Raster object then it must have only one layer.

str_tree logical should a GEOS STRtree be used to to pre-process data? If TRUE,
then the experimental rgeos::gUnarySTRtreeQuery() function will be used
to pre-compute which planning units are adjacent to each other and potentially
reduce the processing time required to generate the boundary matrices. This
argument is only used when the planning unit data are vector-based polygons
(i.e. sp::SpatialPolygonsDataFrame() objects). Note that using TRUE may
crash Mac OSX systems. The default argument is FALSE.

Details

This function returns a dsCMatrix symmetric sparse matrix. Cells on the off-diagonal indicate the
length of the shared boundary between two different planning units. Cells on the diagonal indicate
length of a given planning unit’s edges that have no neighbors (e.g. for edges of planning units
found along the coastline). This function assumes the data are in a coordinate system where
Euclidean distances accurately describe the proximity between two points on the earth. Thus
spatial data in a longitude/latitude coordinate system (i.e. WGS84) should be reprojected to another
coordinate system before using this function. Note that for Raster objects boundaries are missing
for cells that have NA values in all cells.

Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells
values indicate the shared boundary length between different pairs of planning units.

Examples

# load data
data(sim_pu_raster, sim_pu_polygons)

# subset data to reduce processing time
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))
ply <- sim_pu_polygons[c(1:2, 10:12, 20:22), ]
ply2 <- st_as_sf(ply)

# create boundary matrix using raster data
bm_raster <- boundary_matrix(r)

https://geos.osgeo.org/doxygen/classgeos_1_1index_1_1strtree_1_1STRtree.html
http://spatialreference.org/ref/epsg/wgs-84/
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# create boundary matrix using polygon (Spatial) data
bm_ply1 <- boundary_matrix(ply)

# create boundary matrix using polygon (sf) data
bm_ply2 <- boundary_matrix(ply2)

# create boundary matrix with polygon (Spatial) data and GEOS STR query trees
# to speed up processing
bm_ply3 <- boundary_matrix(ply, TRUE)

# plot raster and boundary matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_raster)), main = "boundary matrix",

axes = FALSE, box = FALSE)

## End(Not run)
# plot polygons and boundary matrices
## Not run:
par(mfrow = c(1, 3))
plot(r, main = "polygons (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_ply1)), main = "boundary matrix", axes = FALSE,

box = FALSE)
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(bm_ply2)), main = "boundary matrix", axes = FALSE,

box = FALSE)
plot(raster(as.matrix(bm_ply3)), main = "boundary matrix (Spatial, STR)",

axes = FALSE, box = FALSE)

## End(Not run)

branch_matrix Branch matrix

Description

Phylogenetic trees depict the evolutionary relationships between different species. Each branch in
a phylogenetic tree represents a period of evolutionary history. Species that are connected to the
same branch both share that same period of evolutionary history. This function creates a matrix
that shows which species are connected with branch. In other words, it creates a matrix that shows
which periods of evolutionary history each species have experienced.

Usage

branch_matrix(x)

## Default S3 method:
branch_matrix(x)
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## S3 method for class 'phylo'
branch_matrix(x)

Arguments

x ape::phylo() tree object.

Value

dgCMatrix sparse matrix object. Each row corresponds to a different species. Each column corre-
sponds to a different branch. Species that inherit from a given branch are denoted with a one.

Examples

# load data
data(sim_phylogeny)

# generate species by branch matrix
m <- branch_matrix(sim_phylogeny)

# plot data
## Not run:
par(mfrow = c(1,2))
plot(sim_phylogeny, main = "phylogeny")
plot(raster(as.matrix(m)), main = "branch matrix", axes = FALSE,

box = FALSE)

## End(Not run)

category_layer Category layer

Description

Convert a RasterStack object where each layer corresponds to a different identifier and values
indicate the presence/absence of that category into a RasterLayer object containing categorical
identifiers.

Usage

category_layer(x)

Arguments

x Raster object containing a multiple layers. Note that pixels must be 0, 1 or NA
values.
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Details

This function is provided to help manage data that encompass multiple management zones. For in-
stance, this function may be helpful for interpreting solutions for problems associated with multiple
zones that have binary decisions.

Value

RasterLayer object.

See Also

binary_stack().

Examples

# create a binary raster stack
x <- stack(raster(matrix(c(1, 0, 0, 1, NA, 0), nrow = 3)),

raster(matrix(c(0, 1, 0, 0, NA, 0), nrow = 3)),
raster(matrix(c(0, 0, 1, 0, NA, 1), nrow = 3)))

# convert to binary stack
y <- category_layer(x)

# plot categorical raster and binary stack representation
## Not run:
plot(stack(x, y), main = c("x[[1]]", "x[[2]]", "x[[3]]", "y"), nr = 1)

## End(Not run)

category_vector Category vector

Description

Convert an object containing binary (integer) fields (columns) into a integer vector indicating
the column index where each row is 1.

Usage

category_vector(x)

## S3 method for class 'data.frame'
category_vector(x)

## S3 method for class 'sf'
category_vector(x)

## S3 method for class 'Spatial'



114 Collection-class

category_vector(x)

## S3 method for class 'matrix'
category_vector(x)

Arguments

x matrix, data.frame, Spatial, or sf::sf() object.

Details

This function is conceptually similar to base::max.col() except that rows with no values equal to
1 values are assigned a value of zero. Also, note that in the argument to x, each row must contain
only a single value equal to 1.

Value

integer vector

See Also

base::max.col()

Examples

# create matrix with logical fields
x <- matrix(c(1, 0, 0, NA, 0, 1, 0, NA, 0, 0, 0, NA), ncol = 3)

# print matrix
print(x)

# convert to category vector
y <- category_vector(x)

# print category vector
print(y)

Collection-class Collection prototype

Description

This prototype represents a collection of ConservationModifier objects.

Fields

$... ConservationModifier objects stored in the collection.
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Usage

x$print()

x$show()

x$repr()

x$ids()

x$length()

x$add

x$remove(id)

x$get_parameter(id)

x$set_parameter(id,value)

x$render_parameter(id)

x$render_all_parameters()

Arguments

id id object.

value any object.

Details

print print the object.

show show the object.

repr character representation of object.

ids character ids for objects inside collection.

length integer number of objects inside collection.

find character id for object inside collection which contains the input id.

find_parameter character id for object inside collection which contains the input character
object as a parameter.

add add ConservationModifier object.

remove remove an item from the collection.

get_parameter retrieve the value of a parameter in the object using an id object.

set_parameter change the value of a parameter in the object to a new object.

render_parameter generate a shiny widget to modify the the value of a parameter (specified by
argument id).

render_all_parameters generate a shiny::div() containing all the parameters" widgets.

See Also

Constraint, Penalty.
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compile Compile a problem

Description

Compile a conservation planning problem() into an (potentially mixed) integer linear programming
problem.

Usage

compile(x, ...)

## S3 method for class 'ConservationProblem'
compile(x, compressed_formulation = NA, ...)

Arguments

x problem() (i.e. ConservationProblem) object.

... not used.
compressed_formulation

logical should the conservation problem compiled into a compressed version
of a planning problem? If TRUE then the problem is expressed using the com-
pressed formulation. If FALSE then the problem is expressed using the expanded
formulation. If NA, then the compressed is used unless one of the constraints
requires the expanded formulation. This argument defaults to NA.

Details

This function might be useful for those interested in understanding how their conservation planning
problem() is expressed as a mathematical problem. However, if the problem just needs to be
solved, then the solve() function should just be used.

Please note that in nearly all cases, the default argument to formulation should be used. The
only situation where manually setting the argument to formulation is desirable is during testing.
Manually setting the argument to formulation will at best have no effect on the problem. At worst,
it may result in an error, a misspecified problem, or unnecessarily long solve times.

Value

OptimizationProblem object.

Examples

# build minimal conservation problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1)
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# compile the conservation problem into an optimization problem
o <- compile(p)

# print the optimization problem
print(o)

connectivity_matrix Connectivity matrix

Description

Create a matrix showing the connectivity between planning units. Connectivity is calculated as the
average conductance of two planning units multiplied by the amount of shared boundary between
the two planning units. Thus planning units that each have higher a conductance and share a greater
boundary are associated with greater connectivity.

Usage

connectivity_matrix(x, y, ...)

## S4 method for signature 'Spatial,Raster'
connectivity_matrix(x, y, ...)

## S4 method for signature 'Spatial,character'
connectivity_matrix(x, y, ...)

## S4 method for signature 'sf,character'
connectivity_matrix(x, y, ...)

## S4 method for signature 'sf,Raster'
connectivity_matrix(x, y, ...)

## S4 method for signature 'Raster,Raster'
connectivity_matrix(x, y, ...)

Arguments

x Raster, SpatialPolygonsDataFrame, SpatialLinesDataFrame, or sf::sf()
object representing planning units. If x is a Raster object then it must contain a
single layer.

y Raster object showing the conductance of different areas across the study area,
or a character object denoting a column name in the attribute table of x that
contains the conductance values. Note that argument to y can only be a character
object if the argument to x is a Spatial or sf::sf() object. Also, note that if
the argument to x is a Raster object then argument to y must have the same
spatial properties as it (i.e. coordinate system, extent, resolution).
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... additional arguments passed to fast_extract() for extracting and calculating
the conductance values for each planning unit. These arguments are only used
if argument to x is a link[sp]{Spatial-class} or sf::sf() object and argu-
ment to y is a Raster object.

Details

Shared boundary calculations are performed using boundary_matrix().

Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells
values indicate the connectivity between different pairs of planning units. To reduce computational
burden, cells among the matrix diagonal are set to zero. Furthermore, if the argument to x is a
Raster object, then cells with NA values are set to zero too.

Examples

# load data
data(sim_pu_raster, sim_pu_sf, sim_features)

# create connectivity matrix using raster planning unit data using
# the raster cost values to represent conductance
## extract 9 planning units
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))

## extract conductance data for the 9 planning units
cd <- crop(sim_features, r)

## make connectivity matrix using the habitat suitability data for the
## second feature to represent the planning unit conductance data
cm_raster <- connectivity_matrix(r, cd[[2]])

## plot data and matrix
## Not run:
par(mfrow = c(1,3))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(cd[[2]], main = "conductivity", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_raster)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)
# create connectivity matrix using polygon planning unit data using
# the habitat suitability data for the second feature to represent
# planning unit conductances
## subset data to 9 polygons
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]

## make connectivity matrix
cm_ply <- connectivity_matrix(ply, sim_features[[2]])

## plot data and matrix
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## Not run:
par(mfrow = c(1, 2))
plot(st_geometry(ply), main = "planning units (sf)")
plot(clamp(raster(as.matrix(cm_ply)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)

# create connectivity matrix using habitat suitability data for each feature,
# this could be useful if prioritisations should spatially clump
# together adjacent planning units that have suitable habitat
# for the same species (e.g. to maintain functional connectivity)

## let's use the raster data for this example, and we can generate the
## connectivity matrix that we would use in the prioritization by
## (1) generating a connectivity matrix for each feature separately, and
## and then (2) then summing the values together
cm_sum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_sum <- Reduce("+", cm_sum) # sum matrices together

## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_sum)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)

## we could take this example one step further, and use weights to indicate
## relative importance of maintaining functional connectivity
## for each feature (i.e. use the weighted sum instead of the sum)

## let's pretend that the first feature is 20 times more important
## than all the other species
weights <- c(20, 1, 1, 1, 1)

## calculate connectivity matrix using weighted sum
cm_wsum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_wsum <- Map("*", cm_wsum, weights) # multiply by weights
cm_wsum <- Reduce("+", cm_wsum) # sum matrices together

## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_wsum)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)

## since the statistical distribution of the connectivity values
## for each feature (e.g. the mean and standard deviation of the
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## connectivity values) are different, it might make sense -- depending
## on the goal of the conservation planning exercise and the underlying
## data -- to first normalize the conductance values before applying the
## weights and summing the data for feature together

## one approach would be to linearly rescale the values between 0.01 and 1
## note that we wouldn't want to rescale them between 0 and 1 since
## a value of zero means that there is no connectivity at all (and
## and not a relatively small amount of connectivity)
## Not run:
### define helper function
library(scales) # load scales library for rescale
rescale_matrix <- function(x) {x@x <- rescale(x@x, c(0.01, 1)); x}

### calculate functional connectivity matrix using the weighted sum of
### connectivity values that have been normalized by linearly re-scaling
### values
cm_lwsum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_lwsum <- lapply(cm_lwsum, rescale_matrix) # rescale matrices to [0.01, 1]
cm_lwsum <- Map("*", cm_lwsum, weights) # multiply by weights
cm_lwsum <- Reduce("+", cm_lwsum) # sum matrices together

## End(Not run)

## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_lwsum)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)

## another approach for normalizing the data could be using z-scores
## note that after normalizing the data we would need to add a constant
## value so that none of the connectivity values are negative

### define helper functions
zscore <- function(x) {x@x <- (x@x - mean(x@x)) / sd(x@x); x}
min_non_zero_value <- function(x) min(x@x)
add_non_zero_value <- function(x, y) {x@x <- x@x + y; x}

### calculate functional connectivity matrix using the weighted sum of
### connectivity values that have been normalized using z-scores,
### and transformed to account for negative values
cm_zwsum <- lapply(as.list(cd), connectivity_matrix, x = r) # make matrices
cm_zwsum <- lapply(cm_zwsum, zscore) # normalize using z-scores
min_value <- min(sapply(cm_zwsum, min_non_zero_value)) # find min value
min_value <- abs(min_value) + 0.01 # prepare constant for adding to matrices
cm_zwsum <- lapply(cm_zwsum, add_non_zero_value, min_value) # add constant
cm_zwsum <- Map("*", cm_zwsum, weights) # multiply by weights
cm_zwsum <- Reduce("+", cm_zwsum) # sum matrices together
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## plot data and matrix
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "planning units (raster)", axes = FALSE, box = FALSE)
plot(clamp(raster(as.matrix(cm_zwsum)), lower = 1e-5, useValues = FALSE),

main = "connectivity", axes = FALSE, box = FALSE)

## End(Not run)

ConservationModifier-class

Conservation problem modifier prototype

Description

This super-prototype is used to represent prototypes that in turn are used to modify a ConservationProblem
object. Specifically, the Constraint, Decision, Objective, and Target prototypes inherit from
this class. Only experts should interact with this class directly because changes to these class
will have profound and far reaching effects.

Fields

$name character name of object.

$parameters list object used to customize the modifier.

$data list object with data.

$compressed_formulation logical can this constraint be applied to the compressed version of
the conservation planning problem?. Defaults to TRUE.

Usage

x$print()

x$show()

x$repr()

x$get_data(name)

x$set_data(name,value)

x$calculate(cp)

x$output()

x$apply(op,cp)

x$get_parameter(id)

x$get_all_parameters()

x$set_parameter(id,value)

x$render_parameter(id)

x$render_all_parameter()
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Arguments

name character name for object

value any object

id id or name of parameter

cp ConservationProblem object

op OptimizationProblem object

Details

print print the object.

show show the object.

repr return character representation of the object.

get_data return an object stored in the data field with the corresponding name. If the object is not
present in the data field, a waiver object is returned.

set_data store an object stored in the data field with the corresponding name. If an object with
that name already exists then the object is overwritten.

calculate function used to perform preliminary calculations and store the data so that they can be
reused later without performing the same calculations multiple times. Data can be stored in
the data slot of the input ConservationModifier or ConservationProblem objects.

output function used to generate an output from the object. This method is only used for Target
objects.

apply function used to apply the modifier to an OptimizationProblem object. This is used by
Constraint, Decision, and Objective objects.

get_parameter retrieve the value of a parameter.

get_all_parameters generate list containing all the parameters.

set_parameter change the value of a parameter to new value.

render_parameter generate a shiny widget to modify the the value of a parameter (specified by
argument id).

render_all_parameters generate a shiny::div() containing all the parameters" widgets.

ConservationProblem-class

Conservation problem class

Description

This class is used to represent conservation planning problems. A conservation planning problem
has spatially explicit planning units. A prioritization involves making a decision on each planning
unit (e.g. is the planning unit going to be turned into a protected area?). Each planning unit is
associated with a cost that represents the cost incurred by applying the decision to the planning
unit. The problem also has a set of representation targets for each feature. Further, it also has



ConservationProblem-class 123

constraints used to ensure that the solution meets additional objectives (e.g. certain areas are locked
into the solution). Finally, a conservation planning problem—unlike an optimization problem—also
requires a method to solve the problem. This class represents a planning problem, to actually
build and then solve a planning problem, use the problem() function. Only experts should
use this class directly.

Fields

$data list object containing data.

$objective Objective object used to represent how the targets relate to the solution.

$decisions Decision object used to represent the type of decision made on planning units.

$targets Target object used to represent representation targets for features.

$penalties Collection object used to represent additional penalties that the problem is subject to.

$constraints Collection object used to represent additional constraints that the problem is subject
to.

$portfolio Portfolio object used to represent the method for generating a portfolio of solutions.

$solver Solver object used to solve the problem.

