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httpbin_app Generic web app for testing HTTP clients
Description

A web app similar to https://httpbin.org.

Usage

httpbin_app(log = interactive())

Arguments

log

Value

Whether to log requests to the standard output.

A presser_app.

Examples

app <- httpbin_app()

proc <- new_app_process(app)

url <- proc$url("”/get")

resp <- curl::curl_fetch_memory(url)
curl::parse_headers_list(resp$headers)
cat(rawToChar (resp$content))
proc$stop()
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mw_etag Middleware that add an Etag header to the response

Description

Middleware that add an Etag header to the response

Usage

mw_etag(algorithm = "crc32")

Arguments

algorithm Checksum algorithm to use. Only "crc32" is implemented currently.

Value

Handler function.

See Also
Other middleware: mw_json(), mw_log(), mw_multipart(), mw_raw(),mw_static(), mw_text(),
mw_urlencoded()

Examples

app <- new_app()
app$use(mw_etag())
app

mw_json Middleware to parse a JSON body

Description

Adds the parsed object as the json element of the request object.

Usage
mw_json(type = "application/json"”, simplifyVector = FALSE, ...)
Arguments
type Content type to match before parsing. If it does not match, then the request

object is not modified.
simplifyVector Whether to simplify lists to vectors, passed to jsonlite: : fromJSON().
Arguments to pass to jsonlite: : fromJSON(), that performs the JSON parsing.
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Value

Handler function.

See Also
Other middleware: mw_etag(), mw_log (), mw_multipart(), mw_raw(),mw_static(), mw_text(),
mw_urlencoded()

Examples

app <- new_app()
app$use(mw_json())

app

mw_log Log requests to the standard output or other connection

Description

A one line log entry for every request. The output looks like this:
GET http://127.0.0.1:3000/image 200 3 ms - 4742

and contains

* the HTTP method,

* the full request URL,

 the HTTP status code of the response,

* how long it took to process the response, in ms,

* and the size of the response body, in bytes.

Usage

mw_log(format = "dev"”, stream = stdout())
Arguments

format Log format. Not implemented currently.

stream R connection to log to. Defaults to stdout (), the standard output.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(), mw_multipart(), mw_raw(),mw_static(), mw_text(),
mw_urlencoded()
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Examples

app <- new_app()
app$use(mw_log())
app

mw_multipart Parse a multipart HTTP request body

Description

Adds the parsed form fields in the form element of the request and the parsed files to the files
element.

Usage

mw_multipart(type = "multipart/form-data”)

Arguments
type Content type to match before parsing. If it does not match, then the request
object is not modified.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(), mw_log(), mw_raw(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_multipart())

app
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mw_raw Middleware to read the raw body of a request

Description

Adds the raw body, as a raw object to the raw field of the request.

Usage
mw_raw(type = "application/octet-stream")
Arguments
type Content type to match. If it does not match, then the request object is not modi-
fied.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(),mw_log(), mw_multipart(), mw_static(), mw_text(),
mw_urlencoded()

Examples

app <- new_app()
app$use(mw_raw())

app

mw_static Middleware function to serve static files

Description

The content type of the response is set automatically from the extension of the file. Note that this
is a terminal middleware handler function. If a file is served, then the rest of the handler functions
will not be called. If a file was not found, however, the rest of the handlers are still called.

Usage

mw_static(root, set_headers = NULL)
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Arguments
root Root path of the served files. Everything under this directory is served automat-
ically. Directory lists are not currently supports.
set_headers Callback function to call before a file is served.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(), mw_log(), mw_multipart(), mw_raw(), mw_text(),
mw_urlencoded()

Examples

root <- system.file(package = "presser"”, "examples”, "static"”, "public")
app <- new_app()

app$use(mw_static(root = root))

app

mw_text Middleware to parse a plain text body

Description

Adds the parsed object as the text element of the request object.

