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as.data.frame.plcp_multi_sim_summary

Convert a multi-sim summary object to a tidy data.frame

Description

Convert a multi-sim summary object to a tidy data.frame

Usage

## S3 method for class 'plcp_multi_sim_summary'
as.data.frame(x, ...)

Arguments

x Object with class plcp_multi_sim_summary.

... Not used

Value

a data.frame with one row for each simulation. Columns include the simulation study parameters
and the results.
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cohend Use Cohen’s d as the effect size in study_parameters

Description

This function is used as input to the effect_size argument in study_parameters, if standardized
effect sizes should be used. The choice of the denominator differs between fields, and this function
supports the common ones: pre- or posttest SD, or the random slope SD.

Usage

cohend(ES, standardizer = "pretest_SD", treatment = "control")

Arguments

ES numeric; value of the standardized effect size. Can be a vector.

standardizer character; the standardizer (denominator) used to calculate Cohen’s d. Al-
lows options are: "pretest_SD", "posttest_SD", or "slope_SD". See Details from
more information.

treatment character; indicates if the standardizer should be based on the "treatment"
or "control" group—this only matters for 3-level partially nested designs.

Details

Standardizing using the pretest_SD or posttest_SD

For these effect sizes, ES indicates the standardized difference between the treatment groups at
posttest (T_end), standardized by using either the implied standard deviation at pretest or posttest.
Thus, the actual raw differences in average slopes between the treatments are,

slope_diff = (ES * SD)/T_end.

slope_SD: standardizing using the random slopes
This standardization is quite different from using the pretest or posttest SD. Here the average slope
difference is standardized using the total SD of the random slopes. This is done by e.g. Raudenbush
and Liu (2001). NB, for this effect size ES indicates the difference in change per unit time, and not
at posttest. Thus, the raw difference in average slopes is,

slope_diff = ES * slope_SD.

For a 3-level model, slope_SD = sqrt(sigma_subject_slope^2 + sigma_cluster_slope^2).

Value

A list of the same length as ES. Each element is a named list of class plcp_cohend, with the
elements:

• set: A helper function that converts the standardized ES to raw values. Accepts a study_parameters
objects, and returns a numeric indicating the raw difference between the treatment at posttest.

• get: contains a list with the original call: "ES", "standardizer", and "treatment".
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References

Raudenbush, S. W., & Liu, X. F. (2001). Effects of study duration, frequency of observation, and
sample size on power in studies of group differences in polynomial change. Psychological methods,
6(4), 387.

See Also

study_parameters

Examples

# Pretest SD
p <- study_parameters(n1 = 11,

n2 = 20,
icc_pre_subject = 0.5,
cor_subject = -0.4,
var_ratio = 0.03,
effect_size = cohend(0.4, standardizer = "pretest_SD"))

get_slope_diff(p)

# using posttest SD,
# due to random slope SD will be larger at posttest
# thus ES = 0.4 indicate larger raw slope difference
# using posttest SD
p <- update(p, effect_size = cohend(0.4,

standardizer = "posttest_SD"))
get_slope_diff(p)

# Random slope SD
p <- study_parameters(n1 = 11,

n2 = 20,
icc_pre_subject = 0.5,
cor_subject = -0.4,
var_ratio = 0.03,
effect_size = cohend(0.4, standardizer = "slope_SD"))

# Partially nested ----------------------------------------------------------
p <- study_parameters(n1 = 11,

n2 = 20,
n3 = 4,
icc_pre_subject = 0.5,
icc_pre_cluster = 0.25,
cor_subject = -0.4,
var_ratio = 0.03,
partially_nested = TRUE,
effect_size = cohend(0.4, standardizer = "pretest_SD")
)

# Default is to use control groups SD
get_slope_diff(p)
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# Treatment group's SD also include cluster-level intercept variance.
# Thus, ES of 0.4 will indicate a larger raw difference
# using the treatment group's SD
p <- update(p, effect_size = cohend(0.4,

standardizer = "pretest_SD",
treatment = "treatment"))

get_slope_diff(p)

## Combine multiple values, and raw and standardized effects ----------------
p <- study_parameters(n1 = 11,

n2 = 20,
icc_pre_subject = 0.5,
cor_subject = -0.4,
var_ratio = 0.03,
effect_size = c(-5, 9,

cohend(c(0.5, 0.8), standardizer = "pretest_SD"),
cohend(c(0.5, 0.8), standardizer = "posttest_SD")))

## Recreate results in Raudenbush & Liu 2001 --------------------------------
rauden_liu <- function(D, f, n = 238) {

n1 <- f * D + 1
p <- study_parameters(n1 = n1,

n2 = n/2,
T_end = D,
sigma_subject_intercept = sqrt(0.0333),
sigma_subject_slope = sqrt(0.0030),
sigma_error = sqrt(0.0262),
effect_size = cohend(0.4, standardizer = "slope_SD"))

x <- get_power(p)
round(x$power, 2)

}

## Table 1 in Raudenbush & Liu 2001
## NB, it looks like they made an error in column 1.
g <- expand.grid(D = 2:8,

f = c(0.5, 1:6))
g$power <- mapply(rauden_liu, D = g$D, f = g$f)
tidyr::spread(g, f, power)

## Table 3 Table 1 in Raudenbush & Liu 2001
g <- expand.grid(n = seq(100, 800, by = 100),

D = 4,
f = c(0.5, 1:6))

g$power <- mapply(rauden_liu, n = g$n, f = g$f, D = g$D)
tidyr::spread(g, n, power)
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create_lmer_formula Create an lmer formula based on a study_parameters-object

Description

Create an lmer formula based on a study_parameters-object

Usage

create_lmer_formula(object, ...)