Usage

x$print()

x$show()

x$repr()

x$get_data(name)

x$set_data(name,value)

x$number_of_total_units()

x$number_of_planning_units()

x$planning_unit_indices()

x$planning_unit_indices_with_finite_costs()

x$planning_unit_costs()

x$number_of_features()

x$feature_names()

x$feature_abundances_in_planning_units()

x$feature_abundances_in_total_units()

x$feature_targets()

x$number_of_zones()

x$zone_names()

x$add_objective(obj)

x$add_decisions(dec)

x$add_portfolio(pol)
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x$add_solver(sol)

x$add_constraint(con)

x$add_targets(targ)

x$get_constraint_parameter(id)

x$set_constraint_parameter(id,value)

x$render_constraint_parameter(id)

x$render_all_constraint_parameters()

x$get_objective_parameter(id)

x$set_objective_parameter(id,value)

x$render_objective_parameter(id)

x$render_all_objective_parameters()

x$get_solver_parameter(id)

x$set_solver_parameter(id,value)

x$render_solver_parameter(id)

x$render_all_solver_parameters()

x$get_portfolio_parameter(id)

x$set_portfolio_parameter(id,value)

x$render_portfolio_parameter(id)

x$render_all_portfolio_parameters()

x$get_penalty_parameter(id)

x$set_penalty_parameter(id,value)

x$render_penalty_parameter(id)

x$render_all_penalty_parameters()

Arguments

name character name for object.

value an object.

obj Objective object.

dec Decision object.

con Constraint object.

pol Portfolio object.

sol Solver object.

targ Target object.

cost RasterLayer, SpatialPolygonsDataFrame, or SpatialLinesDataFrame object showing
spatial representation of the planning units and their cost.

features Zones or data.frame object containing feature data.

id Id object that refers to a specific parameter.

value object that the parameter value should become.
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Details

print print the object.

show show the object.

repr return character representation of the object.

get_data return an object stored in the data field with the corresponding name. If the object is not
present in the data field, a waiver object is returned.

set_data store an object stored in the data field with the corresponding name. If an object with
that name already exists then the object is overwritten.

number_of_planning_units integer number of planning units.

planning_unit_indices integer indices of the planning units in the planning unit data.

planning_unit_indices_with_finite_costs list of integer indices of planning units in each zone
that have finite cost data.

number_of_total_units integer number of units in the cost data including units that have N cost
data.

planning_unit_costs matrix cost of allocating each planning unit to each zone. Each column
corresponds to a different zone and each row corresponds to a different planning unit.

number_of_features integer number of features.

feature_names character names of features in problem.

feature_abundances_in_planning_units matrix total abundance of each feature in planning units
available in each zone. Each column corresponds to a different zone and each row corresponds
to a different feature.

feature_abundances_in_total_units matrix total abundance of each feature in each zone. Each
column corresponds to a different zone and each row corresponds to a different feature.

feature_targets tibble::tibble() with feature targets.

number_of_zones integer number of zones.

zone_names character names of zones in problem.

add_objective return a new ConservationProblem with the objective added to it.

add_decisions return a new ConservationProblem object with the decision added to it.

add_portfolio return a new ConservationProblem object with the portfolio method added to it.

add_solver return a new ConservationProblem object with the solver added to it.

add_constraint return a new ConservationProblem object with the constraint added to it.

add_targets return a copy with the targets added to the problem.

get_constraint_parameter get the value of a parameter (specified by argument id) used in one of
the constraints in the object.

set_constraint_parameter set the value of a parameter (specified by argument id) used in one of
the constraints in the object to value.

render_constraint_parameter generate a shiny widget to modify the value of a parameter (spec-
ified by argument id).

render_all_constraint_parameters generate a shiny div containing all the parameters’ widgets.
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get_objective_parameter get the value of a parameter (specified by argument id) used in the
object’s objective.

set_objective_parameter set the value of a parameter (specified by argument id) used in the ob-
ject’s objective to value.

render_objective_parameter generate a shiny widget to modify the value of a parameter (speci-
fied by argument id).

render_all_objective_parameters generate a shiny div containing all the parameters’ widgets.

get_solver_parameter get the value of a parameter (specified by argument id) used in the object’s
solver.

set_solver_parameter set the value of a parameter (specified by argument id) used in the object’s
solver to value.

render_solver_parameter generate a shiny widget to modify the value of a parameter (specified
by argument id).

render_all_solver_parameters generate a shiny div containing all the parameters’ widgets.

get_portfolio_parameter get the value of a parameter (specified by argument id) used in the ob-
ject’s portfolio.

set_portfolio_parameter set the value of a parameter (specified by argument id) used in objects’
solver to value.

render_portfolio_parameter generate a shiny widget to modify the value of a parameter (specified
by argument id).

render_all_portfolio_parameters generate a shiny div containing all the parameters’ widgets.

Constraint-class Constraint prototype

Description

This prototype is used to represent the constraints used when making a prioritization. This proto-
type represents a recipe, to actually add constraints to a planning problem, see the help page
on constraints. Only experts should use this class directly. This prototype inherits from the
ConservationModifier.

See Also

ConservationModifier.
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constraints Conservation problem constraints

Description

A constraint can be added to a conservation planning problem() to ensure that solutions exhibit a
specific characteristic.

Details

Constraints can be used to ensure that solutions exhibit a range of different characteristics. For
instance, they can be used to lock in or lock out certain planning units from the solution, such as
protected areas or degraded land (respectively). Additionally, similar to the penalties functions,
some of the constraint functions can be used to increase connectivity in a solution. The key differ-
ence between a penalty and a constraint, however, is that constraints work by invalidating solutions
that do not exhibit a specific characteristic, whereas penalty functions work by than penalizing so-
lutions which do not meet a specific characteristic. Thus constraints do not affect the objective
function. The following constraints are available.

The following constraints can be added to a conservation planning problem():

add_locked_in_constraints() Add constraints to ensure that certain planning units are selected
in the solution.

add_locked_out_constraints() Add constraints to ensure that certain planning units are not
selected in the solution.

add_neighbor_constraints() Add constraints to ensure that all selected planning units have at
least a certain number of neighbors.

add_contiguity_constraints() Add constraints to a ensure that all selected planning units are
spatially connected to each other and form a single contiguous unit.

add_feature_contiguity_constraints() Add constraints to #’ ensure that each feature is rep-
resented in a contiguous unit of dispersible habitat. These constraints are a more advanced ver-
sion of those implemented in the add_contiguity_constraints() function, because they
ensure that each feature is represented in a contiguous unit and not that the entire solution
should form a contiguous unit.

add_mandatory_allocation_constraints() Add constraints to ensure that every planning unit
is allocated to a management zone in the solution. This function can only be used with
problems that contain multiple zones.

See Also

decisions, objectives, penalties, portfolios, problem(), solvers, targets.
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Examples

# load data
data(sim_pu_raster, sim_features, sim_locked_in_raster,

sim_locked_out_raster)

# create minimal problem with only targets and no additional constraints
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem with locked in constraints
p2 <- p1 %>% add_locked_in_constraints(sim_locked_in_raster)

# create problem with locked in constraints
p3 <- p1 %>% add_locked_out_constraints(sim_locked_out_raster)

# create problem with neighbor constraints
p4 <- p1 %>% add_neighbor_constraints(2)

# create problem with contiguity constraints
p5 <- p1 %>% add_contiguity_constraints()

# create problem with feature contiguity constraints
p6 <- p1 %>% add_feature_contiguity_constraints()
## Not run:
# solve problems
s <- stack(lapply(list(p1, p2, p3, p4, p5, p6), solve))

# plot solutions
plot(s, box = FALSE, axes = FALSE, nr = 2,

main = c("minimal problem", "locked in", "locked out",
"neighbor", "contiguity", "feature contiguity"))

## End(Not run)

Decision-class Decision prototype

Description

This prototype used to represent the type of decision that is made when prioritizing planning units.
This prototype represents a recipe to make a decision, to actually specify the type of decision
in a planning problem, see the help page on decisions. Only experts should use this class
directly. This class inherits from the ConservationModifier.

See Also

ConservationModifier.
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decisions Specify the type of decisions

Description

Conservation planning problems involve making decisions on how different planning units will
be managed. These decisions might involve turning an entire planning unit into a protected area,
turning part of a planning unit into a protected area, or allocating a planning unit to a specific
management zone. If no decision is explicitly added to a problem(), then binary decisions will be
used by default.

Details

Only a single type of decision can be added to a conservation planning problem(). Note that if
multiple decisions are added to a problem, then the last one added will be used.

The following decisions can be added to a conservation planning problem():

add_binary_decisions() Add a binary decision to a conservation planning problem. This is
the classic decision of either prioritizing or not prioritizing a planning unit. Typically, this
decision has the assumed action of buying the planning unit to include in a protected area
network. If no decision is added to a problem object then this decision class will be used by
default.

add_proportion_decisions() Add a proportion decision to a conservation planning problem.
This is a relaxed decision where a part of a planning unit can be prioritized, as opposed to the
default of the entire planning unit. Typically, this decision has the assumed action of buying a
fraction of a planning unit to include in a protected area network.

add_semicontinuous_decisions() Add a semi-continuous decision to a conservation planning
problem. This decision is similar to add_proportion_decision except that it has an upper
bound parameter. By default, the decision can range from prioritizing none (0%) to all (100%)
of a planning unit. However, a upper bound can be specified to ensure that at most only a
fraction (e.g. 80%) of a planning unit can be preserved. This type of decision may be useful
when it is not practical to conserve the entire area encompassed by any single planning unit.

See Also

constraints, objectives, penalties, portfolios, problem(), solvers, targets.

Examples

# load data
data(sim_pu_raster, sim_features)

# create basic problem and using the default decision types (binary)
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1)
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# create problem with manually specified binary decisions
p2 <- p1 %>% add_binary_decisions()

# create problem with proportion decisions
p3 <- p1 %>% add_proportion_decisions()

# create problem with semicontinuous decisions
p4 <- p1 %>% add_semicontinuous_decisions(upper_limit = 0.5)

## Not run:
# solve problem
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))

# plot solutions
plot(s, main = c("default (binary)", "binary", "proportion",

"semicontinuous (upper = 0.5)"))

## End(Not run)

distribute_load Distribute load

Description

Utility function for distributing computations among a pool of workers for parallel processing.

Usage

distribute_load(x, n = 1)

Arguments

x integer number of item to process.

n integer number of threads.

Details

This function returns a list containing an element for each worker. Each element contains a
integer vector specifying the indices that the worker should process.

Value

list object.
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Examples

## Not run:

# imagine that we have 10 jobs that need processing. For simplicity,
# our jobs will involve adding 1 to each element in 1:10.
values <- 1:10

# we could complete this processing using the following vectorized code
result <- 1 + 1:10
print(result)

# however, if our jobs were complex then we would be better off using
# functionals
result <- lapply(1:10, function(x) x + 1)
print(result)

# we could do one better, and use the "plyr" package to handle the
# processing
result <- plyr::llply(1:10, function(x) x + 1)
print(result)

# we could also use the parallel processing options available through "plyr"
# to use more computation resources to complete the jobs (note that since
# these jobs are very quick to process this is actually slower).
cl <- parallel::makeCluster(2, "PSOCK")
doParallel::registerDoParallel(cl)
result <- plyr::llply(1:10, function(x) x + 1, .parallel = TRUE)
cl <- parallel::stopCluster(cl)
print(result)

# however this approach iterates over each element individually, we could
# use the distribute_load function to split the N jobs up into K super
# jobs, and evaluate each super job using vectorized code.
x <- 1:10
cl <- parallel::makeCluster(2, "PSOCK")
parallel::clusterExport(cl, 'x', envir = environment())
doParallel::registerDoParallel(cl)
l <- distribute_load(length(x), n = 2)
result <- plyr::llply(l, function(i) x[i] + 1, .parallel = TRUE)
cl <- parallel::stopCluster(cl)
print(result)

## End(Not run)

fast_extract Fast extract

Description

Extract data from a Raster object.
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Usage

fast_extract(x, y, ...)

## S4 method for signature 'Raster,SpatialPolygons'
fast_extract(x, y, fun = "mean", ...)

## S4 method for signature 'Raster,SpatialPoints'
fast_extract(x, y, fun = "mean", ...)

## S4 method for signature 'Raster,SpatialLines'
fast_extract(x, y, fun = "mean", ...)

## S4 method for signature 'Raster,sfc'
fast_extract(x, y, fun = "mean", ...)

## S4 method for signature 'Raster,sf'
fast_extract(x, y, fun = "mean", ...)

Arguments

x Raster object.

y Spatial or sf::sf() object.

... not used.

fun character name of statistic to summarize data. Defaults to "mean". Available
options include "sum" or "mean". Defaults to "mean".

Details

This function is simply a wrapper that uses raster::extract() to extract data for SpatialPoints
and SpatialLines and non-polygonal sf::sf() data, and exactextractr::exact_extract()
for SpatialPolygons and polygonal sf::sf() data.

Value

matrix containing the summary amount of each feature within each planning unit. Rows corre-
spond to different spatial features in the argument to y and columns correspond to different raster
layers in the argument to x.

See Also

raster::extract(), exactextractr::exact_extract().

Examples

# load data
data(sim_pu_sf, sim_features)

# extract data
result <- fast_extract(sim_features, sim_pu_sf)
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# show result
print(head(result))

feature_abundances Feature abundances

Description

Calculate the total abundance of each feature found in the planning units of a conservation planning
problem.

Usage

feature_abundances(x, na.rm)

## S3 method for class 'ConservationProblem'
feature_abundances(x, na.rm = FALSE)

Arguments

x problem() (i.e. ConservationProblem) object.

na.rm logical should planning units with NA cost data be excluded from the abun-
dance calculations? The default argument is FALSE.

Details

Planning units can have cost data with finite values (e.g. 0.1, 3, 100) and NA values. This func-
tionality is provided so that locations which are not available for protected area acquisition can
be included when calculating targets for conservation features (e.g. when targets are specified us-
ing add_relative_targets()). If the total amount of each feature in all the planning units is
required—including the planning units with NA cost data—then the the na.rm argument should be
set to FALSE. However, if the planning units with NA cost data should be excluded—for instance,
to calculate the highest feasible targets for each feature—then the na.rm argument should be set to
TRUE.

Value

tibble::tibble() object containing the total amount ("absolute_abundance") and proportion
("relative_abundance") of the distribution of each feature in the planning units. Here, each row
contains data that pertain to a specific feature in a specific management zone (if multiple zones are
present). This object contains the following columns:

feature character name of the feature.

zone character name of the zone (not included when the argument to x contains only one man-
agement zone).
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absolute_abundance numeric amount of each feature in the planning units. If the problem con-
tains multiple zones, then this column shows how well each feature is represented in a each
zone.

relative_abundance numeric proportion of the feature’s distribution in the planning units. If the
argument to na.rm is FALSE, then this column will only contain values equal to one. Other-
wise, if the argument to na.rm is TRUE and planning units with NA cost data contain non-zero
amounts of each feature, then this column will contain values between zero and one.

See Also

problem(), feature_representation().

Examples

# load data
data(sim_pu_raster, sim_features)

# create a simple conservation planning data set so we can see exactly
# how the feature abundances are calculated
pu <- data.frame(id = seq_len(10), cost = c(0.2, NA, runif(8)),

spp1 = runif(10), spp2 = c(rpois(9, 4), NA))

# create problem
p1 <- problem(pu, c("spp1", "spp2"), cost_column = "cost")

# calculate feature abundances; including planning units with NA costs
a1 <- feature_abundances(p1, na.rm = FALSE) # (default)
print(a1)

# calculate feature abundances; excluding planning units with NA costs
a2 <- feature_abundances(p1, na.rm = TRUE)
print(a2)

# verify correctness of feature abundance calculations
all.equal(a1$absolute_abundance,

c(sum(pu$spp1), sum(pu$spp2, na.rm = TRUE)))

all.equal(a1$relative_abundance,
c(sum(pu$spp1) / sum(pu$spp1),

sum(pu$spp2, na.rm = TRUE) / sum(pu$spp2, na.rm = TRUE)))

all.equal(a2$absolute_abundance,
c(sum(pu$spp1[!is.na(pu$cost)]),

sum(pu$spp2[!is.na(pu$cost)], na.rm = TRUE)))

all.equal(a2$relative_abundance,
c(sum(pu$spp1[!is.na(pu$cost)]) / sum(pu$spp1, na.rm = TRUE),

sum(pu$spp2[!is.na(pu$cost)], na.rm = TRUE) / sum(pu$spp2,
na.rm = TRUE)))

# initialize conservation problem with raster data
p3 <- problem(sim_pu_raster, sim_features)
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# calculate feature abundances; including planning units with NA costs
a3 <- feature_abundances(p3, na.rm = FALSE) # (default)
print(a3)

# create problem using total amounts of features in all the planning units
# (including units with NA cost data)
p4 <- p3 %>%

add_min_set_objective() %>%
add_relative_targets(a3$relative_abundance) %>%
add_binary_decisions()

# attempt to solve the problem, but we will see that this problem is
# infeasible because the targets cannot be met using only the planning units
# with finite cost data
## Not run:
s4 <- try(solve(p4))

## End(Not run)
# calculate feature abundances; excluding planning units with NA costs
a5 <- feature_abundances(p3, na.rm = TRUE)
print(a5)

# create problem using total amounts of features in the planning units with
# finite cost data
p5 <- p3 %>%

add_min_set_objective() %>%
add_relative_targets(a5$relative_abundance) %>%
add_binary_decisions()

## Not run:
# solve the problem
s5 <- solve(p5)

# plot the solution
# this solution contains all the planning units with finite cost data (i.e.
# cost data that do not have NA values)
plot(s5)

## End(Not run)

feature_names Feature names

Description

Extract the names of the features in an object.

Usage

feature_names(x)
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## S4 method for signature 'ConservationProblem'
feature_names(x)

## S4 method for signature 'ZonesRaster'
feature_names(x)

## S4 method for signature 'ZonesCharacter'
feature_names(x)

Arguments

x problem() (i.e. ConservationProblem) or Zones() object.

Value

character feature names.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# print feature names
print(feature_names(p))

feature_representation

Feature representation

Description

Calculate how well features are represented in a solution.

Usage

feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,numeric'
feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,matrix'
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feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,data.frame'
feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,Spatial'
feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,sf'
feature_representation(x, solution)

## S4 method for signature 'ConservationProblem,Raster'
feature_representation(x, solution)

Arguments

x problem() (i.e. ConservationProblem) object.
solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. See the

Details section for more information.

Details

Note that all arguments to solution must correspond to the planning unit data in the argument to
x in terms of data representation, dimensionality, and spatial attributes (if applicable). This means
that if the planning unit data in x is a numeric vector then the argument to solution must be a
numeric vector with the same number of elements, if the planning unit data in x is a RasterLayer
then the argument to solution must also be a RasterLayer with the same number of rows and
columns and the same resolution, extent, and coordinate reference system, if the planning unit data
in x is a Spatial or sf::sf() object then the argument to solution must also be a Spatial or
sf::sf() object, respectively, and have the same number of spatial features (e.g. polygons) and
have the same coordinate reference system, if the planning units in x are a data.frame then the
argument to solution must also be a data.frame with each column correspond to a different zone
and each row correspond to a different planning unit, and values correspond to the allocations (e.g.
values of zero or one).

Solutions must have planning unit statuses set to missing (NA) values for planning units that have
missing (NA) cost data. For problems with multiple zones, this means that planning units must have
missing (NA) allocation values in zones where they have missing (NA) cost data. In other words,
planning units that have missing (NA) cost values in x should always have a missing (NA) value the
argument to solution. If an argument is supplied to solution where this is not the case, then an
error will be thrown.

Additionally, note that when calculating the proportion of each feature represented in the solution,
the denominator is calculated using all planning units—including any planning units with NA cost
values in the argument to x. This is exactly the same equation used when calculating relative
targets for problems (e.g. add_relative_targets).

Value

tibble::tibble() object containing the amount ("absolute_held") and proportion ("relative_held")
of the distribution of each feature held in the solution. Here, each row contains data that pertain to a
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specific feature in a specific management zone (if multiple zones are present). This object contains
the following columns:

feature character name of the feature.

zone character name of the zone (not included when the argument to x contains only one man-
agement zone).

absolute_held numeric total amount of each feature secured in the solution. If the problem con-
tains multiple zones, then this column shows how well each feature is represented in a each
zone.

relative_held numeric proportion of the feature’s distribution held in the solution. If the problem
contains multiple zones, then this column shows how well each feature is represented in each
zone.

See Also

problem(), feature_abundances().