Usage

mw_text(default_charset = "utf-8", type = "text/plain”)

Arguments

default_charset
Encoding to set on the text.

type Content type to match before parsing. If it does not match, then the request
object is not modified.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(), mw_log(),mw_multipart(), mw_raw(),mw_static(),
mw_urlencoded()
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Examples

app <- new_app()
app$use(mw_text())

app

mw_urlencoded Middleware to parse an url-encoded request body

Description

This is typically data from a form. The parsed data is added as the form element of the request

object.
Usage
mw_urlencoded(type = "application/x-www-form-urlencoded")
Arguments
type Content type to match before parsing. If it does not match, then the request
object is not modified.
Value

Handler function.

See Also

Other middleware: mw_etag(), mw_json(), mw_log(), mw_multipart(),mw_raw(), mw_static(),
mw_text()

Examples

app <- new_app()
app$use(mw_urlencoded())

app
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new_app Create a new web application

Description

Create a new web application

Usage

new_app()

Details

The typical workflow of creating a web application is:
. Create a presser_app object with new_app().
. Add middleware and/or routes to it.

. Startis with the preser_app$listen() method, or start it in another process with new_app_process().

. Make queries to the web app.

hn A W N =

. Stop it via CTRL+C / ESC, or, if it is running in another process, with the $stop() method of
new_app_process().

A web application can be

* restarted,

¢ saved to disk,

* copied to another process using the callr package, or a similar way,
» embedded into a package,

* extended by simply adding new routes and/or middleware.
The presser API is very much influenced by the express.js project.
Create web app objects:
new_app()

new_app () returns a presser_app object the has the methods listed on this page.
An app is an environment with S3 class presser_app.

The handler stack:

An app has a stack of handlers. Each handler can be a route or middleware. The differences
between the two are:

* A route is bound to one or more paths on the web server. Middleware is not (currently) bound
to paths, but run for all paths.

A route is usually (but not always) the end of the handler stack for a request. L.e. a route takes
care of sending out the response to the request. Middleware typically performs some action
on the request or the response, and then the next handler in the stack is invoked.
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Routes:

The following methods define routes. Each method corresponds to the HTTP verb with the same
name, except for app$all (), which creates a route for all HTTP methods.

app$all(path, ...)
app$delete(path, ...)

app$get(path, ...)
app$head(path, ...)
app$patch(path, ...)
app$post(path, ...)
app$put(path, ...)
... (see list below)
* path is a path specification, see "Path specification’ below.
e ... is one or more handler functions. These will be placed in the handler stack, and called if
they match an incoming HTTP request. See "Handler functions’ below.
presser also has methods for the less frequently used HTTP verbs: CONNECT, MKCOL, OPTIONS,
PROPFIND, REPORT. (The method names are always in lowercase.)

If a request is not handled by any routes (or handler functions in general), then presser will send
a simple HTTP 404 response.

Middleware:
app$use() adds a middleware to the handler stack. A middleware is a handler function, see
’Handler functions’ below. presser comes with middleware to perform common tasks:

* mw_etag() adds an Etag header to the response.

* mw_log() logs each requests to standard output, or another connection.

* mw_raw() parses raw request bodies.

* mw_text () parses plain text request bodies.

e mw_json() parses JSON request bodies.

e mw_multipart() parses multipart request bodies.

* mw_static() serves static files from a directory.

e mw_urlencoded() parses URL encoded request bodies.

app$use(...)

e ... is a set of (middleware) handler functions. They are added to the handler stack, and
called for every HTTP request. (Unless an HTTP response is created before reaching this
point in the handler stack.)

Handler functions:

A handler function is a route or middleware. A handler function is called by presser with the
incoming HTTP request and the outgoing HTTP response objects (being built) as arguments. The
handler function may query and modify the members of the request and/or the response object.
If it returns the string "next"”, then it is not a terminal handler, and once it returns, presser will
move on to call the next handler in the stack.

