Package 'primePCA'

July 2, 2019
Type Package
Title Projected Refinement for Imputation of Missing Entries in PCA
Version 1.0
Date 2019-06-11
Author Ziwei Zhu, Tengyao Wang, Richard J. Samworth
Maintainer Ziwei Zhu ziweiz@umich.edu
Description Implements the primePCA algorithm, developed and anal-
ysed in Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous missingness. arXiv:1906.12125.

Imports softImpute, Matrix, MASS, methods
RoxygenNote 6.1.1
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-02 16:30:03 UTC

R topics documented:

primePCA-package 2
col_scale 3
inverse_prob_method 3
primePCA 4
sin_theta_distance 5
Index 6

```
primePCA-package Projected Refinement for Imputation of Missing Entries in PCA
```


Description

Implements the primePCA algorithm, developed and analysed in Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous missingness. arXiv:1906.12125.

Details

The DESCRIPTION file:

Package:	primePCA
Type:	Package
Title:	Projected Refinement for Imputation of Missing Entries in PCA
Version:	1.0
Date:	$2019-06-11$
Author:	Ziwei Zhu, Tengyao Wang, Richard J. Samworth
Maintainer:	Ziwei Zhu ziweiz@umich.edu
Description:	Implements the primePCA algorithm, developed and analysed in Zhu, Z., Wang, T. and Samworth, R. J. (201
Imports:	softImpute, Matrix, MASS, methods
RoxygenNote:	6.1 .1
License:	GPL-3

Index of help topics:

```
col_scale Center and/or normalize each column of a matrix
inverse_prob_method Inverse probability weighted method for
    estimating the top K eigenspaces
primePCA primePCA algorithm
primePCA-package Projected Refinement for Imputation of Missing
    Entries in PCA
sin_theta_distance Frobenius norm sin theta distance between two
column spaces
```


Author(s)

Ziwei Zhu, Tengyao Wang, Richard J. Samworth
Maintainer: Ziwei Zhu ziweiz@umich.edu

References

Zhu, Z., Wang, T. and Samworth, R. J. (2019) High dimensional principal component analysis with heterogeneous missingness. arXiv:1906.12125

```
col_scale Center and/or normalize each column of a matrix
```


Description

Center and/or normalize each column of a matrix

Usage

col_scale(X, center = T, normalize = F)

Arguments

X
center center each column of X if center $==$ TRUE. The default value is TRUE.
normalize normalize each column of X such that its sample variance is 1 if normalize $==$ TRUE. The default value is False.

Value

a centered and/or normalized matrix of the same dimension as X.

```
inverse_prob_method Inverse probability weighted method for estimating the top K
``` eigenspaces

\section*{Description}

Inverse probability weighted method for estimating the top K eigenspaces

\section*{Usage}
inverse_prob_method(X, K, trace.it = F, center = T, normalize = F)

\section*{Arguments}
\(x\)

K
trace.it

\section*{center}
normalize
a numeric matrix with \(N A\) s or "Incomplete" matrix object (see softImpute package)
the number of principal components of interest
report the progress if trace.it == TRUE
center each column of \(X\) if center \(==\) TRUE. The default value is TRUE.
normalize each column of \(X\) such that its sample variance is 1 if normalize \(==\) TRUE.
The default value is False.

\section*{Value}

Columnwise centered matrix of the same dimension as \(X\).

\section*{Examples}
```

$X=\operatorname{matrix}(1: 30+.1 * \operatorname{rnorm}(30), 10,3)$
$\mathrm{X}[1,1]=\mathrm{NA}$
$X[2,3]=N A$
v_hat $=$ inverse_prob_method $(X, 1)$

```
```

primePCA primePCA algorithm

```

\section*{Description}
primePCA algorithm

\section*{Usage}
primePCA(X, K, V_init = NULL, thresh_sigma = 10, max_iter = 1000, thresh_convergence \(=1 \mathrm{e}-05\), trace.it \(=\mathrm{F}\), prob = 1, save_file = "", center = T, normalize = F)

\section*{Arguments}
\(\mathrm{X} \quad\) an \(n\)-by- \(d\) data matrix with NA values
\(K\) the number of the principal components of interest
V_init an initial estimate of the top \(K\) eigenspaces of the covariance matrix of X . By default, primePCA will be initialized by the inverse probability method.
thresh_sigma used to select the "good" rows of \(X\) to update the principal eigenspaces (\(\sigma_{*}\) in the paper).
max_iter maximum number of iterations of refinement thresh_convergence

The algorithm is halted if the Frobenius-norm sine-theta distance between the two consecutive iterates is less than thresh_convergence.
trace.it report the progress if trace.it = TRUE
prob probability of reserving the "good" rows. prob \(==1\) means to reserve all the "good" rows.
save_file the location that saves the intermediate results, including \(V_{-} c u r\), step_cur and loss_all, which are introduced in the section of returned values. The algorithm will not save any intermediate result if save_file \(==" "\).
center center each column of \(X\) if center \(==\) TRUE. The default value is TRUE.
normalize normalize each column of \(X\) such that its sample variance is 1 if normalize \(==\) TRUE. The default value is False.

\section*{Value}
a list is returned, with components \(\mathrm{V}_{-} c u r\), step_cur and loss_all. V_cur is a \(d\)-by- \(K\) matrix of the top \(K\) eigenvectors. step_cur is the number of iterations. loss_all is an array of the trajectory of MSE.

\section*{Examples}
\(\mathrm{X}=\operatorname{matrix}(1: 30+.1 * \operatorname{rnorm}(30), 10,3)\)
\(\mathrm{X}[1,1]=\mathrm{NA}\)
\(X[2,3]=N A\)
v_tilde = primePCA(X, 1)\$V_cur
sin_theta_distance Frobenius norm sin theta distance between two column spaces

\section*{Description}

Frobenius norm sin theta distance between two column spaces

\section*{Usage}
sin_theta_distance(V1, V2)

\section*{Arguments}

V1 a matrix with orthonormal columns
V2 a matrix of the same dimension as V1 with orthonormal columns

\section*{Value}
the Frobenius norm sin theta distance between two V1 and V2

\section*{Index}
*Topic package
primePCA-package, 2
col_scale, 3
inverse_prob_method, 3
primePCA, 4
primePCA-package, 2
sin_theta_distance, 5```