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_zones_sf, sim_features,

sim_pu_zones_stack, sim_features_zones)

# create a simple conservation planning data set so we can see exactly
# how feature representation is calculated
pu <- data.frame(id = seq_len(10), cost = c(0.2, NA, runif(8)),

spp1 = runif(10), spp2 = c(rpois(9, 4), NA))

# create problem
p1 <- problem(pu, c("spp1", "spp2"), cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# create a solution
s1 <- data.frame(solution = c(1, NA, rep(c(1, 0), 4)))
print(s1)

# calculate feature representation
r1 <- feature_representation(p1, s1)
print(r1)

# verify that feature representation calculations are correct
all.equal(r1$absolute_held, c(sum(pu$spp1 * s1[[1]], na.rm = TRUE),

sum(pu$spp2 * s1[[1]], na.rm = TRUE)))
all.equal(r1$relative_held, c(sum(pu$spp1 * s1[[1]], na.rm = TRUE) /

sum(pu$spp1),
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sum(pu$spp2 * s1[[1]], na.rm = TRUE) /
sum(pu$spp2, na.rm = TRUE)))

## Not run:
# solve the problem using an exact algorithm solver
s1_2 <- solve(p1)
print(s1_2)

# calculate feature representation in this solution
r1_2 <- feature_representation(p1, s1_2[, "solution_1", drop = FALSE])
print(r1_2)

# build minimal conservation problem with raster data
p2 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# solve the problem
s2 <- solve(p2)

# print solution
print(s2)

# calculate feature representation in the solution
r2 <- feature_representation(p2, s2)
print(r2)

# plot solution
plot(s2, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# build minimal conservation problem with polygon (Spatial) data
p3 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve the problem
s3 <- solve(p3)

# print first six rows of the attribute table
print(head(s3))

# calculate feature representation in the solution
r3 <- feature_representation(p3, s3[, "solution_1"])
print(r3)

# plot solution
spplot(s3, zcol = "solution_1", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# build multi-zone conservation problem with raster data
p4 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
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add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

## Not run:
# solve the problem
s4 <- solve(p4)

# print solution
print(s4)

# calculate feature representation in the solution
r4 <- feature_representation(p4, s4)
print(r4)

# plot solution
plot(category_layer(s4), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# build multi-zone conservation problem with polygon (sf) data
p5 <- problem(sim_pu_zones_sf, sim_features_zones,

cost_column = c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

## Not run:
# solve the problem
s5 <- solve(p5)

# print first six rows of the attribute table
print(head(s5))

# calculate feature representation in the solution
r5 <- feature_representation(p5, s5[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

print(r5)

# create new column representing the zone id that each planning unit
# was allocated to in the solution
s5$solution <- category_vector(s5[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s5$solution <- factor(s5$solution)

# plot solution
plot(s5[, "solution"])

## End(Not run)
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ferrier_score Ferrier irreplaceability score

Description

Calculate irreplaceability scores for planning units selected in a solution using the method outlined
in Ferrier et al. (2000). Specifically, the scores are implemented following the CLUZ decision sup-
port tool (Smith 2019). Here, scores are calculated separately for each feature within each planning
unit. Additionally, a total irreplaceability score is also calculated as the sum of the irreplaceability
scores for each planning unit. Note that this function only works for problems with a minimum set
objective and a single zone. It will throw an error for other types of problems.

Usage

ferrier_score(x, solution)

## S4 method for signature 'ConservationProblem,numeric'
ferrier_score(x, solution)

## S4 method for signature 'ConservationProblem,matrix'
ferrier_score(x, solution)

## S4 method for signature 'ConservationProblem,data.frame'
ferrier_score(x, solution)

## S4 method for signature 'ConservationProblem,Spatial'
ferrier_score(x, solution)

## S4 method for signature 'ConservationProblem,Raster'
ferrier_score(x, solution)

Arguments

x problem() (i.e. ConservationProblem) object.

solution numeric, matrix, data.frame, Raster, or Spatial object. See the Details
section for more information.

Details

The argument to solution must correspond to the planning unit data in the argument to x in terms
of data representation, dimensionality, and spatial attributes (if applicable). This means that if the
planning unit data in x is a numeric vector then the argument to solution must be a numeric
vector with the same number of elements, if the planning unit data in x is a RasterLayer then the
argument to solution must also be a RasterLayer with the same number of rows and columns
and the same resolution, extent, and coordinate reference system, if the planning unit data in x is a
Spatial object then the argument to solution must also be a Spatial object and have the same
number of spatial features (e.g. polygons) and have the same coordinate reference system, if the
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planning units in x are a data.frame then the argument to solution must also be a data.frame
with each column correspond to a different zone and each row correspond to a different planning
unit, and values correspond to the allocations (e.g. values of zero or one). Furthermore, solutions
must have planning unit statuses set to missing (NA) values for planning units that have missing (NA)
cost data. If an argument is supplied to solution where this is not the case, then an error will be
thrown.

Value

A matrix, tibble::tibble(), RasterLayer, or Spatial object containing the scores for each
planning unit selected in the solution.

References

Ferrier S, Pressey RL, and Barrett TW (2000) A new predictor of the irreplaceability of areas for
achieving a conservation goal, its application to real-world planning, and a research agenda for
further refinement. Biological Conservation, 93: 303–325.

Smith RJ (2019). The CLUZ plugin for QGIS: designing conservation area systems and other
ecological networks. Research Ideas and Outcomes 5: e33510.

See Also

irreplaceability.

Examples

# seed seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

## Not run:
# solve problem
s1 <- solve(p1)

# print solution
print(s1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# calculate irreplaceability scores using Ferrier et al. 2000 method
fs1 <- ferrier_score(p1, s1)
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# print irreplaceability scores,
# each planning unit has an irreplaceability score for each feature
# (as indicated by the column names) and each planning unit also
# has an overall total irreplaceability score (in the "total" column)
print(fs1)

# plot total irreplaceability scores
plot(fs1, axes = FALSE, box = FALSE)

## End(Not run)

intersecting_units Find intersecting units

Description

Find which of the units in a spatial data object intersect with the units in another spatial data object.

Usage

intersecting_units(x, y)

## S4 method for signature 'Raster,Raster'
intersecting_units(x, y)

## S4 method for signature 'Spatial,Spatial'
intersecting_units(x, y)

## S4 method for signature 'sf,Spatial'
intersecting_units(x, y)

## S4 method for signature 'Spatial,Raster'
intersecting_units(x, y)

## S4 method for signature 'Spatial,sf'
intersecting_units(x, y)

## S4 method for signature 'Raster,Spatial'
intersecting_units(x, y)

## S4 method for signature 'sf,sf'
intersecting_units(x, y)

## S4 method for signature 'Raster,sf'
intersecting_units(x, y)

## S4 method for signature 'sf,Raster'
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intersecting_units(x, y)

## S4 method for signature 'data.frame,ANY'
intersecting_units(x, y)

Arguments

x Spatial or Raster object.

y Spatial or Raster object.

Value

integer indices of the units in x that intersect with y.

See Also

fast_extract().

Examples

# create data
r <- raster(matrix(1:9, byrow = TRUE, ncol=3))
r_with_holes <- r
r_with_holes[c(1, 5, 9)] <- NA
ply <- rasterToPolygons(r)
ply_with_holes <- st_as_sf(rasterToPolygons(r_with_holes))

# intersect raster with raster
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "x=Raster")
plot(r_with_holes, main = "y=Raster")

## End(Not run)
print(intersecting_units(r, r_with_holes))

# intersect raster with polygons (sf)
## Not run:
par(mfrow = c(1, 2))
plot(r, main = "x=Raster")
plot(ply_with_holes, main = "y=sf", key.pos = NULL, reset = FALSE)

## End(Not run)
print(intersecting_units(r, ply_with_holes))

# intersect polygons (Spatial) with raster
## Not run:
par(mfrow = c(1, 2))
plot(ply, main = "x=Spatial")
plot(r_with_holes, main = "y=Raster")

## End(Not run)
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print(intersecting_units(ply, r_with_holes))

# intersect polygons (Spatial) with polygons (sf)
## Not run:
par(mfrow = c(1, 2))
plot(ply, main = "x=Spatial")
plot(ply_with_holes, main = "y=sf", key.pos = NULL, reset = FALSE)

## End(Not run)
print(intersecting_units(ply, ply_with_holes))

irreplaceability Irreplaceability

Description

Irreplaceability scores can be used to assess the relative importance of planning units in a solution
to a conservation planning problem().

Details

The following methods are available for calculating irreplaceability scores:

replacement_cost() The replacement cost scores (based on Cabeza and Moilanen 2006) quantify
the change in the objective function (e.g. additional costs required to meet feature targets) of
the optimal solution if a given planning unit in a solution cannot be acquired. They can (i) ac-
count for the cost of different planning units, (ii) account for multiple management zones, (iii)
apply to any objective function, and (iv) identify truly irreplaceable planning units (denoted
with infinite values).

ferrier_score() The Ferrier scores (Ferrier et al. 2000) quantify the importance of planning
units for meeting feature targets. They can only be applied to conservation problems with a
minimum set objective and a single zone (i.e. the classic Marxan-type problem). Furthermore—
unlike the replacement cost scores—the Ferrier irreplaceability scores provide a score for each
feature within each planning unit, providing insight into why certain planning units are more
important than other planning units.

rarity_weighted_richness() The rarity weighted richness scores (based on Williams et al.
1996) are simply a measure of biological diversity. They do not account for planning costs,
multiple management zones, objective functions, or feature targets (or weightings). They
merely describe the spatial patterns of biodiversity, and do not account for many of the factors
needed to quantify the importance of a planning unit for achieving conservation goals.

Generally speaking, we recommend using replacement cost scores for small and moderate sized
problems (e.g. less than 30,000 planning units) when it is feasible to do so. It can take a very long
time to compute replacement cost scores, and so it is simply not feasible to compute these scores for
particularly large problems. For moderate and large sized problems (e.g. more than 30,000 planning
units), we recommend using the Ferrier irreplaceability scores if possible. As mentioned earlier, the
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Ferrier irreplaceability scores can only be used for a specific type of conservation problem. For large
sized problems (e.g. more than 100,000 planning units), we recommend using the rarity weighted
richness scores simply because there is no other choice available. It has been known for decades
that such static measures of biodiversity lead to poor conservation plans (Kirkpatrick 1983).

References

Cabeza M and Moilanen A (2006) Replacement cost: A practical measure of site value for cost-
effective reserve planning. Biological Conservation, 132: 336–342.

Ferrier S, Pressey RL, and Barrett TW (2000) A new predictor of the irreplaceability of areas for
achieving a conservation goal, its application to real-world planning, and a research agenda for
further refinement. Biological Conservation, 93: 303–325.

Kirkpatrick, JB (1983) An iterative method for establishing priorities for the selection of nature
reserves: an example from Tasmania. Biological Conservation, 25: 127–134.

Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, and Pressey RL (1996) A comparison
of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British
birds. Conservation Biology, 10: 155–174.

See Also

problem().

Examples

## Not run:
# load data
data(sim_pu_raster, sim_pu_polygons, sim_features)

# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

# solve the problem
s1 <- solve(p1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# calculate irreplaceability scores using replacement cost scores
ir1 <- replacement_cost(p1, s1)

# calculate irreplaceability scores using Ferrier et al 2000 method,
# and extract the total irreplaceability scores
ir2 <- ferrier_score(p1, s1)[["total"]]

# calculate irreplaceability scores using rarity weighted richness scores
ir3 <- rarity_weighted_richness(p1, s1)
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# plot irreplaceability scores
plot(stack(ir1, ir2, ir3), axes = FALSE, box = FALSE,

main = c("replacement cost", "Ferrier score",
"rarity weighted richness"))

## End(Not run)

is.Id Is it?

Description

Test if an object inherits from a class.

Usage

is.Id(x)

is.Waiver(x)

Arguments

x Object.

Value

logical indicating if it inherits from the class.

loglinear_interpolation

Log-linear interpolation

Description

Log-linearly interpolate values between two thresholds.

Usage

loglinear_interpolation(
x,
coordinate_one_x,
coordinate_one_y,
coordinate_two_x,
coordinate_two_y

)
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Arguments

x numeric x values for which interpolate y values.

coordinate_one_x

numeric value for lower x-coordinate.
coordinate_one_y

numeric value for lower y-coordinate.

coordinate_two_x

numeric value for upper x-coordinate.

coordinate_two_y

numeric value for upper y-coordinate.

Details

Values are log-linearly interpolated at the x-coordinates specified in x using the lower and upper
coordinate arguments to define the line. Values lesser or greater than these numbers are assigned
the minimum and maximum y coordinates.

Value

numeric values.

Examples

# create series of x-values
x <- seq(0, 1000)

# interpolate y-values for the x-values given the two reference points:
# (200, 100) and (900, 15)
y <- loglinear_interpolation(x, 200, 100, 900, 15)

# plot the interpolated values
## Not run:
plot(y ~ x)

# add the reference points to the plot (shown in red)
points(x = c(200, 900), y = c(100, 15), pch = 18, col = "red", cex = 2)

## End(Not run)

marxan_boundary_data_to_matrix

Convert Marxan boundary data to a matrix format
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Description

Convert a data.frame object that follows the Marxan format to a matrix format. This function is
useful for converting data.frame objects to matrix or array objects that are used by the various
penalties and constraints functions. If the boundary data contains data for a single zone, then a
matrix object is returned. Otherwise if the boundary data contains data for multiple zones, then an
array is returned.

Usage

marxan_boundary_data_to_matrix(x, data)

Arguments

x problem() (i.e. ConservationProblem) object that contains planning unit and
zone data to ensure that the argument to data is converted correctly. This argu-
ment can be set to NULL if checks are not required (not recommended).

data data.frame object with the columns "id1", "id2", and "boundary". The
columns "zone1" and "zone2" can also be provided to indicate zone data.

Value

array or dgCMatrix sparse matrix object.

Examples

# create marxan boundary with four planning units and one zone
bldf1 <- expand.grid(id1 = seq_len(4), id2 = seq_len(4))
bldf1$boundary <- 1
bldf1$boundary[bldf1$id1 == bldf1$id2] <- 0.5

# convert to matrix
m1 <- marxan_boundary_data_to_matrix(NULL, bldf1)

# visualize matrix
## Not run:
image(m1)

## End(Not run)
# create marxan boundary with three planning units and two zones
bldf2 <- expand.grid(id1 = seq_len(3), id2 = seq_len(3),

zone1 = c("z1", "z2"),
zone2 = c("z1", "z2"))

bldf2$boundary <- 1
bldf2$boundary[bldf2$id1 == bldf2$id2 & bldf2$zone1 == bldf2$zone2] <- 0.5
bldf2$boundary[bldf2$id1 == bldf2$id2 & bldf2$zone1 != bldf2$zone2] <- 0

# convert to array
m2 <- marxan_boundary_data_to_matrix(NULL, bldf2)

# print array
print(m2)
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marxan_problem Marxan conservation problem

Description

Create a conservation planning problem() following the mathematical formulations used in Marxan
(detailed in Beyer et al. 2016). Note that these problems are solved using exact algorithms and not
simulated annealing (i.e. the Marxan software).

Usage

marxan_problem(x, ...)

## Default S3 method:
marxan_problem(x, ...)

## S3 method for class 'data.frame'
marxan_problem(x, spec, puvspr, bound = NULL, blm = 0, ...)

## S3 method for class 'character'
marxan_problem(x, ...)

Arguments

x character file path for a Marxan input file (typically called "input.dat"),
or data.frame containing planning unit data (typically called "pu.dat"). If
the argument to x is a data.frame, then each row corresponds to a different
planning unit, and it must have the following columns:

"id" integer unique identifier for each planning unit. These identifiers are
used in the argument to puvspr.

"cost" numeric cost of each planning unit.
"status" integer indicating if each planning unit should not be locked in

the solution (0) or if it should be locked in (2) or locked out (3) of the
solution. Although Marxan allows planning units to be selected in the initial
solution (using values of 1), these values have no effect here. This column
is optional.

... not used.

spec data.frame containing information on the features. The argument to spec must
follow the conventions used by Marxan for the species data file (conventionally
called "spec.dat"). Each row corresponds to a different feature and each col-
umn corresponds to different information about the features. It must contain
the columns listed below. Note that the argument to spec must contain at least
one column named "prop" or "amount"—but not both columns with both of
these names—to specify the target for each feature.

"id" integer unique identifier for each feature These identifiers are used in
the argument to puvspr.
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"name" character name for each feature.
"prop" numeric relative target for each feature (optional).’
"amount" numeric absolute target for each feature (optional).

puvspr data.frame containing information on the amount of each feature in each plan-
ning unit. The argument to puvspr must follow the conventions used in the
Marxan input data file (conventionally called "puvspr.dat"). It must contain
the following columns:
"pu" integer planning unit identifier.
"species" integer feature identifier.
"amount" numeric amount of the feature in the planning unit.

bound NULL object indicating that no boundary data is required for the conservation
planning problem, or a data.frame containing information on the planning
units’ boundaries. The argument to bound must follow the conventions used
in the Marxan input data file (conventionally called "bound.dat"). It must con-
tain the following columns:
"id1" integer planning unit identifier.
"id2" integer planning unit identifier.
"boundary" numeric length of shared boundary between the planning units

identified in the previous two columns.
blm numeric boundary length modifier. This argument only has an effect when ar-

gument to x is a data.frame. The default argument is zero.

Details

This function is provided as a convenient wrapper for solving Marxan problems using prioritizr.

Value

problem() (i.e. ConservationProblem) object.

Notes

In early versions, this function could accommodate asymmetric connectivity data. This functional-
ity is no longer supported. To specify asymmetric connectivity, please see the add_connectivity_penalties()
function.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conser-
vation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational
tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning prob-
lems with integer linear programming. Ecological Modelling, 228: 14–22.

See Also

For more information on the correct format for for Marxan input data, see the official Marxan
website and Ball et al. (2009).

https://marxansolutions.org
https://marxansolutions.org
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Examples

# create Marxan problem using Marxan input file
input_file <- system.file("extdata/input.dat", package = "prioritizr")
p1 <- marxan_problem(input_file)
## Not run:
# solve problem
s1 <- solve(p1)

# print solution
head(s1)

## End(Not run)
# create Marxan problem using data.frames that have been loaded into R
## load in planning unit data
pu_path <- system.file("extdata/input/pu.dat", package = "prioritizr")
pu_dat <- data.table::fread(pu_path, data.table = FALSE)
head(pu_dat)

## load in feature data
spec_path <- system.file("extdata/input/spec.dat", package = "prioritizr")
spec_dat <- data.table::fread(spec_path, data.table = FALSE)
head(spec_dat)

## load in planning unit vs feature data
puvspr_path <- system.file("extdata/input/puvspr.dat",

package = "prioritizr")
puvspr_dat <- data.table::fread(puvspr_path, data.table = FALSE)
head(puvspr_dat)

## load in the boundary data
bound_path <- system.file("extdata/input/bound.dat", package = "prioritizr")
bound_dat <- data.table::fread(bound_path, data.table = FALSE)
head(bound_dat)

# create problem without the boundary data
p2 <- marxan_problem(pu_dat, spec_dat, puvspr_dat)
## Not run:
# solve problem
s2 <- solve(p2)

# print solution
head(s2)

## End(Not run)
# create problem with the boundary data and a boundary length modifier
# set to 5
p3 <- marxan_problem(pu_dat, spec_dat, puvspr_dat, bound_dat, 5)
## Not run:
# solve problem
s3 <- solve(p3)

# print solution
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head(s3)

## End(Not run)

matrix_parameters Matrix parameters

Description

Create a parameter that represents a matrix object.