A typical route:
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app$get(”/user/:id", function(req, res) {
id <- req$params$id
res$
set_status(200L)$
set_header ("X-Custom-Header"”, "foobar")$
send_json(response, auto_unbox = TRUE)

D

e The handler belongs to an API path, which is a wildcard path in this case. It matches
/user/alice, /user/bob, etc. The handler will be only called for GET methods and matching
API paths.
* The handler receives the request (req) and the response (res).
It sets the HTTP status, additional headers, and sends the data. (In this case the presser_response$send_json()
method automatically converts response to JSON and sets the Content-Type and Content-Length
headers.

¢ This is a terminal handler, because it does not return "next”. Once this handler function
returns, presser will send out the HTTP response.

A typical middleware:

app$use(function(req, res) {

”neXt"
D
* There is no HTTP method and API path here, presser will call the handler for each HTTP
request.

* This is not a terminal handler, it does return "next"”, so after it returns presser will look for
the next handler in the stack.

Errors:

If a handler function throws an error, then the web server will return a HTTP 500 text/plain
response, with the error message as the response body.

Request and response objects:
See presser_request and presser_response for the methods of the request and response objects.

Path specification:
Routes are associated with one or more API paths. A path specification can be
¢ A "plain" (i.e. without parameters) string. (E.g. "/1ist".)
* A parameterized string. (E.g. "/user/:1id".)
* A regular expression created via new_regexp() function.
* A list or character vector of the previous ones. (Regular expressions must be in a list.)

Path parameters:
Paths that are specified as parameterized strings or regular expressions can have parameters.

For parameterized strings the keys may contain letters, numbers and underscores. When presser
matches an API path to a handler with a parameterized string path, the parameters will be added
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to the request, as params. lL.e. in the handler function (and subsequent handler functions, if the
current one is not terminal), they are available in the req$params list.

For regular expressions, capture groups are also added as parameters. It is best to use named
capture groups, so that the parameters are in a named list.

If the path of the handler is a list of parameterized strings or regular expressions, the parameters
are set according to the first matching one.

Templates:

presser supports templates, using any template engine. It comes with a template engine that uses
the glue package, see tmpl_glue().

app$engine () registers a template engine, for a certain file extension. The $render() method of
presser_response can be called from the handler function to evaluate a template from a file.

app$engine(ext, engine)

* ext: the file extension for which the template engine is added. It should not contain the dot.
E.g. "html", "brew"*.

* engine: the template engine, a function that takes the file path (path) of the template, and a
list of local variables (locals) that can be used in the template. It should return the result.

An example template engine that uses glue might look like this:

app$engine("txt"”, function(path, locals) {
txt <- readChar(path, nchars = file.size(path), useBytes = TRUE)
glue::glue_data(locals, txt)

b))

(The built-in tmpl_glue() engine has more features.)

This template engine can be used in a handler:

app$get("/view”, function(req, res) {
txt <- res$render(”test"”)
res$
set_type("text/plain”)$
send(txt)
1))

The location of the templates can be set using the views configuration parameter, see the $set_config()

method below.

In the template, the variables passed in as locals, and also the response local variables (see
locals in presser_response), are available.

Starting and stopping:

app$listen(port = NULL, opts = server_opts())

e port: port to listen on. When NULL, the operating system will automatically select a free
port.

e opts: options to the web server. See server_opts() for the list of options and their default
values.
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This method does not return, and can be interrupted with CTRL+C / ESC or a SIGINT signal. See
new_app_process() for interrupting an app that is running in another process.

When port is NULL, the operating system chooses a port where the app will listen. To be able to
get the port number programmatically, before the listen method blocks, it advertises the selected
port in a presser_port condition, so one can catch it:

presser by default binds only to the loopback interface at 127.0.0.1, so the presser web app is
never reachable from the network.

withCallingHandlers(

app$listen(),

"presser_port"” = function(msg) print(msg$port)
)
Logging:

presser can write an access log that contains an entry for all incoming requests, and also an error
log for the errors that happen while the server is running. This is the default behavior for local app
(the ones started by app$listen() and for remote apps (the ones started via new_app_process():

* Local apps do not write an access log by default.