Arguments

object A study_parameters-object containing one study design

... Unused, optional arguments.

Details

The lme4 formula will correspond to the model implied by the specified parameters in the study_parameters-
object. Thus, if e.g. cor_subject is NA or NULL the corresponding term is removed from the lmer
formula. Parameters that are 0 are retained.

Currently only objects with one study design are supported, i.e. objects with class plcp, and not
plcp_multi; data.frame with multiple designs are currently not supported.

Value

A character vector with lmer formula syntax.

dropout_manual Manually specify dropout per time point

Description

Used as input to the dropout-argument in study_parameters.

Usage

dropout_manual(...)

Arguments

... The proportion of dropout per time point, either as a vector of length n1, or n1
individual numeric arguments, see Details.

Details

Specifying dropout manually requires that the dropout is 0 at the first time point. Moreover, dropout
can’t decrease over time and can never be 1.
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Value

A list of class plcp_dropout_manual

See Also

dropout_weibull, per_treatment

Examples

dropout <- dropout_manual(0, 0, 0, 0, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.45)

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohend = -0.8)

plot(p, plot = 2)
get_power(p)

# Can also use a vector as input
dropout <- dropout_manual(seq(0, 0.5, length.out = 11))
p <- study_parameters(n1 = 11,

n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohend = -0.8)

plot(p, plot = 2)
get_power(p)

## Not run:
# Decreasing dropout will throw an error
dropout_manual(0, 0.1, 0.1, 0.2, 0.1)

# Dropout at the first time point will throw an error
dropout_manual(0.1, 0.1, 0.1, 0.2, 0.2)

## End(Not run)
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dropout_weibull Use the Weibull distribution to specify the dropout process

Description

Used as input to the dropout-argument in study_parameters

Usage

dropout_weibull(proportion, rate)

Arguments

proportion Total proportion of subjects that have dropped out at the last time point. Must
be less than 1.

rate Indicates the "shape" of the dropout process, if > 1 then dropout is concentrated
at the end of the study, if rate < 1 more dropout occurs at the beginning of the
study. If rate == 1 the risk of dropout is constant.

Details

N.B a constant (rate = 1) hazard of dropout does not mean dropout is linear over time. It means that
the risk of dropping out at the next time point is constant over the study period.

Value

A plcp_weibull named list, with the first element containing the dropout function.

References

Galbraith, S., Stat, M., & Marschner, I. C. (2002). Guidelines for the design of clinical trials with
longitudinal outcomes. Controlled clinical trials, 23(3), 257-273.

See Also

dropout_manual, per_treatment

Examples

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout_weibull(proportion = 0.3, rate = 3),
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cohend = -0.8)

get_dropout(p)
plot(p, plot = 2)

# Different per treatment
tx <- dropout_weibull(proportion = 0.3, rate = 3)
cc <- dropout_weibull(proportion = 0.3, rate = 1/3)
dropout <- per_treatment(control = cc,

treatment = tx)

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohend = -0.8)

plot(p, plot = 2)

# Compare power for different dropout amounts
dropout <- c(dropout_weibull(proportion = 0.3, rate = 3),

dropout_weibull(proportion = 0.5, rate = 3),
dropout_weibull(proportion = 0.5, rate = 1/3))

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout,
cohend = -0.8)

get_power(p)

get_correlation_matrix

Calculate the subject-level (ICC) correlations among time points

Description

Calculate the subject-level (ICC) correlations among time points
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Usage

get_correlation_matrix(object)

## S3 method for class 'plcp_multi'
get_correlation_matrix(object)

Arguments

object An object created by study_parameters

Details

The correlation between time point Ti and Ti+1 within the same subject is also called the intraclass
correlation (ICC) at level two. If the random slopes are non-zero this ICC change over time.

Value

A n1 x n1 matrix with the marginal subject-level correlations between time points.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.03)

get_correlation_matrix(paras)

get_DEFT Calculate the design effect and Type I errors

Description

This functions helps to evaluate the consequences of ignoring a random slope at the cluster level.

Usage

get_DEFT(object)

## S3 method for class 'plcp_3lvl'
get_DEFT(object)

Arguments

object A plcp_3lvl-object created by study_parameters
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Details

The design effect (DEFT) is the ratio of the standard error from the correct three-level model to
the standard error from the misspecified model omitting the cluster-level random slope. The stan-
dard error for the misspecified model is calculated by assuming that the cluster-level random slope
variance is added to the subject-level random slope.

The approximate Type I error under the miss-specified model is also calculated. The effect of
wrongly ignoring a third-level random slope on the Type I errors, depends on n1, n2, n3, icc_slope,
and, var_ratio.

Value

A data.frame with the columns n1, n2, n3, icc_slope,var_ratio, DEFT, and, approx_type1.
The number of rows of the data.frame will be equals to the number of different combination of
parameters values specified with study_parameters.

