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This vignette details how the power calculations are implemented in powerlmm. We will focus on the fully
nested three-level model, since the two- and partially nested three-level model are just reduced forms of the
three-level model. Thus, in standard multilevel notation the fully nested three-level model is

Level 1
Yijk = β0jk + β1jktijk +Rijk

Level 2
β0jk = γ00k + U0jk

β1jk = γ10k + U1jk

Level 3
γ00k = δ000 + δ001TXk + V0k

γ10k = δ100 + δ101TXk + V1k

where we have i = 1, . . . , n1j equally spaced time points for subject j = 1, . . . , N2, where N2 is the total
number of subjects in the treatment arm. Furthermore, the subjects are nested within k = 1, . . . , n3 clusters,
where n3 is the total number of clusters in the treatment arm. To allow for varying cluster sizes we let each
cluster have j = 1, . . . , n2[k] subjects, where n2[k] is the total number of subjects in cluster k.

The parameter of interest is δ101, i.e. the mean difference in slopes between the two treatment groups.
However, in powerlmm the calculations are simplified by calculating the variance of the slope-coefficient
separately for each treatment group. Since the slopes in the treatment and control group are independent,
the variance of the interaction-term is simply

V(δ101) = V(δ100[tx] − δ100[c]) = V(δ100[tx]) + V(δ100[c]),

where δ100[tx] and δ100[c] are the fixed time effects in the treatment and control group respectively. In order
to calculate the variances we begin by formulating the three-level model for the complete data vector Y from
a single treatment arm,

Y = XZWβ + Xu + XZv + ε, (1)

where Y is the N1 × 1 outcome vector containing all the observations from all the subjects in the treatment
arm, X is a N1 × 2N2 matrix containing co-variate information for all N2 subjects in the treatment arm, X
is also used as the design matrix for the second-level random effects. Z is a 2n3 × 2N2 matrix containing the
level-three random effects design matrices for each kth cluster in the treatment arm. W is a 2n3 × 2 matrix
relating the third-level to the overall effects β, and here β is simply a 2× 1 vector with the population values
for the fixed intercept and slope effects. Lastly, u is a 2N2 × 1 vector with the level two random effects, v is
a 2n3 × 1 vector with the third-level random effects, and ε a N1 × 1 vector with the level one residuals.
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The random effects and residuals are distributed as follows,

u ∼N (0,Ψ2),
v ∼N (0,Ψ3),
ε ∼N (0, σ2IN1).

With the second and third level variance components being

Ψ2 = IN2 ⊗
(
u2

0 u01
u01 u2

1

)
,Ψ3 = In3 ⊗

(
v2

0 v01
v01 v2

1

)
,

with ⊗ denoting the Kronecker product. The co-variate matrix X is block-diagonal containing a sub-matrix
Xjk for each subject (level-two unit), thus

X =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XN2

 .

Since each subject can have a different number of observations due to dropout, each Xjk will have dimension
n1[j] × 2, where n1[j] is the total number of observations for subject j in cluster k,

Xjk =


1 T0
1 T1
...

...
1 Tn1[j]

 . (2)

Z is a block-diagonal matrix containing the level-three design matrices for each cluster k,

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zn3

 .

With the sub-matrices Zk being stacks of 2× 2 matrices for each subject in cluster k,

Zk = 1n2[k] ⊗
(

1 0
0 1

)
,

thus the dimension of Zk will be n2[k] × 2, where n2[k] is the number of subjects in cluster k. This enables
power calculations for designs with varying number of subjects per cluster.

The matrix W, relates the cluster-level effects to the overall effects β,

W = 1n3 ⊗
(

1 0
0 1

)
,

and thus XZW simply stacks all the N2 sub-matrices, Xjk, into a N1 × 2 matrix.

Then we can calculate the marginal variance-covariance matrix for Y as

V(Y) = XΨ2X> + XZΨ3Z>X> + ε2IN1,
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and the variance of the population parameters in β as

V(β) = [(XZW)>V(Y)−1XZW]−1. (3)

The lower right corner of V(β) corresponds to the variance of the time-coefficient. As we noted earlier we can
use the slope variances to calculate the variance of the time×treatment-interaction.

Accounting for dropout

Dropout is accounted for by defining a dropout vector D = (p1, . . . , pn1)>, where pi is the proportion of
participants that have dropped out at time point i, for the i, . . . , n1 scheduled time points, and p0 = 0 and
pi ≤ pi+1. The default in powerlmm is to treat the values in D as known, i.e. exactly pi subjects will have
dropped out at time i. This is done by randomly sampling which piN2 participants should drop out a time
i, then adjusting their design matrices Xij to be of size (i− 1)× 2, thus their last time point will be i− 1.
Since, it is random which subjects will dropout, the power calculations will differ slightly each time. It is
also possible to treat D as random (using the option deterministic_dropout = FALSE), then dropout will
be sampled from a multinomial distribution, by converting the elements of D to the probability pi that a
subject will have exactly i measurements. This approach is similar to Galbraith, Stat, and Marschner (2002),
and Verbeke and Lesaffre (1999) who presents power calculations for two-level models with missing data.

