The prcbench
package is a testing workbench for evaluating Precision-Recall curves.
The prcbench
package provides predefined interfaces for the following five tools that calculate Precision-Recall curves.
Tool | Language | Link |
---|---|---|
ROCR | R | Tool web site, CRAN |
AUCCalculator | Java | Tool web site |
PerfMeas | R | CRAN |
PRROC | R | CRAN |
precrec | R | Tool web site, CRAN |
The create_toolset
function generates a tool set with a combination of the five tools.
library(prcbench)
## A single tool
toolsetA <- create_toolset("ROCR")
## Multiple tools
toolsetB <- create_toolset(c("PerfMeas", "PRROC"))
## Tool sets can be manually combined to a single set
toolsetAB <- c(toolsetA, toolsetB)
The create_toolset
function accepts partially matched tool names. Tool names may also be case-insensitive.
library(prcbench)
## A single tool - lower case
toolsetA2 <- create_toolset("rocr")
## Multiple tools - lower case and partially matched
toolsetB2 <- create_toolset(c("perf", "prr"))
The create_toolset
function takes two additional arguments - calc_auc
and store_res
. The calc_auc
argument makes tools calculate and retrieve the AUC score, and the store_res
argument forces tools to calculate and store the curve values.
The following six tool sets are predefined with a different combination of tools and their argument values.
Set name | Tools | calc_auc | store_res |
---|---|---|---|
def5 | ROCR, AUCCalculator, PerfMeas, PRROC, precrec | TRUE | TRUE |
auc5 | ROCR, AUCCalculator, PerfMeas, PRROC, precrec | TRUE | FALSE |
crv5 | ROCR, AUCCalculator, PerfMeas, PRROC, precrec | FALSE | TRUE |
def4 | ROCR, AUCCalculator, PerfMeas, precrec | TRUE | TRUE |
auc4 | ROCR, AUCCalculator, PerfMeas, precrec | TRUE | FALSE |
crv4 | ROCR, AUCCalculator, PerfMeas, precrec | FALSE | TRUE |
## Use 'set_names'
toolsetC <- create_toolset(set_names = "auc5")
## Multiple sets are automatically combined to a single set
toolsetD <- create_toolset(set_names = c("auc5", "crv4"))
The prcbench
package provides two different types of test data. The first one is for benchmarking, and the second one is for evaluating the accuracy of Precision-Recall curves.
The create_testset
function offers both types of test data by setting the first argument either as “bench” or “curve”.
The create_testset
function uses a naming convention for randomly generated data for benchmarking. The format is a prefix (‘b’ or ‘i’) followed by the number of dataset. The prefix ‘b’ indicates a balanced dataset, whereas ‘i’ indicates an imbalanced dataset. The number can be used with a suffix ‘k’ or ‘m’, indicating respectively 1000 or 1 million.
## A balanced data set with 50 positives and 50 negatives
testset1A <- create_testset("bench", "b100")
## An imbalanced data set with 2500 positives and 7500 negatives
testset1B <- create_testset("bench", "i10k")
## Test data sets can be manually combined to a single set
testset1AB <- c(testset1A, testset1B)
## Multiple sets are automatically combined to a single set
testset1C <- create_testset("bench", c("i10", "b10"))
The create_testset
function takes predefined set names for curve evaluation. These data sets contain pre-calculated precision and recall values. The pre-calculated values must be correct so that they can be compared with the results of specified tools.
The following three test sets are currently available.
## C1 test set
testset2A <- create_testset("curve", "c1")
## C2 test set
testset2B <- create_testset("curve", "c2")
## Test data sets can be manually combined to a single set
testset2AB <- c(testset2A, testset2B)
## Multiple sets are automatically combined to a single set
testset2C <- create_testset("curve", c("c1", "c2"))
The run_benchmark
function internally calls the microbenchmark
function provided by the microbenchmark package. It takes a test set and a tool set and returns the result of microbenchmark
.
## Run microbenchmark for aut5 on b10
testset <- create_testset("bench", "b10")
toolset <- create_toolset(set_names = "auc5")
res <- run_benchmark(testset, toolset)
res
## testset toolset toolname min lq mean median uq max neval
## 1 b10 auc5 ROCR 1.482 1.50 8.32 1.503 12.76 24 5
## 2 b10 auc5 AUCCalculator 1.933 2.43 5.19 3.096 3.74 15 5
## 3 b10 auc5 PerfMeas 0.067 0.07 53.88 0.074 0.09 269 5
## 4 b10 auc5 PRROC 0.162 0.17 0.73 0.176 0.18 3 5
## 5 b10 auc5 precrec 4.088 4.18 14.37 4.367 4.68 55 5
The run_evalcurve
function evaluates Precision-Recall curves with the following five test cases.
Test case | Description |
---|---|
x_range | Evaluate the range of recall values |
y_range | Evaluate the range of precision values |
fpoint | Check the first point |
int_pts | Check the intermediate points |
epoint | Check the end point |
The run_evalcurve
function calculates the scores of the test cases and summarizes them to a data frame.