See Also

simulate.plcp

Examples

paras <- study_parameters(n1 = 11,
n2 = 30,
n3 = 3,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = c(0.01,0.05, 0.1),
var_ratio = 0.02)

get_DEFT(paras)

get_dropout Get the amount of dropout

Description

Get the amount of dropout

Usage

get_dropout(object, ...)

## S3 method for class 'plcp_multi'
get_dropout(object, n = 1, ...)



get_ICC_pre_clusters 13

Arguments

object An object created by study_parameters

... Optional arguments.

n The n-th dataset to use for objects with multiple designs.

Value

A data.frame with the proportion of dropout per time point and treatment condition.

See Also

dropout_manual, dropout_weibull

Examples

p <- study_parameters(n1 = 11,
n2 = 5,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
dropout = dropout_weibull(proportion = 0.3, rate = 3),
cohend = -0.8)

get_dropout(p)

get_ICC_pre_clusters Calculate the amount of baseline variance at the cluster level

Description

Calculate the amount of baseline variance at the cluster level

Usage

get_ICC_pre_clusters(object, ...)

Arguments

object An object created by study_parameters

... Optional named arguments.

Details

The proportion of variance at the cluster level at baseline can be interpreted as the correlation
between two subjects belonging to the same cluster.
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Value

Returns the proportion of baseline variance at the cluster level, as a numeric vector.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
sigma_subject_intercept = 1.2,
sigma_subject_slope = 0.2,
sigma_cluster_intercept = 0.5,
sigma_cluster_slope = 0.2,
sigma_error = 1.2,
cohend = -0.8)

get_ICC_pre_clusters(paras)

get_ICC_pre_subjects Calculate the subject-level ICC at pretest

Description

Calculate the subject-level ICC at pretest

Usage

get_ICC_pre_subjects(object, ...)

Arguments

object An object created by study_parameters

... Optional named arguments.

Value

Returns the proportion of baseline variance at the subject level (which also includes cluster-level
variance), as a numeric vector.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
sigma_subject_intercept = 1.2,
sigma_subject_slope = 0.2,
sigma_cluster_intercept = 0.5,
sigma_cluster_slope = 0.2,
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sigma_error = 1.2,
cohend = -0.8)

get_ICC_pre_subjects(paras)

get_ICC_slope Calculate the amount of slope variance at the third level

Description

Calculate the amount of slope variance at the third level

Usage

get_ICC_slope(object, ...)

Arguments

object An object created by study_parameters.

... Optional named arguments.

Value

Returns the proportion of slope variance at the third level as a numeric vector. NA is returned for
models with no slope variance as either level two or three.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
sigma_subject_intercept = 1.2,
sigma_subject_slope = 0.2,
sigma_cluster_intercept = 0,
sigma_cluster_slope = 0.2,
sigma_error = 1.2,
cohend = -0.8)

get_ICC_slope(paras)
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get_monte_carlo_se Calculate the Monte Carlo standard error of the empirical power es-
timates

Description

Returns the expected simulation error for a study design. Indicates how many simulation that are
needed for a desired precision in the empirical power estimates.

Usage

get_monte_carlo_se(object, nsim, power, ...)

## S3 method for class 'plcp_power_3lvl'
get_monte_carlo_se(object, nsim, ...)

## S3 method for class 'plcp_power_2lvl'
get_monte_carlo_se(object, nsim, ...)

Arguments

object An object created by get_power

nsim A numeric indicating the number of simulations
power Optional. A numeric indicating the empirical power.
... Currently not used. Used when object is NULL.

Value

A data.frame with the estimated power, expected standard error of the simulated power estimate,
and the 95 % CI of the estimate.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

x <- get_power(paras)
get_monte_carlo_se(x, nsim = 1000)

# Without an object
get_monte_carlo_se(power = 0.8, nsim = 1000)
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get_power Calculate power for two- and three-level models with missing data.

Description

Calculate power for two- and three-level models with missing data.

Usage

get_power(object, df = "between", alpha = 0.05, progress = TRUE,
R = 1L, cores = 1L, ...)

Arguments

object An object created by study_parameters

df Either "between" or, "satterth" for Satterthwaite’s DF approximation. Also ac-
cepts a numeric value which will be used as DF.

alpha The alpha level, defaults to 0.05.

progress logical; displays a progress bar when > 1 power analysis is performed.

R An integer indicating how many realizations to base power on. Useful when
dropout or cluster sizes are sampled (i.e. are random variables).

cores An integer indicating how many CPU cores to use.

... Other potential arguments; currently used to pass progress bar from Shiny

Details

Calculation of the standard errors

Designs with equal cluster sizes, and with no missing data, uses standard closed form equations to
calculate standard errors. Designs with missing data or unequal cluster sizes uses more computa-
tionally intensive linear algebra solutions.

To see a more detailed explanation of the calculations, type vignette("technical", package = "powerlmm").

Degrees of freedom

Power is calculated using the t distribution with non-centrality parameter b/se, and dfs are either
based on a the between-subjects or between-cluster dfs, or using Satterthwaite’s approximation. For
the "between" method, N3 − 2 is used for three-level models, and N2 − 2 for two-level models,
where N3 and N2 is the total number of clusters and subjects in both arms.

N.B Satterthwaite’s method will be RAM and CPU intensive for large sample sizes. The computa-
tion time will depend mostly on n1 and n2. For instance, for a fully nested model with n1 = 10,
n2 = 100, n3 = 4, computations will likely take 30-60 seconds.