Speeding up the computation of V (Y )−1

Doing the matrix inversion of V (Y), which is of dimension N1 ×N1, can be extremely slow for some designs.
De Leeuw and Kreft (1986) (where they credit Swamy (1971)) noted a more computationally efficient
formulation, adopting it to the three-level formulation in Equation 1, lets us write

V (Y)−1 = σ−2[IN1 −X(X>X)−1X>] + X(X>X)−1A−1(X>X)−1X,

where,
A−1 = [σ2(X>X)−1 + Ψ2 + ZΨ3Z>].

Here A of size 2N2 × 2N2. However, since A is block-diagonal, with each block for cluster k being of
size n2[k], the computation done in powerlmm, takes advantage of the sparse matrix functions from the
Matrix-package. By using sparse matrix algebra the speed of computing A−1 will depend greatly on the
number of subjects per cluster. In most cases this solution is dramatically faster then directly solving V (Y)−1.
For instance, calculating V(β) for a study with n1 = 10, n2 = 30, n3 = 20 is approximately 50 times faster
using this method.

Changes in powerlmm 0.2

As of version 0.2, V(β) is now computed using the sparse Cholesky factorization used in lme4, and the
implementation specifically borrows from lme4pureR. Thus,

V(β) = σ2R−1
X (R>X)−1

where RX is the Cholesky factor of the fixed effects, see Eq. 54 in Bates et al. (2015).
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Power

To make the power calculations accurate for small samples sizes, power is calculated using the t distribution.
Thus, we can define the power function as,

1− β = P (tν,λ > tν,1−α/2) + P (tν,λ < tν,α/2),

where λ is the non-centrality parameter,

λ = δ101/
√
V(δ101),

and ν is the appropriate degrees of freedom of the t distribution. For the balanced fully nested three-level
model, the degrees of freedom are N3− 2, where N3 is the total number of clusters in both treatment arms.

Satterthwaite’s degrees of freedom approximation

For small samples, the choice of degrees of freedom will potentially influence the accuracy of the power
analysis a lot. In powerlmm it is therefore possible to use Satterthwaite’s DF approximation in the power
analysis. The degrees of freedom of the t distribution is approximated as,

ν = 2(L>V(β)L)2

V (L>V(β)L)
,

and L specifies the linear contrast we are testing. Moreover, V (L>V(β)L) is approximated using the delta
method

V (L>V(β)L) ∼= [∆f(θ)(θ)]>V(θ)[∆f(θ)(θ)],

∆f(θ)(θ) is the gradient of LV (β)L with respect to θ, where θ is the vector of variance components, and
thus V(θ) is the asymptotic covariance matrix of the random effects (including σ2), which is approximated as
V(θ) = 2I−1

E , where IE is the expected information matrix for the variance parameters. The calculation of
IE is described in Equation 25 in Halekoh and Højsgaard (2014). However, this implementation involves
manipulating V (Y), i.e. the full variance-covariance matrix including all N observations. For large sample
sizes this will be very computationally intensive, and the computation time will depend mostly on n1 and n2.
For instance, for a fully nested model with n1 = 10, n2 = 100, n3 = 4, computations will likely take 30-60
seconds, and be very RAM intensive.

Partially nested designs

For the partially nested designs V(δ100[tx]) is calculated as above, and V(δ100[c]) by setting the cluster-
level random effects to zero. Degrees of freedom for this model is trickier, and I recommend always using
Satterthwaite DFs whenever possible. If balanced DFs are requested, then currently n3 − 1 i used, where n3
is the number of clusters in the treatment group only.

Two-level designs

For the two-level designs, V(δ101) can be calculated using the three-level formulas with the cluster-level
random effects set to zero. Deleting these terms reduces the model to the classical two-level formulation.
Degrees of freedom for the balanced model is N2 − 2, where N2 is the total number of subjects in both
treatment arms.
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Standardized formulation

If there’s no missing data and the clusters sizes are balanced, the variance of the slope can be calculated
more simply as

V(δ100) =
σ2 + n1σ

2
u1
V (t) + n1n2σ

2
v1
V (t)

n1n2n3V (t) ,

with,

V(t) = Σn1
i=1(ti − t̄)2.

By defining the amount of slope variance at the cluster-level as ρs = σ2
v1
/(σ2

v1
+σ2

u1
), and ICC_pre_subjects

= ρ1 = (σ2
u0

+ σ2
v0

)/(σ2
v0

+ σ2
u0

+ σ2
e), and the variance ratio as rτ = (σ2

v1
+ σ2

u1
)/σ2

e we can then rewrite the
formula using the relative parameters ρ1, ρs and rτ ,

V(δ∗1) = (1− ρ1) + n1Var(t)(1− ρ1)[n2ρsr + (1− ρs)r]
n1n2n3Var(t) ,

which will yield the same non-centrality parameters as long as the interaction-coefficient corresponds to the
same standardized value, e.g. Cohen’s d. Thus, we see that power depends on n1, n2, n3, the duration of the
study, the proportion of intercept variance at baseline, the amount of slope variance at the third level, and
the variance ratio.
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