Usage

numeric_matrix_parameter(
name,
value,
lower_limit = .Machine$double.xmin,
upper_limit = .Machine$double.xmax,
symmetric = FALSE

)

binary_matrix_parameter(name, value, symmetric = FALSE)

Arguments

name character name of parameter.

value matrix object.

lower_limit numeric values denoting the minimum acceptable value in the matrix. Defaults
to the smallest possible number on the system.

upper_limit numeric values denoting the maximum acceptable value in the matrix. Defaults
to the smallest possible number on the system.

symmetric logical must the must be matrix be symmetric? Defaults to FALSE.

Value

MiscParameter object.

Examples

# create matrix
m <- matrix(runif(9), ncol = 3)
colnames(m) <- letters[1:3]
rownames(m) <- letters[1:3]

# create a numeric matrix parameter
p1 <- numeric_matrix_parameter("m", m)
print(p1) # print it
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p1$get() # get value
p1$id # get id
p1$validate(m[, -1]) # check if parameter can be updated
p1$set(m + 1) # set parameter to new values
p1$print() # print it again

# create a binary matrix parameter
m <- matrix(round(runif(9)), ncol = 3)
colnames(m) <- letters[1:3]
rownames(m) <- letters[1:3]

# create a binary matrix parameter
p2 <- binary_matrix_parameter("m", m)
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(m[, -1]) # check if parameter can be updated
p2$set(m + 1) # set parameter to new values
p2$print() # print it again

MiscParameter-class Miscellaneous parameter prototype

Description

This prototype is used to represent a parameter that can be any object. Only experts should interact
directly with this prototype.

Fields

$id character identifier for parameter.

$name character name of parameter.

$value tibble::tibble() object.

$validator list object containing a function that is used to validate changes to the parameter.

$widget list object containing a function used to construct a shiny interface for modifying val-
ues.

Usage

x$print()

x$show()

x$validate(x)

x$get()

x$set(x)

x$reset()

x$render(...)
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Arguments

x object used to set a new parameter value.

... arguments passed to $widget.

Details

print print the object.

show show the object.

validate check if a proposed new parameter is valid.

get extract the parameter value.

set update the parameter value.

reset update the parameter value to be the default value.

render create a shiny::shiny() widget to modify parameter values.

See Also

Parameter.

misc_parameter Miscellaneous parameter

Description

Create a parameter that consists of a miscellaneous object.

Usage

misc_parameter(name, value, validator, widget)

Arguments

name character name of parameter.

value object.

validator function to validate changes to the parameter. This function must have a single
argument and return either TRUE or FALSE depending on if the argument is valid
candidate for the parameter.

widget function to render a shiny widget. This function should must have a single
argument that accepts a valid object and return a shiny.tag or shiny.tag.list
object.

Value

MiscParameter object.
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Examples

# load data
data(iris, mtcars)

# create table parameter can that can be updated to any other object
p1 <- misc_parameter("tbl", iris,

function(x) TRUE,
function(id, x) structure(id, .Class = "shiny.tag"))

print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(mtcars) # check if parameter can be updated
p1$set(mtcars) # set parameter to mtcars
p1$print() # print it again

# create table parameter with validation function that requires
# all values in the first column to be less then 200 and that the
# parameter have the same column names as the iris data set
p2 <- misc_parameter("tbl2", iris,

function(x) all(names(x) %in% names(iris)) &&
all(x[[1]] < 200),

function(id, x) structure(id, .Class = "shiny.tag"))
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(mtcars) # check if parameter can be updated
iris2 <- iris; iris2[1,1] <- 300 # create updated iris data set
p2$validate(iris2) # check if parameter can be updated
iris3 <- iris; iris2[1,1] <- 100 # create updated iris data set
p2$set(iris3) # set parameter to iris3
p2$print() # print it again

new_id Identifier

Description

Generate a new unique identifier.

Usage

new_id()

Details

Identifiers are made using the uuid::UUIDgenerate().
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Value

Id object.

See Also

uuid::UUIDgenerate().

Examples

# create new id
i <- new_id()

# print id
print(i)

# convert to character
as.character(i)

# check if it is an Id object
is.Id(i)

new_optimization_problem

Optimization problem

Description

Generate a new empty OptimizationProblem object.

Usage

new_optimization_problem()

Value

OptimizationProblem object.

See Also

OptimizationProblem-methods

Examples

# create empty OptimizationProblem object
x <- new_optimization_problem()

# print new object
print(x)
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new_waiver Waiver

Description

Create a waiver object.

Usage

new_waiver()

Details

This object is used to represent that the user has not manually specified a setting, and so defaults
should be used. By explicitly using a new_waiver(), this means that NULL objects can be a valid
setting. The use of a "waiver" object was inspired by the ggplot2 package.

Value

Object of class Waiver.

Examples

# create new waiver object
w <- new_waiver()

# print object
print(w)

# is it a waiver object?
is.Waiver(w)

number_of_features Number of features

Description

Extract the number of features in an object.
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Usage

number_of_features(x)

## S4 method for signature 'ConservationProblem'
number_of_features(x)

## S4 method for signature 'OptimizationProblem'
number_of_features(x)

## S4 method for signature 'ZonesRaster'
number_of_features(x)

## S4 method for signature 'ZonesCharacter'
number_of_features(x)

Arguments

x problem() (i.e. ConservationProblem), OptimizationProblem, or Zones()
object.

Value

integer number of features.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# print number of features
print(number_of_features(p))

number_of_planning_units

Number of planning units

Description

Extract the number of planning units in an object.
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Usage

number_of_planning_units(x)

## S4 method for signature 'ConservationProblem'
number_of_planning_units(x)

## S4 method for signature 'OptimizationProblem'
number_of_planning_units(x)

Arguments

x problem() (i.e. ConservationProblem), OptimizationProblem, or Zones()
object.

Value

integer number of planning units.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# print number of planning units
print(number_of_planning_units(p))

number_of_total_units Number of total units

Description

Extract the number of total units in an object.

Usage

number_of_total_units(x)

## S4 method for signature 'ConservationProblem'
number_of_total_units(x)
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Arguments

x problem() (i.e. ConservationProblem), OptimizationProblem, or Zones()
object.

Value

integer number of total units.

Examples

# load data
data(sim_pu_raster, sim_pu_zones_stack, sim_features, sim_features_zones)

# create problem with one zone
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# print number of planning units
print(number_of_planning_units(p1))

# print number of total units
print(number_of_total_units(p1))

# create problem with multiple zones
p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

# print number of planning units
print(number_of_planning_units(p2))

# print number of total units
print(number_of_total_units(p2))

number_of_zones Number of zones

Description

Extract the number of zones in an object.

Usage

number_of_zones(x)

## S4 method for signature 'ConservationProblem'
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number_of_zones(x)

## S4 method for signature 'OptimizationProblem'
number_of_zones(x)

## S4 method for signature 'ZonesRaster'
number_of_zones(x)

## S4 method for signature 'ZonesCharacter'
number_of_zones(x)

Arguments

x problem() (i.e. ConservationProblem), OptimizationProblem, or Zones()
object.

Value

integer number of zones.

Examples

# load data
data(sim_pu_zones_stack, sim_features_zones)

# print number of zones in a Zones object
print(number_of_zones(sim_features_zones))
# create problem with multiple zones
p <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

# print number of zones in the problem
print(number_of_zones(p))

Objective-class Objective prototype

Description

This prototype is used to represent an objective that can be added to a ConservationProblem
object. This prototype represents a recipe to make an objective, to actually add an objective
to a planning problem: see objectives. Only experts should use this class directly.
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objectives Problem objective

Description

An objective is used to specify the overall goal of a conservation planning problem(). All con-
servation planning problems involve minimizing #’ or maximizing some kind of objective. For
instance, the planner may require a solution that conserves enough habitat for each species while
minimizing the overall cost of the reserve network. Alternatively, the planner may require a solution
that maximizes the number of conserved species while ensuring that the cost of the reserve network
does not exceed the budget.

Details

Please note that failing to specify an objective before attempting to solve a problem will return
an error.
The following objectives can be added to a conservation planning problem():

add_min_set_objective() Minimize the cost of the solution whilst ensuring that all targets are
met. This objective is similar to that used in Marxan.

add_max_cover_objective() Represent at least one instance of as many features as possible
within a given budget.

add_max_features_objective() Fulfill as many targets as possible while ensuring that the cost
of the solution does not exceed a budget.

add_min_shortfall_objective() Minimize the shortfall for as many targets as possible while
ensuring that the cost of the solution does not exceed a budget.

add_max_phylo_div_objective() Maximize the phylogenetic diversity of the features repre-
sented in the solution subject to a budget.

add_max_phylo_end_objective() Maximize the phylogenetic endemism of the features repre-
sented in the solution subject to a budget.

add_max_utility_objective() Secure as much of the features as possible without exceeding a
budget.

See Also

constraints, decisions, penalties, portfolios, problem(), solvers, targets.

Examples

# load data
data(sim_pu_raster, sim_features, sim_phylogeny)

# create base problem
p <- problem(sim_pu_raster, sim_features) %>%

add_relative_targets(0.1)
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# create problem with added minimum set objective
p1 <- p %>% add_min_set_objective()

# create problem with added maximum coverage objective
# note that this objective does not use targets
p2 <- p %>% add_max_cover_objective(500)

# create problem with added maximum feature representation objective
p3 <- p %>% add_max_features_objective(1900)
# create problem with added minimum shortfall objective
p4 <- p %>% add_min_shortfall_objective(1900)

# create problem with added maximum phylogenetic diversity objective
p5 <- p %>% add_max_phylo_div_objective(1900, sim_phylogeny)

# create problem with added maximum phylogenetic diversity objective
p6 <- p %>% add_max_phylo_end_objective(1900, sim_phylogeny)

# create problem with added maximum utility objective
# note that this objective does not use targets
p7 <- p %>% add_max_utility_objective(1900)

## Not run:
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4), solve(p5), solve(p6),

solve(p7))

# plot solutions
plot(s, axes = FALSE, box = FALSE,

main = c("minimum set", "maximum coverage", "maximum features",
"minimum shortfall", "maximum phylogenetic diversity",
"maximum phylogenetic endemism", "maximum utility"))

## End(Not run)

OptimizationProblem-class

Optimization problem class

Description

The OptimizationProblem class is used to represent an optimization problem. Data are stored
in memory and accessed using an external pointer. Only experts should interact with this class
directly.

Fields

$ptr externalptr object.
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Usage

x$print()

x$show()

x$repr()

x$ncol()

x$nrow()

x$ncell()

x$modelsense()

x$vtype()

x$obj()

x$A()

x$rhs()

x$sense()

x$lb()

x$ub()

x$number_of_planning_units()

x$number_of_features()

x$number_of_zones()

x$row_ids()

x$col_ids()

x$compressed_formulation()

Arguments

ptr externalptr object.

Details

print print the object.

show show the object.

repr character representation of object.

ncol integer number of columns (variables) in model matrix.

nrow integer number of rows (constraints) in model matrix.

ncell integer number of cells in model matrix.

modelsense character model sense.

vtype character vector of variable types.

obj numeric vector of objective function.

A dgCMatrix model matrix

rhs numeric vector of right-hand-side constraints.
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sense character vector of constraint senses.

lb numeric vector of lower bounds for each decision variable.

ub numeric vector of upper bounds for each decision variable.

number_of_features integer number of features in the problem.

number_of_planning_units integer number of planning units in the problem.

number_of_zones integer number of zones in the problem.

col_ids character names describing each decision variable (column) in the model matrix.

row_ids character names describing each constraint (row) in in the model matrix.

compressed_formulation is the optimization problem formulated using a compressed version of
the rij matrix?

shuffle_columns randomly shuffle the columns in the problem. This should almost never be called
manually and only should only be called after the optimization problem has been fully con-
structed.

OptimizationProblem-methods

Optimization problem methods

Description

These functions are used to access data from an OptimizationProblem object.

Usage

nrow(x)

## S4 method for signature 'OptimizationProblem'
nrow(x)

ncol(x)

## S4 method for signature 'OptimizationProblem'
ncol(x)

ncell(x)

## S4 method for signature 'OptimizationProblem'
ncell(x)

modelsense(x)

## S4 method for signature 'OptimizationProblem'
modelsense(x)
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vtype(x)

## S4 method for signature 'OptimizationProblem'
vtype(x)

obj(x)

## S4 method for signature 'OptimizationProblem'
obj(x)

A(x)

## S4 method for signature 'OptimizationProblem'
A(x)

rhs(x)

## S4 method for signature 'OptimizationProblem'
rhs(x)

sense(x)

## S4 method for signature 'OptimizationProblem'
sense(x)

lb(x)

## S4 method for signature 'OptimizationProblem'
lb(x)

ub(x)

## S4 method for signature 'OptimizationProblem'
ub(x)

col_ids(x)

## S4 method for signature 'OptimizationProblem'
col_ids(x)

row_ids(x)

## S4 method for signature 'OptimizationProblem'
row_ids(x)

compressed_formulation(x)

## S4 method for signature 'OptimizationProblem'
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compressed_formulation(x)

Arguments

x OptimizationProblem object.

Details

The functions return the following data:

nrow integer number of rows (constraints).

ncol integer number of columns (decision variables).

ncell integer number of cells.

modelsense character describing if the problem is to be maximized ("max") or minimized ("min").

vtype character describing the type of each decision variable: binary ("B"), semi-continuous
("S"), or continuous ("C")

obj numeric vector specifying the objective function.

A dgCMatrix matrix object defining the problem matrix.

rhs numeric vector with right-hand-side linear constraints

sense character vector with the senses of the linear constraints ("<=", ">=", "=").

lb numeric lower bound for each decision variable. Missing data values (NA) indicate no lower
bound for a given variable.

ub numeric upper bounds for each decision variable. Missing data values (NA) indicate no upper
bound for a given variable.

number_of_planning_units integer number of planning units in the problem.

number_of_features integer number of features the problem.

Value

dgCMatrix, numeric vector, numeric vector, or scalar integer depending on the method used.

Parameter-class Parameter class

Description

This class is used to represent a parameter that has multiple values. Each value has a different label
to differentiate values. Only experts should interact directly with this class.
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Fields

$id Id identifier for parameter.

$name character name of parameter.

$value numeric vector of values.

$default numeric vector of default values.

$class character name of the class that the values inherit from (e.g. "integer".

$lower_limit numeric vector specifying the minimum permitted value for each element in $value.

$upper_limit numeric vector specifying the maximum permitted value for each element in $value.

$widget function used to construct a shiny::shiny() interface for modifying values.

Usage

x$print()

x$show()

x$reset()

Details

print print the object.

show show the object.

reset change the parameter values to be the default values.

See Also

ScalarParameter.

parameters Parameters

Description

Create a new collection of Parameter objects.

Usage

parameters(...)

Arguments

... Parameter objects.

Value

Parameters object.
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See Also

array_parameters(), scalar_parameters().

Examples

# create two Parameter objects
p1 <- binary_parameter("parameter one", 1)
print(p1)

p2 <- numeric_parameter("parameter two", 5)
print(p2)

# store Parameter objects in a Parameters object
p <- parameters(p1, p2)
print(p)

Parameters-class Parameters class

Description

This class represents a collection of Parameter objects. It provides methods for accessing, updat-
ing, and rendering the parameters stored inside it.

Fields

$parameters list object containing Parameter objects.

Usage

x$print()

x$show()

x$repr()

x$names()

x$ids()

x$length()

x$get(id)

x$set(id,value)

x$add(p)

x$render(id)

x$render_all()
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Arguments

id Id object.

p Parameter object.

value any object.

Details

print print the object.

show show the object.

repr character representation of object.

names return character names of parameters.

ids return character parameter unique identifiers.

length return integer number of parameters in object.

get retrieve the value of a parameter in the object using an Id object.

set change the value of a parameter in the object to a new object.

render generate a shiny widget to modify the the value of a parameter (specified by argument Id).

render_all generate a shiny::div() containing all the parameters" widgets.

penalties Conservation problem penalties

Description

A penalty can be applied to a conservation planning problem() to penalize solutions according to a
specific metric. Penalties—unlike constraints—act as an explicit trade-off with the objective being
minimized or maximized (e.g. solution cost when used with add_min_set_objective()).

Details

Both penalties and constraints can be used to modify a problem and identify solutions that exhibit
specific characteristics. Constraints work by invalidating solutions that do not exhibit specific char-
acteristics. On the other hand, penalties work by specifying trade-offs against the main problem
objective and are mediated by a penalty factor.

The following penalties can be added to a conservation planning problem():

add_boundary_penalties() Add penalties to a conservation problem to favor solutions that have
planning units clumped together into contiguous areas.

add_connectivity_penalties() Add penalties to a conservation problem to favor solutions that
select planning units with high connectivity between them.

add_linear_penalties() Add penalties to a conservation problem to favor solutions that avoid
selecting planning units based on a certain variable (e.g. anthropogenic pressure).
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See Also

constraints, decisions, objectives portfolios, problem(), solvers, targets.

Examples

# load data
data(sim_pu_raster, sim_features)

# create basic problem
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_default_solver()

# create problem with boundary penalties
p2 <- p1 %>% add_boundary_penalties(5, 1)

# create connectivity matrix based on spatial proximity
scm <- as.data.frame(sim_pu_raster, xy = TRUE, na.rm = FALSE)
scm <- 1 / (as.matrix(dist(scm)) + 1)

# remove weak and moderate connections between planning units to reduce
# run time
scm[scm < 0.85] <- 0

# create problem with connectivity penalties
p3 <- p1 %>% add_connectivity_penalties(25, data = scm)

# create problem with linear penalties,
# here the penalties will be based on random numbers to keep it simple

# simulate penalty data
sim_penalty_raster <- simulate_cost(sim_pu_raster)

# plot penalty data
plot(sim_penalty_raster, main = "penalty data", axes = FALSE, box = FALSE)

# create problem with linear penalties, with a penalty scaling factor of 100
p4 <- p1 %>% add_linear_penalties(100, data = sim_penalty_raster)

## Not run:
# solve problems
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))

# plot solutions
plot(s, axes = FALSE, box = FALSE,

main = c("basic solution", "boundary penalties",
"connectivity penalties", "linear penalties"))

## End(Not run)
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Penalty-class Penalty prototype

Description

This prototype is used to represent penalties that are added to the objective function when making
a conservation problem. This prototype represents a recipe, to actually add penalties to a plan-
ning problem, see the help page on penalties. Only experts should use this class directly. This
prototype inherits from the ConservationModifier.