* Remote apps write an access log into the <tmpdir>/presser/<pid>/access.log file, where <tmpdir>
is the session temporary directory of the main process, and <pid> is the process id of the sub-
process.

* Local apps write an error log to <tmpdir>/presser/error.log, where <tmpdir> is the session
temporary directory of the current process.

¢ Remote app write an error log to the <tmpdir>/presser/<pid>/error.log, where <tmpdir> is
the session temporary directory of the main process and <pid> is the process id of the sub-
process".

See server_opts() for changing the default logging behavior.

Shared app data:
app$locals

It is often useful to share data between handlers and requests in an app. app$locals is an environ-
ment that supports this. E.g. a middleware that counts the number of requests can be implemented
as:

app$use(function(req, res) {
locals <- reg$app$locals
if (is.null(locals$num)) locals$num <- oL
locals$num <- locals$num + 1L
"next"

D

presser_response objects also have a locals environment, that is initially populated as a copy of
app$locals.

Configuration:

app$get_config(key)
app$set_config(key, value)
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* key: configuration key.

 value: configuration value.
Currently used configuration values:

* views: path where presser searches for templates.

Value

A new presser_app.

See Also

presser_request for request objects, presser_response for response objects.

Examples

# see example web apps in the ‘/examples® directory in
system.file(package = "presser”, "examples")

app <- new_app()
app <- new_app()
app$use(mw_log())

app$get(”/hello”, function(req, res) {
res$send(”"Hello there!")
»

app$get (new_regexp("*/hi(/.*)?$"), function(req, res) {
res$send("Hi indeed!")

»

app$post(”/hello”, function(req, res) {
res$send(”"Got it, thanks!")
»

app

# Start the app with: app$listen()
# Or start it in another R session: new_app_process(app)

new_app_process Run a presser app in another process

Description

Runs an app in a subprocess, using callr::r_session.
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Usage
new_app_process(
app,
port = NULL,

opts = server_opts(remote = TRUE),
process_timeout = 5000,
callr_opts = NULL

)
Arguments
app presser_app object, the web app to run.
port Port to use. By default the OS assigns a port.
opts Server options. See server_opts() for the defaults.

process_timeout
How long to wait for the subprocess to start, in milliseconds.

callr_opts Options to pass to callr::r_session_options() when setting up the subpro-
cess.

Value
A presser_app_process object.

Methods:
The presser_app_process class has the following methods:

get_app()
get_port()

stop()
get_state()

local_env(envvars)
url(path = "/", query = NULL)
* envvars: Named list of environment variables.
¢ path: Path to return the URL for.
e query: Additional query parameters, a named list, to add to the URL.
get_app() returns the app object.
get_port() returns the port the web server is running on.

stop() stops the web server, and also the subprocess. If the error log file is not empty, then it
dumps its contents to the screen.

get_state() returns a string, the state of the web server:
* "not running” the server is not running (because it was stopped already).
e "live" means that the server is running.
* "dead"” means that the subprocess has quit or crashed.

local_env() sets the given environment variables for the duration of the app process. It resets
them in $stop().

url() returns the URL of the web app. You can use the path parameter to return a specific path.
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Examples

app <- new_app()
app$get(”/foo”, function(req, res) {
res$send(”"Hello world!")

by

proc <- new_app_process(app)

url <- proc$url("/foo")

resp <- curl::curl_fetch_memory(url)
cat(rawToChar (resp$content))

proc$stop()

new_regexp Create a new regular expression to use in presser routes

Description

Note that presser uses PERL regular expressions.

Usage

new_regexp(x)

Arguments

X String scalar containing a regular expression.