Cluster sizes or dropout pattern that are random (sampled)

If deterministic_dropout = FALSE the proportion that dropout at each time point will be
sampled from a multinomial distribution. However, if it is TRUE, the proportion of subjects that
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dropout will be non-random, but which subjects dropout will still be random. Both scenarios of-
ten lead to small variations in the estimated power. Moreover, using cluster sizes that are random,
unequal_clusters(func = ...), can lead to large variations in power for a single realization of
cluster sizes. In both scenarios the expected power can be calculated by repeatedly recalculating
power for different new realizations of the random variables. This is done be using the argument R
– power, sample size, and DFs, is then reported by averaging over the R realizations.

If power varies over the R realization then the Monte Carlo SE is also reported. The SE is based on
the normal approximation, i.e. sd(power_i)/sqrt(R).

Value

a list or data.frame depending if power is calculated for a single set of parameters or a combi-
nation of multiple values. Has class plcp_power_3lvl for fully- and partially nested three-level
designs, and class plcp_power_2lvl for two-level designs.

See Also

study_parameters, simulate.plcp, get_power_table

Examples

# Two-level model
paras <- study_parameters(n1 = 11,

n2 = 40,
T_end = 10,
icc_pre_subject = 0.5,
var_ratio = 0.02,
cohend = -0.8)

get_power(paras)

# With missing data
paras <- study_parameters(n1 = 11,

n2 = 40,
T_end = 10,
icc_pre_subject = 0.5,
var_ratio = 0.02,
dropout = dropout_weibull(0.3, 2),
cohend = -0.8)

get_power(paras)

# Three-level model
paras <- study_parameters(n1 = 11,

n2 = 10,
n3 = 5,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
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icc_slope = 0.05,
var_ratio = 0.02,
cohend = -0.8)

get_power(paras)

# With missing data
paras <- study_parameters(n1 = 11,

n2 = 10,
n3 = 5,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.02,
dropout = dropout_weibull(0.3, 2),
cohend = -0.8)

get_power(paras)

# Satterthwaite DFs
get_power(paras, df = "satterthwaite")

get_power_table Create a power table for a combination of parameter values

Description

Create a power table for a combination of parameter values

Usage

get_power_table(object, n2, ..., df = "between", alpha = 0.05,
R = 1L, cores = 1L)

Arguments

object An object created by study_parameters

n2 A vector of n2 values

... Optional named arguments. Up to two extra arguments can be compared. When
used together with the plot method, the first argument will be grouped by color
and the second by facets.

df Either "between" or "satterth" for Satterthwaite’s DF approximation. Also ac-
cepts a numeric value which will be used as DF. See get_power

alpha The alpha level, defaults to 0.05.

R An integer indicating how many realizations to base power on. Useful when
dropout or cluster sizes are sampled (i.e. are random variables).

cores An integer indicating how many CPU cores to use.
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Value

A data.frame with class plcp_power_table.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

# increase only n2
x <- get_power_table(paras, n2 = 10:15)
plot(x)

# Compare two parameters
x <- get_power_table(paras, n2 = 10:15, n3 = 6:8)
plot(x)

# Compare impact of three parameters
x <- get_power_table(paras, n2 = seq(3, 25, by = 3),

n3 = c(3,6,9),
icc_slope = c(0, 0.05, 0.1))

plot(x)

get_sds Calculate the model implied standard deviations per time point

Description

Calculate the model implied standard deviations per time point

Usage

get_sds(object, treatment = "treatment", n = 1)

Arguments

object An object created by study_parameters

treatment character; either "treatment" or "control". Indicates for which group SDs
should be calculated for. This only makes a difference for 3-level partially nested
designs.

n Optional; selects row n if object is a data.frame of parameters
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Value

data.frame with class plcp_sds containing the model implied standard deviations per time point.

See Also

get_VPC, get_correlation_matrix

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.03)

get_sds(paras)

# plot
plot(get_sds(paras))

get_slope_diff Return the raw difference between the groups at posttest

Description

Used internally to calculate the difference in change over time between the two treatment groups.

Usage

get_slope_diff(object)

## S3 method for class 'plcp'
get_slope_diff(object)

## S3 method for class 'plcp_multi'
get_slope_diff(object)

Arguments

object A study_parameters-object.

Value

A numeric indicating the mean difference between the treatment and control group at posttest.
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get_var_ratio Calculates the ratio of the slope variance to the within-subjects error
variance

Description

Calculates the ratio of the slope variance to the within-subjects error variance

Usage

get_var_ratio(object, ...)

Arguments

object An object created by study_parameters

... Optional arguments.

Value

Returns the ratio of the total slope variance to the within-subject error as a numeric vector.

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
sigma_subject_intercept = 1.2,
sigma_subject_slope = 0.2,
sigma_cluster_intercept = 0,
sigma_cluster_slope = 0.2,
sigma_error = 1.2,
cohend = -0.8)

get_var_ratio(paras)

get_VPC Calculate the variance partitioning coefficient

Description

Calculate the variance partitioning coefficient
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Usage

get_VPC(object)

## S3 method for class 'plcp'
get_VPC(object)

Arguments

object An object created by study_parameters

Details

For partially nested studies, the VPC is calculated for the treatment group.