See Also

ConservationModifier.

Portfolio-class Portfolio prototype

Description

This prototype is used to represent methods for generating portfolios of optimization problems.
This class represents a recipe to create portfolio generating method and is only recommended
for use by expert users. To customize the method used to generate portfolios, please see the
help page on portfolios.

Fields

$name character name of portfolio method.

$parameters Parameters object with parameters used to customize the the portfolio.

$run function used to generate a portfolio.

Usage

x$print()

x$show()

x$repr()

x$run(op,sol)

Arguments

x Solver object.

op OptimizationProblem object.
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Details

print print the object.

show show the object.

repr character representation of object.

run solve an OptimizationProblem object using this object and a Solver object.

portfolios Solution portfolios

Description

Conservation planners often desire a portfolio of solutions to present to decision makers. This is
because conservation planners often do not have access to "perfect" information, such as cost data
that accurately reflects stakeholder preferences, and so having multiple near-optimal solutions can
be a useful.

Details

All methods for generating portfolios will return solutions that are within the specified optimality
gap.

The following portfolios can be added to a conservation planning problem():

add_default_portfolio Generate a single solution.

add_extra_portfolio() Generate a portfolio of solutions by storing feasible solutions found dur-
ing the optimization process. This method is useful for quickly obtaining multiple solutions,
but does not provide any guarantees on the number of solutions, or the quality of solutions.
Note that it requires the Gurobi solver.

add_top_portfolio() Generate a portfolio of solutions by finding a pre-specified number of so-
lutions that are closest to optimality (i.e the top solutions). This is useful for examining dif-
ferences among near-optimal solutions. It can also be used to generate multiple solutions and,
in turn, to calculate selection frequencies for small problems. Note that it requires the Gurobi
solver.

add_gap_portfolio() Generate a portfolio of solutions by finding a certain number of solutions
that are all within a pre- specified optimality gap. This method is useful for generating multi-
ple solutions that can be used to calculate selection frequencies for moderate and large-sized
problems (similar to Marxan). Note that it requires the Gurobi solver.

add_cuts_portfolio() Generate a portfolio of distinct solutions within a pre-specified optimality
gap using Bender’s cuts. This is recommended as a replacement for add_top_portfolio()
when the Gurobi software is not available.

add_shuffle_portfolio() Generate a portfolio of solutions by randomly reordering the data
prior to attempting to solve the problem. This is recommended as a replacement for add_gap_portfolio()
when the Gurobi software is not available.
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See Also

constraints, decisions, objectives penalties, problem(), solvers, targets.

Examples

# load data
data(sim_pu_raster, sim_features)

# create problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0.02, verbose = FALSE)

# create problem with cuts portfolio with 4 solutions
p1 <- p %>% add_cuts_portfolio(4)

# create problem with shuffle portfolio with 4 solutions
p2 <- p %>% add_shuffle_portfolio(4)
## Not run:
# create problem with extra portfolio
p3 <- p %>% add_extra_portfolio()

# create problem with top portfolio with 4 solutions
p4 <- p %>% add_top_portfolio(4)

# create problem with gap portfolio with 4 solutions within 50% of optimality
p5 <- p %>% add_gap_portfolio(4, 0.5)

# solve problems and create solution portfolios
s <- list(solve(p1), solve(p2), solve(p3), solve(p4), solve(p5))

# plot solutions from extra portfolio
plot(stack(s[[1]]), axes = FALSE, box = FALSE)

# plot solutions from top portfolio
plot(stack(s[[2]]), axes = FALSE, box = FALSE)

# plot solutions from gap portfolio
plot(stack(s[[3]]), axes = FALSE, box = FALSE)

# plot solutions from cuts portfolio
plot(stack(s[[4]]), axes = FALSE, box = FALSE)

# plot solutions from shuffle portfolio
plot(stack(s[[5]]), axes = FALSE, box = FALSE)

## End(Not run)
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pproto Create a new pproto object

Description

Construct a new object with pproto. This object system is inspired from the ggproto system used
in the ggplot2 package.

Usage

pproto(`_class` = NULL, `_inherit` = NULL, ...)

Arguments

_class Class name to assign to the object. This is stored as the class attribute of the
object. This is optional: if NULL (the default), no class name will be added to the
object.

_inherit pproto object to inherit from. If NULL, don"t inherit from any object.

... A list of members to add to the new pproto object.

Examples

Adder <- pproto("Adder",
x = 0,
add = function(self, n) {
self$x <- self$x + n
self$x

}
)

Adder$add(10)
Adder$add(10)

Abacus <- pproto("Abacus", Adder,
subtract = function(self, n) {

self$x <- self$x - n
self$x

}
)
Abacus$add(10)
Abacus$subtract(10)
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predefined_optimization_problem

Predefined optimization problem

Description

Create a new OptimizationProblem object.

Usage

predefined_optimization_problem(x)

Arguments

x list object containing data to construct the problem.

Details

The argument to x must be a list that contains the following elements:

modelsense character model sense.

number_of_features integer number of features in problem.

number_of_planning_units integer number of planning units.

A_i integer row indices for problem matrix.

A_j integer column indices for problem matrix.

A_x numeric values for problem matrix.

obj numeric objective function values.

lb numeric lower bound for decision values.

ub numeric upper bound for decision values.

rhs numeric right-hand side values.

sense numeric constraint senses.

vtype character variable types. These are used to specify that the decision variables are binary
("B") or continuous ("C").

row_ids character identifiers for the rows in the problem matrix.

col_ids character identifiers for the columns in the problem matrix.

Examples

# create list with problem data
l <- list(modelsense = "min", number_of_features = 2,

number_of_planning_units = 3, number_of_zones = 1,
A_i = c(0L, 1L, 0L, 1L, 0L, 1L), A_j = c(0L, 0L, 1L, 1L, 2L, 2L),
A_x = c(2, 10, 1, 10, 1, 10), obj = c(1, 2, 2), lb = c(0, 1, 0),
ub = c(0, 1, 1), rhs = c(2, 10), compressed_formulation = TRUE,
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sense = c(">=", ">="), vtype = c("B", "B", "B"),
row_ids = c("spp_target", "spp_target"),
col_ids = c("pu", "pu", "pu"))

# create OptimizationProblem object
x <- predefined_optimization_problem(l)

# print new object
print(x)

presolve_check Presolve check

Description

Check a conservation planning problem() for potential issues before trying to solve it. Specifically,
problems are checked for (i) values that are likely to result in "strange" solutions and (ii) values that
are likely to cause numerical instability issues and lead to unreasonably long run times when solving
it. Although these checks are provided to help diagnose potential issues, please be aware that some
detected issues may be false positives. Please note that these checks will not be able to verify if a
problem has a feasible solution or not.

Usage

presolve_check(x)

## S3 method for class 'ConservationProblem'
presolve_check(x)

## S3 method for class 'OptimizationProblem'
presolve_check(x)

Arguments

x problem() (i.e. ConservationProblem) or OptimizationProblem object.

Details

This function checks for issues that are likely to result in "strange" solutions. Specifically, it checks
if (i) all planning units are locked in, (ii) all planning units are locked out, and (iii) all planning
units have negative cost values (after applying penalties if any were specified). Although such
conservation planning problems are mathematically valid, they are generally the result of a coding
mistake when building the problem (e.g. using an absurdly high penalty value or using the wrong
dataset to lock in planning units). Thus such issues, if they are indeed issues and not false positives,
can be fixed by carefully checking the code, data, and parameters used to build the conservation
planning problem.

This function then checks for values that may lead to numerical instability issues when solving the
problem. Specifically, it checks if the range of values in certain components of the optimization
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problem are over a certain threshold (i.e. 1 × 109) or if the values themselves exceed a certain
threshold (i.e. 1 × 1010). In most cases, such issues will simply cause an exact algorithm solver
to take a very long time to generate a solution. In rare cases, such issues can cause incorrect
calculations which can lead to exact algorithm solvers returning infeasible solutions (e.g. a solution
to the minimum set problem where not all targets are met) or solutions that exceed the specified
optimality gap (e.g. a suboptimal solution when a zero optimality gap is specified).

What can you do if a conservation planning problem fails to pass these checks? Well, this function
will have thrown some warning messages describing the source of these issues, so read them care-
fully. For instance, a common issue is when a relatively large penalty value is specified for bound-
ary (add_boundary_penalties()) or connectivity penalties (add_connectivity_penalties()).
This can be fixed by trying a smaller penalty value. In such cases, the original penalty value sup-
plied was so high that the optimal solution would just have selected every single planning unit in
the solution—and this may not be especially helpful anyway (see below for example). Another
common issue is that the planning unit cost values are too large. For example, if you express the
costs of the planning units in terms of USD then you might have some planning units that cost over
one billion dollars in large-scale planning exercises. This can be fixed by rescaling the values so
that they are smaller (e.g. multiplying the values by a number smaller than one, or expressing them
as a fraction of the maximum cost). Let’s consider another common issue, let’s pretend that you
used habitat suitability models to predict the amount of suitable habitat in each planning unit for
each feature. If you calculated the amount of suitable habitat in each planning unit in square meters
then this could lead to very large numbers. You could fix this by converting the units from square
meters to square kilometers or thousands of square kilometers. Alternatively, you could calculate
the percentage of each planning unit that is occupied by suitable habitat, which will yield values
between zero and one hundred.

But what can you do if you can’t fix these issues by simply changing the penalty values or rescaling
data? You will need to apply some creative thinking. Let’s run through a couple of scenarios. Let’s
pretend that you have a few planning units that cost a billion times more than any other planning
unit so you can’t fix this by rescaling the cost values. In this case, it’s extremely unlikely that these
planning units will be selected in the optimal solution so just set the costs to zero and lock them out.
If this procedure yields a problem with no feasible solution, because one (or several) of the plan-
ning units that you manually locked out contains critical habitat for a feature, then find out which
planning unit(s) is causing this infeasibility and set its cost to zero. After solving the problem, you
will need to manually recalculate the cost of the solutions but at least now you can be confident that
you have the optimal solution. Now let’s pretend that you are using the maximum features objective
(i.e. add_max_features_objective()) and assigned some really high weights to the targets for
some features to ensure that their targets were met in the optimal solution. If you set the weights for
these features to one billion then you will probably run into numerical instability issues. Instead,
you can calculate minimum weight needed to guarantee that these features will be represented in
the optimal solution and use this value instead of one billion. This minimum weight value can be
calculated as the sum of the weight values for the other features and adding a small number to it
(e.g. 1). Finally, if you’re running out of ideas for addressing numerical stability issues you have
one remaining option: you can use the numeric_focus argument in the add_gurobi_solver()
function to tell the solver to pay extra attention to numerical instability issues. This is not a free
lunch, however, because telling the solver to pay extra attention to numerical issues can substan-
tially increase run time. So, if you have problems that are already taking an unreasonable time to
solve, then this will not help at all.
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Value

logical value indicating if all checks are passed successfully.

See Also

problem(), solve(), http://www.gurobi.com/documentation/8.1/refman/numerics_gurobi_
guidelines.html, http://files.gurobi.com/Numerics.pdf.

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with no issues
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# run presolve checks
# note that no warning is thrown which suggests that we should not
# encounter any numerical stability issues when trying to solve the problem
print(presolve_check(p1))

# create a minimal problem, containing cost values that are really
# high so that they could cause numerical instability issues when trying
# to solve it
sim_pu_raster2 <- sim_pu_raster
sim_pu_raster2[1] <- 1e+15
p2 <- problem(sim_pu_raster2, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# run presolve checks
# note that a warning is thrown which suggests that we might encounter
# some issues, such as long solve time or suboptimal solutions, when
# trying to solve the problem
print(presolve_check(p2))

# create a minimal problem with connectivity penalties values that have
# a really high penalty value that is likely to cause numerical instability
# issues when trying to solve the it
cm <- adjacency_matrix(sim_pu_raster)
p3 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_connectivity_penalties(1e+15, data = cm) %>%
add_binary_decisions()

http://www.gurobi.com/documentation/8.1/refman/numerics_gurobi_guidelines.html
http://www.gurobi.com/documentation/8.1/refman/numerics_gurobi_guidelines.html
http://files.gurobi.com/Numerics.pdf
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# run presolve checks
# note that a warning is thrown which suggests that we might encounter
# some numerical instability issues when trying to solve the problem
print(presolve_check(p3))
## Not run:
# let's forcibly solve the problem using Gurobi and tell it to
# be extra careful about numerical instability problems
s3 <- p3 %>%

add_gurobi_solver(numeric_focus = TRUE) %>%
solve(force = TRUE)

# plot solution
# we can see that all planning units were selected because the connectivity
# penalty is so high that cost becomes irrelevant, so we should try using
# a much lower penalty value
plot(s3, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

print Print

Description

Display information about an object.

Usage

## S3 method for class 'ConservationProblem'
print(x, ...)

## S3 method for class 'ConservationModifier'
print(x, ...)

## S3 method for class 'Id'
print(x, ...)

## S4 method for signature 'Id'
print(x)

## S3 method for class 'OptimizationProblem'
print(x, ...)

## S3 method for class 'ScalarParameter'
print(x, ...)

## S3 method for class 'ArrayParameter'
print(x, ...)
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## S3 method for class 'Solver'
print(x, ...)

## S3 method for class 'Zones'
print(x, ...)

## S4 method for signature 'tbl_df'
print(x)

Arguments

x Any object.

... not used.

Value

None.

See Also

base::print().

Examples

a <- 1:4
print(a)

prioritizr prioritizr: Systematic Conservation Prioritization in R

Description

The prioritizr R package uses integer linear programming (ILP) techniques to provide a flexible
interface for building and solving conservation planning problems (Rodrigues et al. 2000; Billion-
net 2013). It supports a broad range of objectives, constraints, and penalties that can be used to
custom-tailor conservation planning problems to the specific needs of a conservation planning ex-
ercise. Once built, conservation planning problems can be solved using a variety of commercial
and open-source exact algorithm solvers. In contrast to the algorithms conventionally used to solve
conservation problems, such as heuristics or simulated annealing (Ball et al. 2009), the exact algo-
rithms used here are guaranteed to find optimal solutions. Furthermore, conservation problems can
be constructed to optimize the spatial allocation of different management actions or zones, meaning
that conservation practitioners can identify solutions that benefit multiple stakeholders. Finally, this
package has the functionality to read input data formatted for the Marxan conservation planning
program (Ball et al. 2009), and find much cheaper solutions in a much shorter period of time than
Marxan (Beyer et al. 2016). See the online code repository for more information.

https://github.com/prioritizr/prioritizr
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Details

This package contains several vignettes that are designed to showcase its functionality. To view
them, type of the command vignette("name",package = "prioritizr") where "name" is the
name of the desired vignette (e.g. "gurobi_installation".

prioritizr provides background information on systematic conservation planning and a compre-
hensive overview of the package and its usage.

gurobi_installation contains detailed instructions for installing and setting up the Gurobi software
suite for use with the package.

publication_record lists of scientific publications that have used the package for developing pri-
oritizations.

zones describes how problems can be constructed with multiple management actions or zones.

tasmania provides a tutorial using Tasmania, Australia as a case-study. This tutorial uses vector-
based planning unit data and is written for individuals familiar with the Marxan decision
support tool.

saltspring provides a tutorial using Salt Spring Island, Canada as a case-study. This tutorial uses
raster-based planning unit data.

References

Ball IR, Possingham HP, and Watts M (2009) Marxan and relatives: Software for spatial conser-
vation prioritisation in Spatial conservation prioritisation: Quantitative methods and computational
tools. Eds Moilanen A, Wilson KA, and Possingham HP. Oxford University Press, Oxford, UK.

Beyer HL, Dujardin Y, Watts ME, and Possingham HP (2016) Solving conservation planning prob-
lems with integer linear programming. Ecological Modelling, 228: 14–22.

Billionnet A (2013) Mathematical optimization ideas for biodiversity conservation. European Jour-
nal of Operational Research, 231: 514–534.

Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapt-
ing reserve selection algorithms to more complex conservation problems. Ecography, 23: 565–574.

problem Conservation planning problem

Description

Create a systematic conservation planning problem. This function is used to specify the basic data
used in a spatial prioritization problem: the spatial distribution of the planning units and their costs,
as well as the features (e.g. species, ecosystems) that need to be conserved. After constructing this
ConservationProblem-class object, it can be customized to meet specific goals using objectives,
targets, constraints, and penalties. After building the problem, the solve() function can be used to
identify solutions.
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Usage

problem(x, features, ...)

## S4 method for signature 'Raster,Raster'
problem(x, features, run_checks, ...)

## S4 method for signature 'Raster,ZonesRaster'
problem(x, features, run_checks, ...)

## S4 method for signature 'Spatial,Raster'
problem(x, features, cost_column, run_checks, ...)

## S4 method for signature 'Spatial,ZonesRaster'
problem(x, features, cost_column, run_checks, ...)

## S4 method for signature 'Spatial,character'
problem(x, features, cost_column, ...)

## S4 method for signature 'Spatial,ZonesCharacter'
problem(x, features, cost_column, ...)

## S4 method for signature 'data.frame,character'
problem(x, features, cost_column, ...)

## S4 method for signature 'data.frame,ZonesCharacter'
problem(x, features, cost_column, ...)

## S4 method for signature 'data.frame,data.frame'
problem(x, features, rij, cost_column, zones, ...)

## S4 method for signature 'numeric,data.frame'
problem(x, features, rij_matrix, ...)

## S4 method for signature 'matrix,data.frame'
problem(x, features, rij_matrix, ...)

## S4 method for signature 'sf,Raster'
problem(x, features, cost_column, run_checks, ...)

## S4 method for signature 'sf,ZonesRaster'
problem(x, features, cost_column, run_checks, ...)

## S4 method for signature 'sf,character'
problem(x, features, cost_column, ...)

## S4 method for signature 'sf,ZonesCharacter'
problem(x, features, cost_column, ...)
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Arguments

x Raster, sf::st_sf(), SpatialPolygonsDataFrame, SpatialLinesDataFrame,
SpatialPointsDataFrame, data.frame() object, numeric() vector, or matrix()
specifying the planning units to use in the reserve design exercise and their cor-
responding cost. It may be desirable to exclude some planning units from the
analysis, for example those outside the study area. To exclude planning units,
set the cost for those raster cells to NA, or use the add_locked_out_constraint
function.

features The feature data can be specified in a variety of ways. The specific formats that
can be used depend on the cost data format (i.e. argument to x) and whether
the problem should have a single zone or multiple zones. If the problem should
have a single zone, then the feature data can be specified following:

• x = RasterLayer-class, or x = Spatial-class, or x = sf::st_sf(): y
= Raster-class object showing the distribution of conservation features.
Missing values (i.e. NA values) can be used to indicate the absence of a
feature in a particular cell instead of explicitly setting these cells to zero.
Note that this argument type for features can only be used to specify data
for problems involving a single zone.