Details

As R does not have data type or class for regular expressions, you can use new_regexp() to mark
a string as a regular expression, when adding routes.

Value

String with class presser_regexp.

See Also

The *Path specification’ and "Path parameters’ chapters of the manual of new_app().

Examples

new_regexp("*/api/match/(?<pattern>.*)$")
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presser_request A presser request object

Description

presser creates a presser_request object for every incoming HTTP request. This object is passed
to every matched route and middleware, until the response is sent. It has reference semantics, so
handlers can modify it.

Details
Fields and methods:

 app: The presser_app object itself.

* headers: Named list of HTTP request headers.

* hostname: The Host header, the server hostname and maybe port.
* method: HTTP method.

* path: Server path.

e protocol: "http"” or "https”.

* query_string: The raw query string, without the starting ?.

* query: Parsed query parameters in a named list.

* remote_addr: String, the domain name or IP address of the client. presser runs on the local-
host, so this is 127.0.0.1.

* url: The full URL of the request.

* get_header(field): Function to query a request header. Returns NULL if the header is not
present.

Body parsing middleware adds additional fields to the request object. See mw_raw(), mw_text(),
mw_json(), mw_multipart() and mw_urlencoded().

See Also

presser_response for the presser response object.

Examples

# This is how you can see the request and response objects:
app <- new_app()
app$get("/", function(req, res) {
browser ()
res$send("done")
»
app

# Now start this app on a port:
# app$listen(3000)
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and connect to it from a web browser: http://127.0.0.1:3000
You can also use another R session to connect:
httr::GET("http://127.0.0.1:3000")

or the command line curl tool:

curl -v http://127.0.0.1:3000

The app will stop while processing the request.

presser_response A presser response object

Description

presser creates a presser_response object for every incoming HTTP request. This object is passed
to every matched route and middleware, until the HTTP response is sent. It has reference semantics,
so handlers can modify it.

Details

Fields and methods:

app: The presser_app object itself.
req: The request object.
headers_sent: Whether the response headers were already sent out.

locals: Local variables, the are shared between the handler functions. This is for the end
user, and not for the middlewares.

delay(secs): delay the response for a number of seconds. If a handler calls delay(),
the same handler will be called again, after the specified number of seconds have passed.
Use the locals environment to distinguish between the calls. If you are using delay(),
and want to serve requests in parallel, then you probably need a multi-threaded server, see
server_opts().

add_header(field,value): Add a response header. Note that add_header() may create
duplicate headers. You usually want set_header().

get_header(field): Query the currently set response headers. If field is not present it
return NULL.

on_response(fun): Run the fun handler function just before the response is sent out. At this
point the headers and the body are already properly set.

redirect(path, status = 302): Send a redirect response. It sets the Location header, and
also sends a text/plain body.

render(view,locals =1list()): Render a template page. Searches for the view template
page, using all registered engine extensions, and calls the first matching template engine.
Returns the filled template.

send(body). Send the specified body. body can be a raw vector, or HTML or other text. For
raw vectors it sets the content type to application/octet-stream.
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send_json(object = NULL,text =NULL,...): Send a JSON response. Either object or
text must be given. object will be converted to JSON using jsonlite::toJSON(). ... are
passed to jsonlite: :toJSON(). It sets the content type appropriately.

send_file(path,root ="."): Send a file. Set root ="/" for absolute file names. It sets
the content type automatically, based on the extension of the file, if it is not set already.

send_status(status): Send the specified HTTP status code, without a response body.

send_chunk(data): Send a chunk of a response in chunked encoding. The first chunk will
automatically send the HTTP response headers. Presser will automatically send a final zero-
lengh chunk, unless $delay() is called.

set_header(field,value): Set a response header. If the headers have been sent out already,
then it throws a warning, and does nothing.

set_status(status): Set the response status code. If the headers have been sent out already,
then it throws a warning, and does nothing.

set_type(type): Set the response content type. If it contains a / character then it is set as is,
otherwise it is assumed to be a file extension, and the corresponding MIME type is set. If the
headers have been sent out already, then it throws a warning, and does nothing.

write(data): writes (part of) the body of the response. It also sends out the response headers,
if they haven’t been sent out before.