Value

a data.frame with class plcp_VPC containing the percentage of variance per level and time point.
The column between_clusters is also the intraclass correlation for level three, i.e. the correlation
between two subjects belonging to the same cluster at a specific time point. With random slopes
in the model the variances per time point will be a quadratic function of time. tot_var is the
percentage increase or decrease in total variance relative to baseline variance.

The plot method returns a ggplot2::ggplot object.

References

Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning variation in multilevel models.
Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences, 1(4),
223-231.

See Also

plot.plcp_VPC

Examples

paras <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
icc_slope = 0.05,
var_ratio = 0.03)

res <- get_VPC(paras)
res

# Plot
plot(res)
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per_treatment Setup parameters that differ per treatment group

Description

Helps specifying unequal cluster sizes with study_parameters, e.g. different number of clusters
in the treatment and control arm, or different dropout patterns.

Usage

per_treatment(control, treatment)

Arguments

control Value used for control group

treatment Value used for treatment group

Details

The type of object passed to control and treatment will depend on the parameters in study_parameters
that should have different values per treatment group.

Value

An object of class "plcp_per_treatment"

See Also

unequal_clusters, study_parameters, dropout_weibull

Examples

n2 <- per_treatment(control = 10,
treatment = 20)

p <- study_parameters(n1 = 11,
n2 = n2,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)
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plot.plcp Plot method for study_parameters-objects

Description

Plot method for study_parameters-objects

Usage

## S3 method for class 'plcp'
plot(x, n = 1, type = "both", ...)

Arguments

x An object of class plcp.

n specifies which row n should be used if object is a data.frame containing
multiple setups.

type indicated what plot to show. If effect the plot showing the treatment groups
change over time will be shown, if dropout the missing data pattern will be
shown, if both both plots will be shown.

... Optional arguments.

plot.plcp_ICC2 Plot method for get_correlation_matrix-objects

Description

Plot method for get_correlation_matrix-objects

Usage

## S3 method for class 'plcp_ICC2'
plot(x, ...)

Arguments

x An object created with get_correlation_matrix

... Optional arguments, currently ignored.
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plot.plcp_power_table Plot method for get_power_table-objects

Description

Plot method for get_power_table-objects

Usage

## S3 method for class 'plcp_power_table'
plot(x, ...)

Arguments

x An object of class plcp_power_table.

... Optional arguments.

plot.plcp_sds Plot method for get_sds-objects

Description

Plot method for get_sds-objects

Usage

## S3 method for class 'plcp_sds'
plot(x, ...)

Arguments

x An object of class plcp_sds.

... Optional arguments.
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plot.plcp_VPC Plot method for get_VPC-objects

Description

Plot method for get_VPC-objects

Usage

## S3 method for class 'plcp_VPC'
plot(x, ...)

Arguments

x An object created with get_VPC

... Optional arguments, currently ignored.

powerlmm Power Analysis for Longitudinal Multilevel Models

Description

The powerlmm package provides a fast and flexible way to calculate power for two- and three-level
multilevel models with missing data. The focus is on power analysis for the test of the treatment
effect in longitudinally clustered designs, i.e. where the first level is measurements, and the second
level is subjects nested within a (optional) higher level-three unit, e.g. therapists.

Details

All study designs are specified using the function study_parameters, which lets you define your
model using familiar notation, either by specifying the model parameters directly, or by using rela-
tive standardized inputs (e.g. % variance at each level). Several functions are provided to help you
visualize and understand the implied model, type methods(class="plcp") to see available meth-
ods. The basic features of the package are also available via an interactive (Shiny) web application,
which you can launch by typing shiny_powerlmm().

Supported models

The purpose of powerlmm is to help design longitudinal treatment studies, with or without higher-
level clustering (e.g. by therapists, groups, or physicians), and missing data. The main features of
the package are:

• Longitudinal Two- and three-level (nested) linear mixed models, and partially nested designs

• Random slopes at the subject- and cluster-level.

• Account for missing data/dropout.
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• Unbalanced designs (both unequal cluster sizes, and treatment groups).

• Calculate the design effect, and estimated type I error when the third-level is ignored.

• Fast analytical power calculations for all supported designs.

• Explore bias, Type I error and model misspecification using. convenient simulation methods

• Few clusters; accurate power analysis even with very few clusters, by using Satterthwaite’s
degrees of freedom approximation.

• Create power curves to guide power analysis and help with optimal design of sample sizes at
each level.

Tutorials

Type vignette("two-level", package = "powerlmm"), or vignette("three-level", package = "powerlmm")
to see a tutorial on using powerlmm to calculate power. See all available vignettes by typing
vignette(package = "powerlmm").

Author(s)

Kristoffer Magnusson

Maintainer: Kristoffer Magnusson <hello@kristoffer.email>

See Also

study_parameters, get_power

print.plcp_2lvl Print method for two-level study_parameters-objects

Description

Print method for two-level study_parameters-objects

Usage

## S3 method for class 'plcp_2lvl'
print(x, ...)

Arguments

x An object of class plcp_2lvl.

... Optional arguments.
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print.plcp_3lvl Print method for three-level study_parameters-objects

Description

Print method for three-level study_parameters-objects

Usage

## S3 method for class 'plcp_3lvl'
print(x, ...)

Arguments

x An object of class plcp_3lvl.