• x = Spatial-class, or x = sf::st_sf(), or x = data.frame: y = character
vector with column names that correspond to the abundance or occurrence
of different features in each planning unit. Note that this argument type can
only be used to create problems involving a single zone.

• x = Spatial-class, or x = sf::st_sf(), or x = data.frame, or x = numeric
vector, or x = matrix: y = data.frame object containing the names of the
features. Note that if this type of argument is supplied to features then the
argument rij or rij_matrix must also be supplied. This type of argument
should follow the conventions used by Marxan, wherein each row corre-
sponds to a different feature. It must also contain the following columns:
"id" integer unique identifier for each feature These identifiers are used

in the argument to rij.
"name" character name for each feature.
"prop" numeric relative target for each feature (optional).
"amount" numeric absolute target for each feature (optional).

If the problem should have multiple zones, then the feature data can be specified
following:

• x = RasterStack-class, or x = RasterBrick-class, or x = Spatial-class,
or x = sf::st_sf(): y = ZonesRaster: object showing the distribution of
conservation features in multiple zones. As above, missing values (i.e. NA
values) can be used to indicate the absence of a feature in a particular cell
instead of explicitly setting these cells to zero.

• x = Spatial-class, or x = sf::st_sf(), or or x = data.frame: y = ZonesCharacter
object with column names that correspond to the abundance or occurrence
of different features in each planning unit in different zones.

... not used.
run_checks logical flag indicating whether checks should be run to ensure the integrity of

the input data. These checks are run by default; however, for large data sets
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they may increase run time. If it is taking a prohibitively long time to create the
prioritization problem, it is suggested to try setting run_checks to FALSE.

cost_column character name or integer indicating the column(s) with the cost data. This
argument must be supplied when the argument to x is a Spatial or data.frame
object. This argument should contain the name of each column containing cost
data for each management zone when creating problems with multiple zones.
To create a problem with a single zone, then set the argument to cost_column
as a single column name.

rij data.frame containing information on the amount of each feature in each plan-
ning unit assuming each management zone. Similar to data.frame arguments
for features, the data.frame objects must follow the conventions used by
Marxan. Note that the "zone" column is not needed for problems involving a
single management zone. Specifically, the argument should contain the follow-
ing columns:

"pu" integer planning unit identifier.
"species" integer feature identifier.
"zone" integer zone identifier (optional for problems involving a single zone).
"amount" numeric amount of the feature in the planning unit.

zones data.frame containing information on the zones. This argument is only used
when argument to x and y are both data.frame objects and the problem be-
ing built contains multiple zones. Following conventions used in MarZone, this
argument should contain the following columns: columns:

"id" integer zone identifier.
"name" character zone name.

rij_matrix list of matrix or dgCMatrix objects specifying the amount of each feature
(rows) within each planning unit (columns) for each zone. The list elements
denote different zones, matrix rows denote features, and matrix columns denote
planning units. For convenience, the argument to rij_matrix can be a single
matrix or dgCMatrix when specifying a problem with a single management
zone. This argument is only used when the argument to x is a numeric or matrix
object.

Details

A reserve design exercise starts by dividing the study region into planning units (typically square
or hexagonal cells) and, for each planning unit, assigning values that quantify socioeconomic cost
and conservation benefit for a set of conservation features. The cost can be the acquisition cost of
the land, the cost of management, the opportunity cost of foregone commercial activities (e.g. from
logging or agriculture), or simply the area. The conservation features are typically species (e.g.
Clouded Leopard) or habitats (e.g. mangroves or cloud forest). The benefit that each feature derives
from a planning unit can take a variety of forms, but is typically either occupancy (i.e. presence or
absence) or area of occurrence within each planning unit. Finally, in some types of reserve design
models, representation targets must be set for each conservation feature, such as 20 % of the current
extent of cloud forest or 10,000 km^2 of Clouded Leopard habitat (see targets).

The goal of the reserve design exercise is then to optimize the trade-off between conservation benefit
and socioeconomic cost, i.e. to get the most benefit for your limited conservation funds. In general,
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the goal of an optimization problem is to minimize an objective function over a set of decision
variables, subject to a series of constraints. The decision variables are what we control, usually
there is one binary variable for each planning unit specifying whether or not to protect that unit
(but other approaches are available, see decisions). The constraints can be thought of as rules that
need to be followed, for example, that the reserve must stay within a certain budget or meet the
representation targets.

Integer linear programming (ILP) is the subset of optimization algorithms used in this package
to solve reserve design problems. The general form of an integer programming problem can be
expressed in matrix notation using the following equation.

MinimizecTxsubjecttoAx ≥= or ≤ b

Here, x is a vector of decision variables, c and b are vectors of known coefficients, and A is the con-
straint matrix. The final term specifies a series of structural constraints where relational operators
for the constraint can be either ≥, =, or ≤ the coefficients. For example, in the minimum set cover
problem, c would be a vector of costs for each planning unit, b a vector of targets for each conserva-
tion feature, the relational operator would be ≥ for all features, and A would be the representation
matrix with Aij = rij , the representation level of feature i in planning unit j.

Please note that this function internally computes the amount of each feature in each planning unit
when this data is not supplied (using the rij_matrix parameter). As a consequence, it can take
a while to initialize large-scale conservation planning problems that involve millions of planning
units.

Value

ConservationProblem object containing data for building a prioritization problem.

See Also

constraints, decisions, objectives penalties, portfolios, solvers, targets, feature_representation(),
irreplaceability.

Examples

# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_lines, sim_pu_points,

sim_pu_sf, sim_features)

# create problem using raster planning unit data
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

## Not run:
# create problem using polygon (Spatial) planning unit data
p2 <- problem(sim_pu_polygons, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()
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# create problem using line (Spatial) planning unit data
p3 <- problem(sim_pu_lines, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem using point (Spatial) planning unit data
p4 <- problem(sim_pu_points, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# create problem using polygon (sf) planning unit data
p5 <- problem(sim_pu_sf, sim_features, "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# add columns to polygon planning unit data representing the abundance
# of species inside them
sim_pu_polygons$spp_1 <- rpois(length(sim_pu_polygons), 5)
sim_pu_polygons$spp_2 <- rpois(length(sim_pu_polygons), 8)
sim_pu_polygons$spp_3 <- rpois(length(sim_pu_polygons), 2)

# create problem using pre-processed data when feature abundances are
# stored in the columns of an attribute table for a spatial vector data set
p6 <- problem(sim_pu_polygons, features = c("spp_1", "spp_2", "spp_3"),

"cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# alternatively one can supply pre-processed aspatial data
costs <- sim_pu_polygons$cost
features <- data.frame(id = seq_len(nlayers(sim_features)),

name = names(sim_features))
rij_mat <- rij_matrix(sim_pu_polygons, sim_features)
p7 <- problem(costs, features, rij_matrix = rij_mat) %>%

add_min_set_objective() %>%
add_relative_targets(0.2) %>%
add_binary_decisions()

# solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)
s5 <- solve(p5)
s6 <- solve(p6)
s7 <- solve(p7)

# plot solutions for problems associated with spatial data
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par(mfrow = c(3, 2), mar = c(0, 0, 4.1, 0))
plot(s1, main = "raster data", axes = FALSE, box = FALSE)

plot(s2, main = "polygon data")
plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE)

plot(s3, main = "line data")
lines(s3[s3$solution_1 == 1, ], col = "darkgreen", lwd = 2)

plot(s4, main = "point data", pch = 19)
points(s4[s4$solution_1 == 1, ], col = "darkgreen", cex = 2, pch = 19)

plot(s5, main = "sf (polygon) data", pch = 19)
points(s5[s5$solution_1 == 1, ], col = "darkgreen", cex = 2, pch = 19)

plot(s6, main = "preprocessed data", pch = 19)
plot(s6[s6$solution_1 == 1, ], col = "darkgreen", add = TRUE)

# show solutions for problems associated with aspatial data
str(s7)

## End(Not run)
# create some problems with multiple zones

# first, create a matrix containing the targets for multi-zone problems
# here each row corresponds to a different feature, each
# column corresponds to a different zone, and values correspond
# to the total (absolute) amount of a given feature that needs to be secured
# in a given zone
targets <- matrix(rpois(15, 1),

nrow = number_of_features(sim_features_zones),
ncol = number_of_zones(sim_features_zones),
dimnames = list(feature_names(sim_features_zones),

zone_names(sim_features_zones)))

# print targets
print(targets)

# create a multi-zone problem with raster data
p8 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions()

## Not run:
# solve problem
s8 <- solve(p8)

# plot solution
# here, each layer/panel corresponds to a different zone and pixel values
# indicate if a given planning unit has been allocated to a given zone
par(mfrow = c(1, 1))
plot(s8, main = c("zone 1", "zone 2", "zone 3"), axes = FALSE, box = FALSE)
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# alternatively, the category_layer function can be used to create
# a new raster object containing the zone ids for each planning unit
# in the solution (note this only works for problems with binary decisions)
par(mfrow = c(1, 1))
plot(category_layer(s8), axes = FALSE, box = FALSE)

# create a multi-zone problem with polygon data
p9 <- problem(sim_pu_zones_polygons, sim_features_zones,

cost_column = c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions()

# solve problem
s9 <- solve(p9)

# create column containing the zone id for which each planning unit was
# allocated to in the solution
s9$solution <- category_vector(s9@data[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s9$solution <- factor(s9$solution)

# plot solution
spplot(s9, zcol = "solution", main = "solution", axes = FALSE, box = FALSE)

# create a multi-zone problem with polygon planning unit data
# and where fields (columns) in the attribute table correspond
# to feature abundances

# first fields need to be added to the planning unit data
# which indicate the amount of each feature in each zone
# to do this, the fields will be populated with random counts
sim_pu_zones_polygons$spp1_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp2_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp3_z1 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp1_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp2_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)
sim_pu_zones_polygons$spp3_z2 <- rpois(nrow(sim_pu_zones_polygons), 1)

# create problem with polygon planning unit data and use field names
# to indicate feature data
# additionally, to make this example slightly more interesting,
# the problem will have prfoportion-type decisions such that
# a proportion of each planning unit can be allocated to each of the
# two management zones
p10 <- problem(sim_pu_zones_polygons,

zones(c("spp1_z1", "spp2_z1", "spp3_z1"),
c("spp1_z2", "spp2_z2", "spp3_z2"),
zone_names = c("z1", "z2")),

cost_column = c("cost_1", "cost_2")) %>%
add_min_set_objective() %>%
add_absolute_targets(targets[1:3, 1:2]) %>%
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add_proportion_decisions()

# solve problem
s10 <- solve(p10)

# plot solution
spplot(s10, zcol = c("solution_1_z1", "solution_1_z2"), main = "solution",

axes = FALSE, box = FALSE)

## End(Not run)

proximity_matrix Proximity matrix

Description

Create a matrix showing which planning units are within a certain spatial proximity to each other.

Usage

proximity_matrix(x, distance)

## S3 method for class 'Raster'
proximity_matrix(x, distance)

## S3 method for class 'SpatialPolygons'
proximity_matrix(x, distance)

## S3 method for class 'SpatialLines'
proximity_matrix(x, distance)

## S3 method for class 'SpatialPoints'
proximity_matrix(x, distance)

## S3 method for class 'sf'
proximity_matrix(x, distance)

## Default S3 method:
proximity_matrix(x, distance)

Arguments

x Raster, Spatial, or sf::sf() object representing planning units.
distance numeric distance threshold. Planning units that are further apart from each other

than this threshold are not treated as being within proximity of each other.

Details

Proximity calculations are performed using sf::st_is_within_distance().
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Value

dsCMatrix symmetric sparse matrix object. Each row and column represents a planning unit. Cells
values indicate if the pair-wise distances between different planning units are within the distance
threshold or not (using ones and zeros). To reduce computational burden, cells among the matrix
diagonal are set to zero. Furthermore, if the argument to x is a Raster object, then cells with NA
values are set to zero too.

Examples

# load data
data(sim_pu_raster, sim_pu_sf, sim_pu_lines, sim_pu_points)

# create proximity matrix using raster data
## crop raster to 9 cells to provide a small example
r <- crop(sim_pu_raster, c(0, 0.3, 0, 0.3))

## make proximity matrix using a distance threshold of 2
cm_raster <- proximity_matrix(r, distance = 2)

# create proximity matrix using polygon (sf) data
## subset 9 polygons to provide a small example
ply <- sim_pu_sf[c(1:2, 10:12, 20:22), ]

## make proximity matrix using a distance threshold of 2
cm_ply <- proximity_matrix(ply, distance = 2)

# create proximity matrix using line (Spatial) data
## subset 9 lines to provide a small example
lns <- sim_pu_lines[c(1:2, 10:12, 20:22), ]

## make proximity matrix
cm_lns <- proximity_matrix(lns, distance = 2)

## create proximity matrix using point (Spatial) data
## subset 9 points to provide a small example
pts <- sim_pu_points[c(1:2, 10:12, 20:22), ]

# make proximity matrix
cm_pts <- proximity_matrix(pts, distance = 2)

# plot data and the proximity matrices
## Not run:
par(mfrow = c(4,2))

## plot raster and proximity matrix
plot(r, main = "raster", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_raster)), main = "proximity matrix", axes = FALSE,

box = FALSE)

## plot polygons and proximity matrix
plot(r, main = "polygons (sf)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_ply)), main = "proximity matrix", axes = FALSE,
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box = FALSE)

## plot lines and proximity matrix
plot(r, main = "lines (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_lns)), main = "proximity matrix", axes = FALSE,

box = FALSE)

## plot points and proximity matrix
plot(r, main = "points (Spatial)", axes = FALSE, box = FALSE)
plot(raster(as.matrix(cm_pts)), main = "proximity matrix", axes = FALSE,

box = FALSE)

## End(Not run)

rarity_weighted_richness

Rarity weighted richness

Description

Calculate irreplaceability scores for planning units selected in a solution using rarity weighted rich-
ness (based on Williams et al. 1996). Please note that this method is only recommended for large-
scaled conservation planning exercises (i.e. more than 100,000 planning units) where irreplace-
ability scores cannot be calculated using the replacement cost method (replacement_cost()) in a
feasible period of time. This is because rarity weighted richness scores cannot (i) account for the
cost of different planning units, (ii) account for multiple management zones, and (iii) identify truly
irreplaceable planning units—unlike the replacement cost metric which does not suffer any of these
limitations.

Usage

rarity_weighted_richness(x, solution, ...)

## S4 method for signature 'ConservationProblem,numeric'
rarity_weighted_richness(x, solution, rescale, ...)

## S4 method for signature 'ConservationProblem,matrix'
rarity_weighted_richness(x, solution, rescale, ...)

## S4 method for signature 'ConservationProblem,data.frame'
rarity_weighted_richness(x, solution, rescale, ...)

## S4 method for signature 'ConservationProblem,Spatial'
rarity_weighted_richness(x, solution, rescale, ...)

## S4 method for signature 'ConservationProblem,sf'
rarity_weighted_richness(x, solution, rescale, ...)
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## S4 method for signature 'ConservationProblem,Raster'
rarity_weighted_richness(x, solution, rescale, ...)

Arguments

x problem() (i.e. ConservationProblem) object.

solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. See the
Details section for more information.

... not used.

rescale logical flag indicating if replacement cost values—excepting infinite (Inf) and
zero values—should be rescaled to range between 0.01 and 1. Defaults to TRUE.

Details

Rarity weighted richness scores are calculated using the following terms . Let I denote the set of
planning units (indexed by i), let J denote the set of conservation features (indexed by j), let rij
denote the amount of feature j associated with planning unit i, and let Mj denote the maximum
value of feature j in rij in all planning units i ∈ I . To calculate the rarity weighted richness (RWR)
for planning unit k:

RWRk =

J∑
j

rkj

Mj∑I
i rij

The argument to solution must correspond to the planning unit data in the argument to x in terms
of data representation, dimensionality, and spatial attributes (if applicable). This means that if the
planning unit data in x is a numeric vector then the argument to solution must be a numeric
vector with the same number of elements; if the planning unit data in x is a RasterLayer then the
argument to solution must also be a RasterLayer with the same number of rows and columns
and the same resolution, extent, and coordinate reference system; if the planning unit data in x is a
Spatial object then the argument to solution must also be a Spatial object and have the same
number of spatial features (e.g. polygons) and have the same coordinate reference system; if the
planning unit data in x is a sf::sf() object then the argument to solution must also be a sf::sf()
object and have the same number of spatial features (e.g. polygons) and have the same coordinate
reference system; if the planning units in x are a data.frame then the argument to solution must
also be a data.frame with each column correspond to a different zone and each row correspond to
a different planning unit, and values correspond to the allocations (e.g. values of zero or one).

Solutions must have planning unit statuses set to missing (NA) values for planning units that have
missing (NA) cost data. For problems with multiple zones, this means that planning units must have
missing (NA) allocation values in zones where they have missing (NA) cost data. In other words,
planning units that have missing (NA) cost values in x should always have a missing (NA) value the
argument to solution. If an argument is supplied to solution where this is not the case, then an
error will be thrown.

Value

A numeric, matrix, RasterLayer, Spatial, or sf::sf() object containing the rarity weighted
richness scores for each planning unit in the solution.
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References

Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, and Pressey RL (1996) A comparison
of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British
birds. Conservation Biology, 10: 155–174.

See Also

irreplaceability.

Examples

# seed seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features)

# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

## Not run:
# solve problem
s1 <- solve(p1)

# print solution
print(s1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# calculate irreplaceability scores
rwr1 <- rarity_weighted_richness(p1, s1)

# print irreplaceability scores
print(rwr1)

# plot irreplaceability scores
plot(rwr1, main = "rarity weighted richness", axes = FALSE, box = FALSE)

## End(Not run)

replacement_cost Replacement cost
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Description

Calculate irreplaceability scores for planning units selected in a solution based on the replacement
cost method (Cabeza and Moilanen 2006).

Usage

replacement_cost(x, solution, ...)

## S4 method for signature 'ConservationProblem,numeric'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

## S4 method for signature 'ConservationProblem,matrix'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

## S4 method for signature 'ConservationProblem,data.frame'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

## S4 method for signature 'ConservationProblem,Spatial'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

## S4 method for signature 'ConservationProblem,sf'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

## S4 method for signature 'ConservationProblem,Raster'
replacement_cost(x, solution, rescale, run_checks, force, threads, ...)

Arguments

x problem() (i.e. ConservationProblem) object.

solution numeric, matrix, data.frame, Raster, Spatial, or sf::sf() object. See the
Details section for more information.

... not used.

rescale logical flag indicating if replacement cost values—excepting infinite (Inf) and
zero values—should be rescaled to range between 0.01 and 1. Defaults to TRUE.

run_checks logical flag indicating whether presolve checks should be run prior solving the
problem. These checks are performed using the presolve_check() function.
Defaults to TRUE. Skipping these checks may reduce run time for large problems.

force logical flag indicating if an attempt to should be made to solve the problem
even if potential issues were detected during the presolve checks. Defaults to
FALSE.

threads integer number of threads to use for the optimization algorithm. The default
value of 1 will result in only one thread being used.