## Evaluate Precision-Recall curves for ROCR and precrec with c1 test set
testset <- create_testset("curve", "c1")
toolset <- create_toolset(c("ROCR", "precrec"))
scores <- run_evalcurve(testset, toolset)
scores
## testset toolset toolname score
## 1 c1 ROCR ROCR 5/8
## 2 c1 precrec precrec 8/8
The result of each test case can be displayed by specifying data_type
= all
of the print
function.
## Print all results
print(scores, data_type = "all")
## testset toolset toolname testitem testcat success total
## 1 c1 ROCR ROCR x_range Rg 1 1
## 2 c1 ROCR ROCR y_range Rg 1 1
## 3 c1 ROCR ROCR fpoint SE 0 1
## 4 c1 ROCR ROCR intpts Ip 2 4
## 5 c1 ROCR ROCR epoint SE 1 1
## 6 c1 precrec precrec x_range Rg 1 1
## 7 c1 precrec precrec y_range Rg 1 1
## 8 c1 precrec precrec fpoint SE 1 1
## 9 c1 precrec precrec intpts Ip 4 4
## 10 c1 precrec precrec epoint SE 1 1
The autoplot
shows a plot with the result of the run_evalcurve
function.
## ggplot2 is necessary to use autoplot
library(ggplot2)
## Plot base points and the result of precrec on c1, c2, and c3 test sets
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset("precrec")
scores1 <- run_evalcurve(testset, toolset)
autoplot(scores1)
## Plot the results of PerfMeas and PRROC on c1, c2, and c3 test sets
toolset <- create_toolset(c("PerfMeas", "PRROC"))
scores2 <- run_evalcurve(testset, toolset)
autoplot(scores2, base_plot = FALSE)
In addition to the predefined five tools, users can add new tool interfaces for their own tools to run benchmarking and curve evaluation. The create_usrtool
function takes a name of the tool and a function for calculating a Precision-Recall curve.
## Create a new tool set for 'xyz'
toolname <- "xyz"
calcfunc <- create_example_func()
toolsetU <- create_usrtool(toolname, calcfunc)
## User-defined tools can be combined with predefined tools
toolsetA <- create_toolset("ROCR")
toolsetU2 <- c(toolsetA, toolsetU)
Like the predefined tool sets, user-defined tool sets can be used for both run_benchmark
and run_evalcurve
.
## Curve evaluation
testset3 <- create_testset("curve", "c2")
scores3 <- run_evalcurve(testset3, toolsetU2)
autoplot(scores3, base_plot = FALSE)
The create_example_func
function creates an example for the second argument of the create_usrtool
function. The actual function should also take a testset
generated by the create_testset
function and returns a list with three elements - x
, y
, and auc
.
## Show an example of the second argument
calcfunc <- create_example_func()
print(calcfunc)
## function (single_testset)
## {
## scores <- single_testset$get_scores()
## labels <- single_testset$get_labels()
## pred <- list(x = seq(0, 1, 1/length(scores)), y = seq(0,
## 1, 1/length(scores)), auc = 0.5)
## }
## <bytecode: 0x556684f08558>
## <environment: 0x556681232520>
The create_testset
function produces a testset
as either TestDataB
or TestDataC
object. See the help files of the R6 classes - help(TestDataB)
and help(TestDataC)
- for the methods that can be used with the Precision-Recall calculation.
The prcbench
package also supports user-defined test data interfaces. The create_usrdata
function creates two types of test datasets.
The first argument of the create_usrdata
function should be “bench” to create a test data for benchmarking. Additionally, scores and labels are required.
## Create a test dataset 'b5' for benchmarking
testsetB <- create_usrdata("bench", scores = c(0.1, 0.2), labels = c(1, 0),
tsname = "b5")
It can be used in the same way as the predefined test datasets for benchmarking.
## Run microbenchmark for ROCR and precrec on a predefined test dataset
toolset <- create_toolset(c("ROCR", "precrec"))
res <- run_benchmark(testsetB, toolset)
res
## testset toolset toolname min lq mean median uq max neval
## 1 b5 ROCR ROCR 1.5 1.6 1.7 1.6 1.8 2.1 5
## 2 b5 precrec precrec 4.4 4.4 4.6 4.5 4.8 5.1 5
The first argument of the create_usrdata
function should be “curve” to create a test dataset for curve evaluation. Scores and labels as well as pre-calculated recall and precision values are required. These pre-calculated values are used to compare with the corresponding values predicted by the specified tools.
## Create a test dataset 'c5' for benchmarking
testsetC <- create_usrdata("curve", scores = c(0.1, 0.2), labels = c(1, 0),
tsname = "c5", base_x = c(0.0, 1.0),
base_y = c(0.0, 0.5))
It can be used in the same way as the predefined test datasets for curve evaluation.
## Run curve evaluation for ROCR and precrec on a predefined test dataset
toolset2 <- create_toolset(c("ROCR", "precrec"))
scores2 <- run_evalcurve(testsetC, toolset2)
autoplot(scores2, base_plot = FALSE)
See our website - Classifier evaluation with imbalanced datasets - for useful tips for performance evaluation on binary classifiers. In addition, we have summarized potential pitfalls of ROC plots with imbalanced datasets. See our paper - The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets - for more details.