... Optional arguments.

print.plcp_ICC2 Print method for get_correlation_matrix-objects

Description

Print method for get_correlation_matrix-objects

Usage

## S3 method for class 'plcp_ICC2'
print(x, ...)

Arguments

x An object created by get_correlation_matrix

... Optional arguments
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print.plcp_mc_se Print method for get_monte_carlo_se-objects

Description

Print method for get_monte_carlo_se-objects

Usage

## S3 method for class 'plcp_mc_se'
print(x, digits = 2, ...)

Arguments

x An object created with get_monte_carlo_se.

digits The number of digits to print.

... Optional arguments.

print.plcp_multi Print method for study_parameters-multiobjects

Description

Print method for study_parameters-multiobjects

Usage

## S3 method for class 'plcp_multi'
print(x, print_max = 10, empty = ".",
digits = 2, ...)

Arguments

x An object of class plcp_multi.

print_max The number of rows to show

empty Symbol used to replace repeating non-unique parameters

digits Digits to show

... Optional arguments.
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print.plcp_multi_power

Print method for get_power-multi

Description

Print method for get_power-multi

Usage

## S3 method for class 'plcp_multi_power'
print(x, ...)

Arguments

x An object of class plcp_multi_power.

... Optional arguments

print.plcp_multi_sim Print method for simulate.plcp_multi-objects

Description

Print method for simulate.plcp_multi-objects

Usage

## S3 method for class 'plcp_multi_sim'
print(x, ...)

Arguments

x An object created with simulate.plcp_multi

... Optional arguments.
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print.plcp_multi_sim_summary

Print method for summary.plcp_multi_sim-objects

Description

Print method for summary.plcp_multi_sim-objects

Usage

## S3 method for class 'plcp_multi_sim_summary'
print(x, add_cols = NULL, bias = TRUE,
power = TRUE, estimates = TRUE, digits = 2, ...)

Arguments

x An object of class plcp_multi_sim_summary

add_cols character vector; indicates the names of the additional columns that should
be added to the output. Intended use case is when you want to add some of
the setup parameters, this print method is not smart enough to figure out which
parameters you are investigating.

bias logical; indicates if parameter bias should be printed.

power logical; indicates if empirical power should be printed.

estimates logical; indicates if the parameter estimates should be printed.

digits number of significant digits.

... Optional arguments.

print.plcp_power_2lvl Print method for two-level get_power

Description

Print method for two-level get_power

Usage

## S3 method for class 'plcp_power_2lvl'
print(x, ...)

Arguments

x An object of class plcp_power_2lvl.

... Optional arguments
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print.plcp_power_3lvl Print method for three-level get_power

Description

Print method for three-level get_power

Usage

## S3 method for class 'plcp_power_3lvl'
print(x, ...)

Arguments

x An object of class plcp_power_3lvl.

... Optional arguments

print.plcp_sds Print method for get_sds-objects

Description

Print method for get_sds-objects

Usage

## S3 method for class 'plcp_sds'
print(x, ...)

Arguments

x An object of class plcp_sds.

... Optional arguments.
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print.plcp_sim Print method for simulate.plcp-objects

Description

Print method for simulate.plcp-objects

Usage

## S3 method for class 'plcp_sim'
print(x, ...)

## S3 method for class 'plcp_sim_formula_compare'
print(x, ...)

Arguments

x An object created with simulate.plcp

... Optional arguments.

print.plcp_sim_formula

Print method for simulation formulas

Description

Print method for simulation formulas

Usage

## S3 method for class 'plcp_sim_formula'
print(x, ...)

## S3 method for class 'plcp_compare_sim_formula'
print(x, ...)

Arguments

x A formula object.

... Not used
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print.plcp_sim_summary

Print method for summary.plcp_sim-objects

Description

Print method for summary.plcp_sim-objects

Usage

## S3 method for class 'plcp_sim_summary'
print(x, verbose = TRUE, digits = 2, ...)

Arguments

x An object of class plcp_sim_summary

verbose logical; indicates if additional information should be printed (default is TRUE).

digits number of significant digits.

... Optional arguments.

print.plcp_VPC Print method for get_vpc-objects

Description

Print method for get_vpc-objects

Usage

## S3 method for class 'plcp_VPC'
print(x, digits = 2, ...)

Arguments

x Object created with link{get_VPC}

digits Number of digits to print

... Optional arguments
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shiny_powerlmm Launch powerlmm’s Shiny web application

Description

This Shiny application provides the basic functionality of the powerlmm-package in a user friendly
web application.

Usage

shiny_powerlmm()

Examples

## Not run:

library(shiny)
shiny_powerlmm()

## End(Not run)

simulate.plcp Perform a simulation study using a study_parameters-object

Description

Perform a simulation study using a study_parameters-object

Usage

## S3 method for class 'plcp'
simulate(object, nsim, seed = NULL, formula = NULL,
satterthwaite = FALSE, CI = FALSE, cores = 1, progress = FALSE,
batch_progress = TRUE, ...)

## S3 method for class 'plcp_multi'
simulate(object, nsim, seed = NULL,
formula = NULL, satterthwaite = FALSE, CI = FALSE, cores = 1,
progress = FALSE, batch_progress = TRUE, ...)
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Arguments

object An object created by study_parameters.

nsim The number of simulations to run.

seed Currently ignored.

formula Model formula(s) used to analyze the data, see Details. Should be created using
sim_formula. It is also possible to compare multiple models, e.g. a correct and
a misspecified model, by combining the formulas using sim_formula_compare.
See Examples. If NULL the formula is made automatically, using create_lmer_formula,
which does not support objects with multiple simulation setups.

satterthwaite Logical; if TRUE Satterthwaite’s degrees of freedom approximation will be used
when computing p-values. This is implemented using the lmerTest-package.
See Details.