Details

Using this method, the score for each planning unit is calculated as the difference in the objective
value of a solution when each planning unit is locked out and the optimization processes rerun with
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all other selected planning units locked in. In other words, the replacement cost metric corresponds
to change in solution quality incurred if a given planning unit cannot be acquired when implement-
ing the solution and the next best planning unit (or set of planning units) will need to be considered
instead. Thus planning units with a higher score are more irreplaceable. For example, when using
the minimum set objective function (add_min_set_objective()), the replacement cost scores cor-
respond to the additional costs needed to meet targets when each planning unit is locked out. When
using the maximum utility objective function (add_max_utility_objective(), the replacement
cost scores correspond to the reduction in the utility when each planning unit is locked out. Infinite
values mean that no feasible solution exists when planning units are locked out—they are abso-
lutely essential for obtaining a solution (e.g. they contain rare species that are not found in any
other planning units or were locked in). Zeros values mean that planning units can swapped with
other planning units and this will have no effect on the performance of the solution at all (e.g. be-
cause they were only selected due to spatial fragmentation penalties). Since these calculations can
take a long time to complete, we recommend calculating these scores without additional penalties
(e.g. add_boundary_penalties()) or constraints (e.g. link{add_contiguity_constraints}).
They can be sped up further by using proportion-type decisions when calculating the scores (see
below for an example).

The argument to solution must correspond to the planning unit data in the argument to x in terms
of data representation, dimensionality, and spatial attributes (if applicable). This means that if the
planning unit data in x is a numeric vector then the argument to solution must be a numeric
vector with the same number of elements; if the planning unit data in x is a RasterLayer then the
argument to solution must also be a RasterLayer with the same number of rows and columns
and the same resolution, extent, and coordinate reference system; if the planning unit data in x is a
Spatial object then the argument to solution must also be a Spatial object and have the same
number of spatial features (e.g. polygons) and have the same coordinate reference system; if the
planning unit data in x is a sf::sf() object then the argument to solution must also be a sf::sf()
object and have the same number of spatial features (e.g. polygons) and have the same coordinate
reference system; if the planning units in x are a data.frame then the argument to solution must
also be a data.frame with each column correspond to a different zone and each row correspond to
a different planning unit, and values correspond to the allocations (e.g. values of zero or one).

Solutions must have planning unit statuses set to missing (NA) values for planning units that have
missing (NA) cost data. For problems with multiple zones, this means that planning units must have
missing (NA) allocation values in zones where they have missing (NA) cost data. In other words,
planning units that have missing (NA) cost values in x should always have a missing (NA) value the
argument to solution. If an argument is supplied to solution where this is not the case, then an
error will be thrown.

Value

A numeric, matrix, RasterLayer, Spatial, or sf::sf() object containing the replacement costs
for each planning unit in the solution.

References

Cabeza M and Moilanen A (2006) Replacement cost: A practical measure of site value for cost-
effective reserve planning. Biological Conservation, 132: 336–342.
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See Also

irreplaceability.

Examples

# seed seed for reproducibility
set.seed(600)

# load data
data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones)

# create minimal problem with binary decisions
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

## Not run:
# solve problem
s1 <- solve(p1)

# print solution
print(s1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

# calculate irreplaceability scores
rc1 <- replacement_cost(p1, s1)

# print irreplaceability scores
print(rc1)

# plot irreplaceability scores
plot(rc1, main = "replacement cost", axes = FALSE, box = FALSE)

## End(Not run)

# since replacement cost scores can take a long time to calculate with
# binary decisions, we can calculate them using proportion-type
# decision variables. Note we are still calculating the scores for our
# previous solution (s1), we are just using a different optimization
# problem when calculating the scores.
p2 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_proportion_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

# calculate irreplaceability scores using proportion type decisions
## Not run:
rc2 <- replacement_cost(p2, s1)
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# print irreplaceability scores based on proportion type decisions
print(rc2)

# plot irreplacability scores based on proportion type decisions
# we can see that the irreplaceability values in rc1 and rc2 are similar,
# and this confirms that the proportion type decisions are a good
# approximation
plot(rc2, main = "replacement cost", axes = FALSE, box = FALSE)

## End(Not run)

# build multi-zone conservation problem with binary decisions
p3 <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)

## Not run:
# solve the problem
s3 <- solve(p3)

# print solution
print(s3)

# plot solution
# each panel corresponds to a different zone, and data show the
# status of each planning unit in a given zone
plot(s3, main = paste0("zone ", seq_len(nlayers(s3))), axes = FALSE,

box = FALSE)

# calculate irreplaceability scores
rc3 <- replacement_cost(p3, s3)

# plot irreplaceability
# each panel corresponds to a different zone, and data show the
# irreplaceability of each planning unit in a given zone
plot(rc3, main = paste0("zone ", seq_len(nlayers(s3))), axes = FALSE,

box = FALSE)

## End(Not run)

rij_matrix Feature by planning unit matrix

Description

Generate a matrix showing the amount of each feature in each planning unit (also known as an rij
matrix).
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Usage

rij_matrix(x, y, ...)

## S4 method for signature 'Raster,Raster'
rij_matrix(x, y, ...)

## S4 method for signature 'Spatial,Raster'
rij_matrix(x, y, fun, ...)

## S4 method for signature 'sf,Raster'
rij_matrix(x, y, fun, ...)

Arguments

x Raster, Spatial, or sf::sf() object representing the planning units.

y Raster object representing the features.

... not used.

fun character for summarizing values inside each planning unit. This parameter is
only used when the argument to x is a Spatial or sf::sf() object. Defaults to
"sum".

Details

Generally, processing vector (i.e. Spatial or sf::sf()) data takes much longer to process then
Raster data, so it is recommended to use Raster data for planning units where possible.

Value

dgCMatrix sparse matrix object. The sparse matrix represents the spatial intersection between the
planning units and the features. Rows correspond to planning units, and columns correspond to
features. Values correspond to the amount of the feature in the planning unit. For example, the
amount of the third species in the second planning unit would be stored in the third column and
second row.

Examples

# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_sf, sim_pu_zones_stack)

# create rij matrix using raster layer planning units
rij_raster <- rij_matrix(sim_pu_raster, sim_features)
print(rij_raster)

# create rij matrix using polygon (Spatial) planning units
rij_polygons <- rij_matrix(sim_pu_polygons, sim_features)
print(rij_polygons)

# create rij matrix using polygon (sf) planning units
rij_sf <- rij_matrix(sim_pu_sf, sim_features)
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print(rij_sf)

# create rij matrix using raster stack planning units
rij_zones_raster <- rij_matrix(sim_pu_zones_stack, sim_features)
print(rij_zones_raster)

run_calculations Run calculations

Description

Execute preliminary calculations in a conservation problem and store the results for later use. This
function is useful when creating slightly different versions of the same conservation planning prob-
lem that involve the same pre-processing steps (e.g. calculating boundary data), because means that
the same calculations will not be run multiple times.

Usage

run_calculations(x)

Arguments

x problem() (i.e. ConservationProblem) object.

Details

This function is used for the effect of modifying the input ConservationProblem object. As such,
it does not return anything. To use this function with pipe() operators, use the %T>% operator and
not the %>% operator.

Value

Invisible TRUE indicating success.

Examples

## Not run:
# Let us imagine a scenario where we wanted to understand the effect of
# setting different targets on our solution.

# create a conservation problem with no targets
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_boundary_penalties(10, 0.5)

# create a copies of p and add targets
p1 <- p %>% add_relative_targets(0.1)
p2 <- p %>% add_relative_targets(0.2)
p3 <- p %>% add_relative_targets(0.3)
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# now solve each of the different problems and record the time spent
# solving them
s1 <- system.time({solve(p1); solve(p2); solve(p3)})

# This approach is inefficient. Since these problems all share the same
# planning units it is actually performing the same calculations three times.
# To avoid this, we can use the "run_calculations" function before creating
# the copies. Normally, R runs the calculations just before solving the
# problem

# recreate a conservation problem with no targets and tell R run the
# preliminary calculations. Note how we use the %T>% operator here.
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_boundary_penalties(10, 0.5) %T>%
run_calculations()

# create a copies of p and add targets just like before
p1 <- p %>% add_relative_targets(0.1)
p2 <- p %>% add_relative_targets(0.2)
p3 <- p %>% add_relative_targets(0.3)

# solve each of the different problems and record the time spent
# solving them
s2 <- system.time({solve(p1); solve(p2); solve(p3)})

# now lets compare the times
print(s1) # time spent without running preliminary calculations
print(s2) # time spent after running preliminary calculations

# As we can see, we can save a lot of time by running the preliminary
# calculations before making copies of the problem with slightly
# different constraints.

## End(Not run)

ScalarParameter-class Scalar parameter prototype

Description

This prototype is used to represent a parameter has a single value. Only experts should interact
directly with this prototype.

Fields

$id character identifier for parameter.

$name character name of parameter.



ScalarParameter-class 203

$value numeric scalar value.

$default numeric scalar default value.

$class character name of the class that $value should inherit from (e.g. integer).

$lower_limit numeric scalar value that is the minimum value that $value is permitted to be.

$upper_limit numeric scalar value that is the maximum value that $value is permitted to be.

$widget function used to construct a shiny::shiny() interface for modifying values.

Usage

x$print()

x$show()

x$validate(x)

x$get()

x$set(x)

x$reset()

x$render(...)

Arguments

x object used to set a new parameter value.

... arguments passed to $widget.

Details

print print the object.

show show the object.

validate check if a proposed new set of parameters are valid.

get extract the parameter value.

set update the parameter value.

reset update the parameter value to be the default value.

render create a shiny::shiny() widget to modify parameter values.

See Also

Parameter, ArrayParameter.
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scalar_parameters Scalar parameters

Description

These functions are used to create parameters that consist of a single number. Parameters have a
name, a value, a defined range of acceptable values, a default value, a class, and a shiny::shiny()
widget for modifying them. If values are supplied to a parameter that are unacceptable then an error
is thrown.

Usage

proportion_parameter(name, value)

binary_parameter(name, value)

integer_parameter(
name,
value,
lower_limit = as.integer(-.Machine$integer.max),
upper_limit = as.integer(.Machine$integer.max)

)

numeric_parameter(
name,
value,
lower_limit = .Machine$double.xmin,
upper_limit = .Machine$double.xmax

)

Arguments

name character name of parameter.
value integer or double value depending on the parameter.
lower_limit integer or double value representing the smallest acceptable value for value.

Defaults to the smallest possible number on the system.
upper_limit integer or double value representing the largest acceptable value for value.

Defaults to the largest possible number on the system.

Details

Below is a list of parameter generating functions and a brief description of each.

proportion_parameter A parameter that is a double and bounded between zero and one.
integer_parameter A parameter that is a integer.
numeric_parameter A parameter that is a double.
binary_parameter A parameter that is restricted to integer values of zero or one.
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Value

ScalarParameter object.

Examples

# proportion parameter
p1 <- proportion_parameter('prop', 0.5) # create new object
print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(5) # check if 5 is a validate input
p1$validate(0.1) # check if 0.1 is a validate input
p1$set(0.1) # change value to 0.1
print(p1)

# binary parameter
p2 <- binary_parameter('bin', 0) # create new object
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(5) # check if 5 is a validate input
p2$validate(1L) # check if 1L is a validate input
p2$set(1L) # change value to 1L
print(p1) # print it again

# integer parameter
p3 <- integer_parameter('int', 5L) # create new object
print(p3) # print it
p3$get() # get value
p3$id # get id
p3$validate(5.6) # check if 5.6 is a validate input
p3$validate(2L) # check if 2L is a validate input
p3$set(2L) # change value to 2L
print(p3) # print it again

# numeric parameter
p4 <- numeric_parameter('dbl', -7.6) # create new object
print(p4) # print it
p4$get() # get value
p4$id # get id
p4$validate(NA) # check if NA is a validate input
p4$validate(8.9) # check if 8.9 is a validate input
p4$set(8.9) # change value to 8.9
print(p4) # print it again

# numeric parameter with lower bounds
p5 <- numeric_parameter('bdbl', 6, lower_limit=0) # create new object
print(p5) # print it
p5$get() # get value
p5$id # get id
p5$validate(-10) # check if -10 is a validate input
p5$validate(90) # check if 90 is a validate input
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p5$set(90) # change value to 8.9
print(p5) # print it again

show Show

Description

Display information about an object.

Usage

## S4 method for signature 'ConservationModifier'
show(x)

## S4 method for signature 'ConservationProblem'
show(x)

## S4 method for signature 'Id'
show(x)

## S4 method for signature 'OptimizationProblem'
show(x)

## S4 method for signature 'Parameter'
show(x)

## S4 method for signature 'Solver'
show(x)

Arguments

x Any object.

Value

None.

See Also

methods::show().
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simulate_cost Simulate cost data

Description

This function generates cost layers using random field models. By default, it returns spatially auto-
correlated integer values.

Usage

simulate_cost(
x,
n = 1,
model = RandomFields::RPpoisson(RandomFields::RMtruncsupport(radius = raster::xres(x)

* 10, RandomFields::RMgauss())),
transform = identity,
...

)

Arguments

x RasterLayer object to use as a template.

n integer number of species to simulate.

model RandomFields::RP() model object to use for simulating data.

transform function to transform values output from the random fields simulation.

... additional arguments passed to RandomFields::RFsimulate().

Value

RasterStack object.

See Also

simulate_data().

Examples

## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1

# simulate data
cost <- simulate_cost(r)

# plot simulated species
plot(cost, main = "simulated cost data")
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## End(Not run)

simulate_data Simulate data

Description

Simulate spatially auto-correlated data.

Usage

simulate_data(x, n, model, transform = identity, ...)

Arguments

x RasterLayer object to use as a template.

n integer number of species to simulate.

model RandomFields::RP() model object to use for simulating data.

transform function to transform values output from the random fields simulation.

... additional arguments passed to RandomFields::RFsimulate().

Value

RasterStack object with a layer for each species.

See Also

RandomFields::RFsimulate(), simulate_cost(), simulate_species().

Examples

## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1

# simulate data using a Gaussian field
d <- simulate_data(r, n = 1, model = RandomFields::RMgauss())

# plot simulated data
plot(d, main = "random Gaussian field")

## End(Not run)
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simulate_species Simulate species habitat suitability data

Description

Generates a random set of species using random field models. By default, the output will contain
values between zero and one.

Usage

simulate_species(
x,
n = 1,
model = RandomFields::RMgauss(),
transform = stats::plogis,
...

)

Arguments

x RasterLayer object to use as a template.

n integer number of species to simulate.

model RandomFields::RP() model object to use for simulating data.

transform function to transform values output from the random fields simulation.

... additional arguments passed to RandomFields::RFsimulate().

Value

RasterStack object.

See Also

simulate_data().

Examples

## Not run:
# create raster
r <- raster(ncol=10, nrow=10, xmn=0, xmx=1, ymn=0, ymx=1)
values(r) <- 1

# simulate 4 species
spp <- simulate_species(r, 4)

# plot simulated species
plot(spp, main = "simulated species distributions")
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## End(Not run)

sim_data Simulated conservation planning data

Description

Simulated data for making spatial prioritizations.

Usage

data(sim_pu_polygons)

data(sim_pu_zones_polygons)

data(sim_pu_points)

data(sim_pu_lines)

data(sim_pu_sf)

data(sim_pu_zones_sf)

data(sim_pu_raster)

data(sim_locked_in_raster)

data(sim_locked_out_raster)

data(sim_pu_zones_stack)

data(sim_features)

data(sim_features_zones)

data(sim_phylogeny)

Format

sim_pu_polygons SpatialPolygonsDataFrame object.

sim_pu_zones_polygons SpatialPolygonsDataFrame object.

sim_pu_sf sf::sf() object.

sim_pu_zones_sf sf::sf() object.

sim_pu_lines SpatialLinesDataFrame object.

sim_pu_points SpatialPointsDataFrame object.
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sim_pu_raster RasterLayer object.

sim_pu_zones_stack RasterStack object.

sim_locked_in_raster RasterLayer object.

sim_locked_out_raster RasterLayer object.

sim_features RasterStack object.

sim_features_zones ZonesRaster() object.

sim_phylogeny ape::phylo() object.

Details

sim_pu_raster Planning units are represented as raster data. Pixel values indicate planning unit
cost and NA values indicate that a pixel is not a planning unit.

sim_pu_zones_stack Planning units are represented as raster stack data. Each layer indicates the
cost for a different management zone. Pixels with NA values in a given zone indicate that a
planning unit cannot be allocated to that zone in a solution. Additionally, pixels with NA values
in all layers are not a planning unit.

sim_locked_in_raster Planning units are represented as raster data. Pixel values are binary and
indicate if planning units should be locked in to the solution.

sim_locked_out_raster Planning units are represented as raster data. Pixel values are binary and
indicate if planning units should be locked out from the solution.

sim_pu_polygons Planning units represented as polygon data. The attribute table contains fields
(columns) indicating the expenditure required for prioritizing each planning unit ("cost" field),
if the planning units should be selected in the solution ("locked_in" field), and if the planning
units should never be selected in the solution ("locked_out" field).

sim_pu_points Planning units represented as point data. The attribute table follows the same
conventions as for sim_pu_polygons.

sim_pu_lines Planning units represented as line data. The attribute table follows the same con-
ventions as for sim_pu_polygons.

sim_pu_sf Planning units represented as polygon data using the sf::sf() package. The attribute
table follows the same conventions as for sim_pu_polygons.

sim_pu_zones_polygons Planning units represented as polygon data. The attribute table contains
fields (columns) indicating the expenditure required for prioritizing each planning unit under
different management zones ("cost_1", "cost_2", and "cost_3" fields), and a series of fields
indicating the value that each planning unit that should be assigned in the solution ("locked_1",
"locked_2", "locked_3" fields). In these locked fields, planning units that should not be locked
to a specific value are assigned a NA value.

sim_pu_zones_sf Planning units represented as polygon data using the sf::sf() package. The
attribute tables follows the same conventions as for sim_pu_zone_polygons.

sim_features The simulated distribution of ten species. Pixel values indicate habitat suitability.

sim_features_zones The simulated distribution for five species under three different manage-
ment zones.

sim_phylogeny The phylogenetic tree for the ten species.
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Examples

# load data
data(sim_pu_polygons, sim_pu_lines, sim_pu_points, sim_pu_raster,

sim_locked_in_raster, sim_locked_out_raster, sim_phylogeny,
sim_features, sim_pu_sf)

# plot example Spatial-class planning unit data
## Not run:
par(mfrow = c(2, 3))
plot(sim_pu_raster, main = "planning units (raster)")
plot(sim_locked_in_raster, main = "locked in units (raster)")
plot(sim_locked_out_raster, main = "locked out units (raster)")
plot(sim_pu_polygons, main = "planning units (polygons)")
plot(sim_pu_lines, main = "planning units (lines)")
plot(sim_pu_points, main = "planning units (points)")

# plot example sf-class planning unit data
plot(sim_pu_sf)

# plot example phylogeny data
par(mfrow = c(1, 1))
ape::plot.phylo(sim_phylogeny, main = "simulated phylogeny")

# plot example feature data
par(mfrow = c(1, 1))
plot(sim_features)

# plot example management zone cost data
par(mfrow = c(1, 1))
plot(sim_pu_zones_stack)

# plot example feature data for each management zone
plot(do.call(stack, sim_features_zones),

main = paste0("Species ",
rep(seq_len(number_of_zones(sim_features_zones)),

number_of_features(sim_features_zones)),
" (zone ",
rep(seq_len(number_of_features(sim_features_zones)),

each = number_of_zones(sim_features_zones)),
")"))

## End(Not run)

solve Solve

Description

Solve a conservation planning problem().
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Usage

## S4 method for signature 'OptimizationProblem,Solver'
solve(a, b, ...)

## S4 method for signature 'ConservationProblem,missing'
solve(a, b, ..., run_checks = TRUE, force = FALSE)

Arguments

a problem() (i.e. ConservationProblem) or OptimizationProblem object.

b Solver object. Not used if a is an ConservationProblem object.