Usually you need one of the send() methods, to send out the HTTP response in one go, first the
headers, then the body.

Alternatively, you can use $write() to send the response in parts.

See Also

presser_request for the presser request object.

Examples

# This is how you can see the request and response objects:
app <- new_app()
app$get(”/", function(req, res) {

browser ()

res$send("done")

D
app

or

e E R EEE

Now start this app on a port:

app$listen(3000)

and connect to it from a web browser: http://127.0.0.1:3000
You can also use another R session to connect:
httr::GET("http://127.0.0.1:3000")

the command line curl tool:

curl -v http://127.0.0.1:3000
The app will stop while processing the request.
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server_opts Presser web server options

Description

Presser web server options

Usage

server_opts(
remote = FALSE,
port = NULL,
num_threads = 1,
interfaces = "127.0.0.1",
enable_keep_alive = FALSE,
access_log_file = remote,
error_log_file = TRUE,
tcp_nodelay = FALSE,
throttle = Inf

)
Arguments

remote Meta-option. If set to TRUE, presser uses slightly different defaults, that are more
appropriate for a background server process.

port Port to start the web server on. Defaults to a randomly chosen port.

num_threads Number of request handler threads to use. Typically you don’t need more than
one thread, unless you run test cases in parallel or you make concurrent HTTP
requests.

interfaces The network interfaces to listen on. Being a test web server, it defaults to the

localhost. Only bind to a public interface if you know what you are doing.
presser was not designed to serve public web pages.

enable_keep_alive
Whether the server keeps connections alive.

access_log_file
TRUE, FALSE, or a path. See Logging’ below.

error_log_file TRUE, FALSE, or a path. See ’Logging’ below.

tcp_nodelay if TRUE then packages will be sent as soon as possible, instead of waiting for a
full buffer or timeout to occur.

throttle Limit download speed for clients. If not Inf, then it is the maximum number of
bytes per second, that is sent to as connection.

Value

List of options that can be passed to presser_app$listen() (see new_app()), and new_app_process().
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* For access_log_file, TRUE means <log-dir>/access.log.

* For error_log_file, TRUE means <log-dir>/error.log.
<log-dir> is set to the contents of the PRESSER_LOG_DIR environment variable, if it is set. Otherwise
it is set to <tmpdir>/presser for local apps and <tmpdir>/<pid>/presser for remote apps (started with
new_app_procss()).
<tmpdir> is the session temporary directory of the main process.
<pid> is the process id of the subprocess.

Examples

# See the defaults

server_opts()

tmpl_glue

glue based template engine

Description

Use this template engine to create pages with glue templates. See glue: :glue() for the syntax.

Usage

tmpl_glue(
Sep = IIII,
Open = n Il,
close = "}"

na = "NA",

transformer =

trim = TRUE

Arguments

sep
open
close

na

transformer

trim

NULL,

Separator used to separate elements.
The opening delimiter. Doubling the full delimiter escapes it.
The closing delimiter. Doubling the full delimiter escapes it.

Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of na.

A function taking three parameters code, envir and data used to transform the
output of each block before during or after evaluation.

Whether to trim the input template with glue: :trim() or not.



22 tmpl_glue

Value

Template function.

Examples

# See th 'hello' app at
hello_root <- system.file(package = "presser"”, "examples”, "hello")
hello_root

app <- new_app()
app$engine("txt"”, tmpl_glue())
app$use(mw_log())

app$get(”/view”, function(req, res) {
txt <- res$render("test”)
res$
set_type("text/plain”)$
send(txt)
»

# Switch to the app's root: setwd(hello_root)
# Now start the app with: app$listen(3000L)
# Or start it in another process: new_process(app)
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