CI Logical; if TRUE coverage rates for 95 % confidence intervals will be calculated.
See Details.

cores Number of CPU cores to use. If called from a GUI environment (e.g. RStudio)
or a computer running Microsoft Windows, PSOCK clusters will be used. If
called from a non-interactive Unix environment forking is utilized.

progress logical; will display progress if TRUE. Currently ignored on Windows. Package
pbmclapply is used to display progress, which relies on forking. N.B using
a progress bar will noticeably increase the simulation time, due to the added
overhead.

batch_progress logical; if TRUE progress will be shown for simulations with multiple setups.

... Optional arguments, see Saving in Details section.

Details

See also vignette("simulations", package = "powerlmm") for a tutorial.

Model formula
If no data transformation is used, the available model terms are:

• y the outcome vector, with potential missing data.

• y_c the complete version of y, before dropout was simulated.

• time the time vector.

• treatment treatment indicator (0 = "control", 1 = "treatment").

• subject subject-level id variable, from 1 to total number of subjects.

• cluster for three-level models; the cluster-level id variable, from 1 to the total number of
clusters.

See Examples and the simulation-vignette for formula examples. For objects that contain a single
study setup, then the lmer formula can be created automatically using create_lmer_formula.

Satterthwaite’s approximation, and CI coverage
To decrease the simulation time the default is to only calculate Satterthwaite’s dfs and the CIs’
coverage rates for the test of ’time:treatment’-interaction. This can be changed using the argument
test in sim_formula.
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Confidence intervals are both calculated using profile likelihood and by the Wald approximation,
using a 95 % confidence level.

Saving intermediate results for multi-sims
Objects with multi-sims can be save after each batch is finished. This is highly recommended when
many designs are simulated. The following additional arguments control saving behavior:

• 'save', logical, if TRUE each batch is saved as a RDS-file. Results are saved in your working
directory, in the directory specified by save_folder.

• 'save_folder' a character indicating the folder name. Default is 'save'.

• 'save_folder_create', logical, if TRUE then save_folder will be created if it does not
exist in your working directory.

See Also

sim_formula, sim_formula_compare, summary.plcp_sim, simulate_data

Examples

## Not run:
# Two-level ---------------------------------------------------------------
p <- study_parameters(n1 = 11,

n2 = 25,
sigma_subject_intercept = 1.44,
sigma_subject_slope = 0.2,
sigma_error = 1.44,
effect_size = cohend(0.5))

f <- sim_formula("y ~ treatment * time + (1 + time | subject)")

res <- simulate(object = p,
nsim = 1000,
formula = f,
satterthwaite = TRUE,
progress = FALSE,
cores = 1,
save = FALSE)

summary(res)

# Three-level (nested) ------------------------------------------------------
p <- study_parameters(n1 = 10,

n2 = 20,
n3 = 4,
sigma_subject_intercept = 1.44,
icc_pre_cluster = 0,
sigma_subject_slope = 0.2,
icc_slope = 0.05,
sigma_error = 1.44,
effect_size = 0)
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## compare correct and miss-specified model
f0 <- "y ~ treatment * time + (1 + time | subject)"
f1 <- "y ~ treatment * time + (1 + time | subject) + (0 + time | cluster)"
f <- sim_formula_compare("correct" = f1,

"wrong" = f0)

res <- simulate(object = p,
nsim = 1000,
formula = f,
satterthwaite = TRUE,
progress = FALSE,
cores = 1,
save = FALSE)

summary(res)

## Compare random effects using LRT,
## summarise based on best model from each sim
summary(res,

model_selection = "FW",
LRT_alpha = 0.1,
para = "treatment:time")

# Partially nested design ---------------------------------------------------
p <- study_parameters(n1 = 11,

n2 = 10,
n3 = 4,
sigma_subject_intercept = 1.44,
icc_pre_cluster = 0,
sigma_subject_slope = 0.2,
cor_subject = -0.5,
icc_slope = 0.05,
sigma_error = 1.44,
partially_nested = TRUE,
effect_size = cohend(-0.5))

f <- sim_formula("y ~ treatment * time + (1 + time | subject) +
(0 + treatment:time | cluster)")

res <- simulate(object = p,
nsim = 1000,
formula = f,
satterthwaite = TRUE,
progress = FALSE,
cores = 4,
save = FALSE)

summary(res)

# Run multiple designs -----------------------------------------------------
p <- study_parameters(n1 = 10,

n2 = 20,
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n3 = c(2, 4, 6),
sigma_subject_intercept = 1.44,
icc_pre_cluster = 0,
sigma_subject_slope = 0.2,
icc_slope = 0.05,
sigma_error = 1.44,
effect_size = cohend(0.5))

f0 <- "y ~ treatment * time + (1 + time | subject)"
f1 <- "y ~ treatment * time + (1 + time | subject) + (0 + time | cluster)"
f <- sim_formula_compare("correct" = f1,