... arguments passed to compile().

run_checks logical flag indicating whether presolve checks should be run prior solving the
problem. These checks are performed using the presolve_check() function.
Defaults to TRUE. Skipping these checks may reduce run time for large problems.

force logical flag indicating if an attempt to should be made to solve the problem
even if potential issues were detected during the presolve checks. Defaults to
FALSE.

Details

After formulating a conservation planning problem(), it can be solved using an exact algorithm
solver (see solvers for available solvers). If no solver has been explicitly specified, then the best
available exact algorithm solver will be used by default (see add_default_solver(). Although
these exact algorithm solvers will often display a lot of information that isn’t really that helpful
(e.g. nodes, cutting planes), they do display information about the progress they are making on
solving the problem (e.g. the performance of the best solution found at a given point in time). If po-
tential issues were detected during the presolve checks (see presolve_check()) and the problem is
being forcibly solved (i.e. with force = TRUE), then it is also worth checking for any warnings dis-
played by the solver to see if these potential issues are actually causing issues (e.g. Gurobi can dis-
play warnings that include "Warning: Model contains large matrix coefficient range" and
"Warning: Model contains large rhs").

The object returned from this function depends on the argument to a. If the argument to a is
an OptimizationProblem object, then the solution is returned as a logical vector showing
the status of each planning unit in each zone. However, in most cases, the argument to a is an
ConservationProblem object, and so the type of object returned depends on the number of solu-
tions generated and the type data used to represent the planning units:

numeric vector containing the solution. Here, Each element corresponds to a different planning
unit. If multiple solutions are generated, then the solution is returned as a list of numeric
vectors.

matrix containing numeric values for the solution. Here, rows correspond to different planning
units, and fields (columns) correspond to different management zones. If multiple solutions
are generated, then the solution is returned as a list of matrix objects.

Raster object containing the solution in pixel values. If the argument to x contains a single man-
agement zone, then a RasterLayer object will be returned. Otherwise, if the argument to
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x contains multiple zones, then a RasterStack object will be returned containing a differ-
ent layer for each management zone. If multiple solutions are generated, then the solution is
returned as a list of Raster objects.

Spatial, sf::sf(), or data.frame containing the solution in fields (columns). Here, each row
corresponds to a different planning unit. If the argument to x contains a single zone, the fields
containing solutions are named "solution_XXX" where "XXX" corresponds to the solution
number. If the argument to x contains multiple zones, the fields containing solutions are
named "solution_XXX_YYY" where "XXX" corresponds to the solution and "YYY" is the name
of the management zone.

After solving problems that contain multiple zones, it may be useful to use the category_layer()
or category_vector() function to reformat the output.

Value

A numeric, matrix, RasterLayer, Spatial, or sf::sf() object containing the solution to the
problem. Additionally, the returned object will have the following additional attributes: "objective"
containing the solution’s objective, "runtime" denoting the number of seconds that elapsed while
solving the problem, and "status" describing the status of the solution (e.g. "OPTIMAL" indicates
that the optimal solution was found). In most cases, the first solution (e.g. "solution_001") will
contain the best solution found by the solver (note that this may not be an optimal solution depend-
ing on the gap used to solve the problem and noting that the default gap is 0.1).

See Also

feature_representation(), problem(), solvers, category_layer(), presolve_check().

Examples

# set seed for reproducibility
set.seed(500)

# load data
data(sim_pu_raster, sim_pu_polygons, sim_pu_sf, sim_features,

sim_pu_zones_stack, sim_pu_zones_sf, sim_features_zones)

# build minimal conservation problem with raster data
p1 <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve the problem
s1 <- solve(p1)

# print solution
print(s1)

# print attributes describing the optimization process and the solution
print(attr(s1, "objective"))
print(attr(s1, "runtime"))
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print(attr(s1, "status"))

# calculate feature representation in the solution
r1 <- feature_representation(p1, s1)
print(r1)

# plot solution
plot(s1, main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# build minimal conservation problem with polygon (Spatial) data
p2 <- problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve the problem
s2 <- solve(p2)

# print first six rows of the attribute table
print(head(s2))

# calculate feature representation in the solution
r2 <- feature_representation(p2, s2[, "solution_1"])
print(r2)

# plot solution
spplot(s2, zcol = "solution_1", main = "solution", axes = FALSE, box = FALSE)

## End(Not run)

# build minimal conservation problem with polygon (sf) data
p3 <- problem(sim_pu_sf, sim_features, cost_column = "cost") %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

## Not run:
# solve the problem
s3 <- solve(p3)

# print first six rows of the attribute table
print(head(s3))

# calculate feature representation in the solution
r3 <- feature_representation(p3, s3[, "solution_1"])
print(r3)

# plot solution
plot(s3[, "solution_1"])

## End(Not run)

# build multi-zone conservation problem with raster data
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p4 <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

## Not run:
# solve the problem
s4 <- solve(p4)

# print solution
print(s4)

# calculate feature representation in the solution
r4 <- feature_representation(p4, s4)
print(r4)

# plot solution
plot(category_layer(s4), main = "solution", axes = FALSE, box = FALSE)

## End(Not run)
# build multi-zone conservation problem with polygon (sf) data
p5 <- problem(sim_pu_zones_sf, sim_features_zones,

cost_column = c("cost_1", "cost_2", "cost_3")) %>%
add_min_set_objective() %>%
add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5,

ncol = 3)) %>%
add_binary_decisions()

## Not run:
# solve the problem
s5 <- solve(p5)

# print first six rows of the attribute table
print(head(s5))

# calculate feature representation in the solution
r5 <- feature_representation(p5, s5[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

print(r5)

# create new column representing the zone id that each planning unit
# was allocated to in the solution
s5$solution <- category_vector(s5[, c("solution_1_zone_1",

"solution_1_zone_2",
"solution_1_zone_3")])

s5$solution <- factor(s5$solution)

# plot solution
plot(s5[, "solution"])

## End(Not run)
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Solver-class Solver prototype

Description

This prototype is used to generate objects that represent methods for solving optimization problems.
This class represents a recipe to create solver and and is only recommended for use by expert
users. To customize the method used to solve optimization problems, please see the help page
on solvers.

Fields

$name character name of solver.

$data list object optimization problem data.

$parameters Parameters object with parameters used to customize the the solver.

$solve function used to solve a OptimizationProblem object.

Usage

x$print()

x$show()

x$repr()

x$get_data(name)

x$set_data(name,value)

x$set_variable_ub(index,value)

x$set_variable_lb(index,value)

x$calculate(op)

x$run()

x$solve(op)

Arguments

x Solver object.

op OptimizationProblem object.

Details

print print the object.

show show the object.

repr character representation of object.

get_data return an object stored in the data field with the corresponding name. If the object is not
present in the data field, a waiver object is returned.
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set_data store an object stored in the data field with the corresponding name. If an object with
that name already exists then the object is overwritten.

set_variable_ub set the upper bounds on decision variables in a pre-calculated optimization prob-
lem stored in the solver.

set_variable_lb set the lower bounds on decision variables in a pre-calculated optimization prob-
lem stored in the solver.

calculate ingest a general purpose OptimizationProblem object and convert it to the correct for-
mat for the solver.

run run the solver and output a solution

solve solve an OptimizationProblem using this object.

solvers Problem solvers

Description

Specify the software and configuration used to solve a conservation planning problem(). By de-
fault, the best available software currently installed on the system will be used.

Details

The following solvers can be used to find solutions for a conservation planning problem():

add_default_solver This solver uses the best software currently installed on the system.

add_gurobi_solver() Gurobi is a state-of-the-art commercial optimization software with an R
package interface. It is by far the fastest of the solvers available in this package, however, it is
also the only solver that is not freely available. That said, licenses are available to academics
at no cost. The gurobi package is distributed with the Gurobi software suite. This solver uses
the gurobi package to solve problems.

add_rsymphony_solver() SYMPHONY is an open-source integer programming solver that is part
of the Computational Infrastructure for Operations Research (COIN-OR) project, an initiative
to promote development of open-source tools for operations research (a field that includes
linear programming). The Rsymphony package provides an interface to COIN-OR and is
available on CRAN. This solver uses the Rsymphony package to solve problems.

add_lpsymphony_solver() The lpsymphony package provides a different interface to the COIN-
OR software suite. Unlike the Rsymhpony package, the lpsymphony package is distributed
through Bioconductor. The lpsymphony package may be easier to install on Windows or Max
OSX systems than the Rsymphony package.

See Also

constraints, decisions, objectives, penalties, portfolios, problem(), targets.

http://gurobi.com
https://projects.coin-or.org/SYMPHONY
https://doi.org/doi:10.18129/B9.bioc.lpsymphony
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Examples

## Not run:
# load data
data(sim_pu_raster, sim_features)

# create basic problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()

# create vector to store plot titles
titles <- c()

# create empty stack to store solutions
s <- stack()

# create problem with added rsymphony solver and limit the time spent
# searching for the optimal solution to 2 seconds
if (require("Rsymphony")) {

titles <- c(titles, "Rsymphony (2s)")
p1 <- p %>% add_rsymphony_solver(time_limit = 2)
s <- addLayer(s, solve(p1))

}

# create problem with added rsymphony solver and limit the time spent
# searching for the optimal solution to 5 seconds
if (require("Rsymphony")) {

titles <- c(titles, "Rsymphony (5s)")
p2 <- p %>% add_rsymphony_solver(time_limit = 5)
s <- addLayer(s, solve(p2))

}

# if the gurobi is installed: create problem with added gurobi solver
if (require("gurobi")) {

titles <- c(titles, "gurobi (5s)")
p3 <- p %>% add_gurobi_solver(gap = 0.1, presolve = 2, time_limit = 5)
s <- addLayer(s, solve(p3))

}

# if the lpsymphony is installed: create problem with added lpsymphony solver
# note that this solver is skipped on Linux systems due to instability
# issues
if (require("lpsymphony") &

isTRUE(Sys.info()[["sysname"]] != "Linux")) {
titles <- c(titles, "lpsymphony")
p4 <- p %>% add_lpsymphony_solver(gap = 0.1, time_limit = 10)
s <- addLayer(s, solve(p4))

}

# plot solutions
plot(s, main = titles, axes = FALSE, box = FALSE)
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## End(Not run)

Target-class Target prototype

Description

This prototype is used to represent the targets used when making a prioritization. This prototype
inherits from the ConservationModifier. This class represents a recipe, to actually add targets
to a planning problem, see the help page on targets. Only experts should use this class directly.

See Also

ConservationModifier.

targets Targets

Description

Targets are used to specify the minimum amount or proportion of a feature’s distribution that needs
to be protected in the solution.

Details

Please note that most objectives require targets, and attempting to solve a problem that re-
quires targets will throw an error.

The following functions can be used to specify targets for a conservation planning problem():

add_relative_targets() Set targets as a proportion (between 0 and 1) of the total amount of
each feature in the the study area.

add_absolute_targets() Set targets that denote the minimum amount of each feature required
in the prioritization.

add_loglinear_targets() Set targets as a proportion (between 0 and 1) that are calculated using
log-linear interpolation.

add_manual_targets() Set targets manually.

See Also

constraints, decisions, objectives penalties, portfolios, problem(), solvers.



tibble-methods 221

Examples

# load data
data(sim_pu_raster, sim_features)

# create base problem
p <- problem(sim_pu_raster, sim_features) %>%

add_min_set_objective() %>%
add_binary_decisions()

# create problem with added relative targets
p1 <- p %>% add_relative_targets(0.1)

# create problem with added absolute targets
p2 <- p %>% add_absolute_targets(3)

# create problem with added loglinear targets
p3 <- p %>% add_loglinear_targets(10, 0.9, 100, 0.2)

# create problem with manual targets that equate to 10% relative targets
p4 <- p %>% add_manual_targets(data.frame(feature = names(sim_features),

target = 0.1,
type = "relative"))

## Not run:
# solve problem
s <- stack(solve(p1), solve(p2), solve(p3), solve(p4))

# plot solution
plot(s, axes = FALSE, box = FALSE,

main = c("relative targets", "absolute targets", "loglinear targets",
"manual targets"))

## End(Not run)

tibble-methods Manipulate tibbles

Description

Assorted functions for manipulating tibble::tibble() objects.

Usage

## S4 method for signature 'tbl_df'
nrow(x)

## S4 method for signature 'tbl_df'
ncol(x)

## S4 method for signature 'tbl_df'
as.list(x)
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Arguments

x tibble::tibble() object.

Details

The following methods are provided from manipulating tibble::tibble() objects.

nrow extract integer number of rows.
ncol extract integer number of columns.
as.list convert to a list.
print print the object.

Examples

# load tibble package
require(tibble)

# make tibble
a <- tibble(value = seq_len(5))

# number of rows
nrow(a)

# number of columns
ncol(a)

# convert to list
as.list(a)

zones Management zones

Description

Organize biodiversity data into the expected amount of different features under different manage-
ment zones.

Usage

zones(..., zone_names = NULL, feature_names = NULL)

Arguments

... raster::raster() or character objects that pertain to the biodiversity data.
See Details for more information.

zone_names character names of the management zones. Defaults to NULL which results in
sequential integers.

feature_names character names of the features zones. Defaults to NULL which results in se-
quential integers.
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Details

This function is used to store and organize data for use in a conservation planning problem()
that has multiple management zones. In all cases, the data for each zone is input as a separate
argument. The correct arguments depends on the type of planning unit data used when building the
conservation planning problem().

Raster, Spatial Raster data denoting the amount of each feature present assuming each man-
agement zone. Data for each zone are specified in separate arguments, and the data for each
feature in a given zone are specified in separate layers in a raster::stack() object. Note
that all layers for a given zone must have NA values in exactly the same cells.

Spatial(), data.frame character vector with column names that correspond to the abundance
or occurrence of different features in each planning unit for each zone. Note that these columns
must not contain any NA values.

Spatial(), data.frame or matrix data.frame denoting the amount of each feature in each zone.
Following conventions used in Marxan, data.frame objects should be supplied with the
columns:

"pu" integer planning unit identifier.
"species" integer feature identifier.
"amount" numeric amount of the feature in the planning unit for a given zone.

Note that data for each zone are specified in a separate argument, and the data contained in a
single data.frame object correspond to a single zone. Also, note that data are not required for
all combinations of planning units, features, and zones. The amounts of features in planning
units assuming different management zones that are missing from the table are treated as zero.

Value

Zones object.

See Also

problem().

Examples

# load planning unit data
data(sim_pu_raster)

zone_1 <- simulate_species(sim_pu_raster, 3)
zone_2 <- simulate_species(sim_pu_raster, 3)

# create zones using two raster stack objects
# each object corresponds to a different zone and each layer corresponds to
# a different species
z <- zones(zone_1, zone_2, zone_names = c("zone_1", "zone_2"),

feature_names = c("feature_1", "feature_2", "feature_3"))
print(z)

# note that the do.call function can also be used to create a Zones object
# this method for creating a Zones object can be helpful when there are many
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# management zones
l <- list(zone_1, zone_2, zone_names = c("zone_1", "zone_2"),

feature_names = c("feature_1", "feature_2", "feature_3"))
z <- do.call(zones, l)
print(z)

# create zones using character vectors that represent the names of
# fields (columns) in a data.frame or Spatial object that contain the amount
# of each species expected different management zones
z <- zones(c("spp1_zone1", "spp2_zone1"),

c("spp1_zone2", "spp2_zone2"),
c("spp1_zone3", "spp2_zone3"),
zone_names = c("zone1", "zone2", "zone3"),
feature_names = c("spp1", "spp2"))

print(z)

zone_names Zone names

Description

Extract the names of zones in an object.

Usage

zone_names(x)

## S4 method for signature 'ConservationProblem'
zone_names(x)

## S4 method for signature 'ZonesRaster'
zone_names(x)

## S4 method for signature 'ZonesCharacter'
zone_names(x)

Arguments

x problem() (i.e. ConservationProblem) or Zones()

Value

character zone names.
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Examples

# load data
data(sim_pu_zones_stack, sim_features_zones)

# print names of zones in a Zones object
print(zone_names(sim_features_zones))
# create problem with multiple zones
p <- problem(sim_pu_zones_stack, sim_features_zones) %>%

add_min_set_objective() %>%
add_relative_targets(matrix(0.2, ncol = 3, nrow = 5)) %>%
add_binary_decisions()

# print zone names in problem
print(zone_names(p))

%>% Pipe operator

Description

This package uses the pipe operator (\%>\%) to express nested code as a series of imperative pro-
cedures.

Arguments

lhs, rhs An object and a function.

Value

An object.

See Also

magrittr::%>%(), tee().

Examples

# set seed for reproducibility
set.seed(500)

# generate 100 random numbers and calculate the mean
mean(runif(100))

# reset the seed
set.seed(500)

# repeat the previous procedure but use the pipe operator instead of nesting
# function calls inside each other.
runif(100) %>% mean()
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%T>% Tee operator

Description

This package uses the "tee" operator (\%T>\%) to modify objects.

Arguments

lhs, rhs An object and a function.

Value

An object.

See Also

magrittr::%T>%(), pipe().

Examples

# the tee operator returns the left-hand side of the result and can be
# useful when dealing with mutable objects. In this example we want
# to use the function "f" to modify the object "e" and capture the
# result

# create an empty environment
e <- new.env()

# create a function to modify an environment and return NULL
f <- function(x) {x$a <- 5; return(NULL)}

# if we use the pipe operator we won't capture the result since "f"()
# returns a NULL
e2 <- e %>% f()
print(e2)

# but if we use the tee operator then the result contains a copy of "e"
e3 <- e %T>% f()
print(e3)
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