"wrong" = f0)

res <- simulate(object = p,
nsim = 1000,
formula = f,
satterthwaite = TRUE,
progress = FALSE,
cores = 1,
save = FALSE)

# Summarize 'time:treatment' results for n3 = c(2, 4, 6) for 'correct' model
summary(res, para = "time:treatment", model = "correct")

# Summarize cluster-level random slope for n3 = c(2, 4, 6) for 'correct' model
summary(res, para = "cluster_slope", model = "correct")

## End(Not run)

simulate_data Generate a data set using a study_parameters-object

Description

Generate a data set using a study_parameters-object

Usage

simulate_data(paras, n = 1)

## S3 method for class 'plcp'
simulate_data(paras, n = NULL)

## S3 method for class 'plcp_multi'
simulate_data(paras, n = 1)

Arguments

paras An object created by study_parameters
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n Optional; specifies which row n should be used if object is a data.frame con-
taining multiple setups.

Value

A data.frame with the simulated data in long form. With the following columns:

• y the outcome vector, with missing values as NA

• y_c the outcome vector, without missing values removed.

• time the time vector

• treatment treatment indicator (0 = "control", 1 = "treatment")

• subject subject-level id variable, from 1 to total number of subjects.

• cluster for three-level models; the cluster-level id variable, from 1 to the total number of
clusters.

Examples

p <- study_parameters(n1 = 11,
n2 = 10,
n3 = 4,
T_end = 10,
fixed_intercept = 37,
fixed_slope = -0.65,
sigma_subject_intercept = 2.89,
sigma_cluster_intercept = 0.6,
icc_slope = 0.1,
var_ratio = 0.03,
sigma_error = 1.5,
cor_subject = -0.5,
cor_cluster = 0,
cohend = 0.5)

d <- simulate_data(p)

sim_formula Create a simulation formula

Description

Create a simulation formula

Usage

sim_formula(formula, data_transform = NULL, test = "time:treatment")
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Arguments

formula A character containing a lme4 formula.

data_transform Optional; a function that applies a transformation to the data during each sim-
ulation.

test A character vector indicating which parameters should be tested. Only applies
to tests using Satterthwaite dfs, or when calculating confidence intervals.

Details

It is possible to fit model without any random effects. If no random effects is specified the model is
fit using lm().

Value

Object with class plcp_sim_formula

See Also

sim_formula_compare, transform_to_posttest

Examples

# 2-lvl model
f <- sim_formula("y ~ treatment * time + (1 + time | subject)")

# ANCOVA using 'data_transform'
f <- sim_formula("y ~ treatment + pretest",

data_transform = transform_to_posttest,
test = "treatment")

sim_formula_compare Compare multiple simulation formulas

Description

This functions allows comparing multiple models fit to the same data set during simulation.

Usage

sim_formula_compare(...)

Arguments

... Named formulas that should be compared, see Examples.
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Value

Object with class plcp_compare_sim_formula

See Also

sim_formula

Examples

# Formulas can be a named character
# uses the defaults 'sim_formula()'
f <- sim_formula_compare("m0" = "y ~ time * treatment + (1 | subject)",

"m1" = "y ~ time * treatment + (1 + time | subject)")

# Can also use sim_formula()
f0 <- sim_formula("y ~ time * treatment + (1 | subject)")
f1 <- sim_formula("y ~ time * treatment + (1 + time | subject)")
f <- sim_formula_compare("m0" = f0, "m1" = f1)

study_parameters Setup study parameters

Description

Setup the parameters for calculating power for longitudinal multilevel studies comparing two groups.
Ordinary two-level models (subjects with repeated measures), and longitudinal three-level models
with clustering due to therapists, schools, provider etc, are supported. Random slopes at the subject
level and cluster level are possible. Cluster sizes can be unbalanced, and vary by treatment. Partially
nested designs are supported. Missing data can also be accounted for.

Usage

study_parameters(n1, n2, n3 = 1, T_end = NULL, fixed_intercept = 0L,
fixed_slope = 0L, sigma_subject_intercept = NULL,
sigma_subject_slope = NULL, sigma_cluster_intercept = NULL,
sigma_cluster_slope = NULL, sigma_error = 10, cor_subject = 0L,
cor_cluster = 0L, cor_within = 0L, var_ratio = NULL,
icc_slope = NULL, icc_pre_subject = NULL, icc_pre_cluster = NULL,
effect_size = 0L, cohend = NULL, partially_nested = FALSE,
dropout = 0L, deterministic_dropout = TRUE)
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Arguments

n1 Number of level 1 units, e.g. measurements per subject.
n2 Number of level 2 units per level 3 unit, e.g. subjects per cluster. Unbalanced

cluster sizes are supported, see unequal_clusters.
n3 Number of level 3 units per treatment, can be different in each treatment arm,

see per_treatment.
T_end Time point of the last measurement. If NULL it will be set to n1 - 1.
fixed_intercept

Average baseline value, assumed to be equal for both groups.
fixed_slope Overall change per unit time, in the control group.
sigma_subject_intercept

Subject-level random intercept.
sigma_subject_slope

Subject-level random slope.
sigma_cluster_intercept

Cluster-level random intercept.
sigma_cluster_slope

Cluster-level random slope.
sigma_error Within-subjects (residual) variation.
cor_subject Correlation between the subject-level random intercept and slopes.
cor_cluster Correlation between the cluster-level random intercept and slopes.
cor_within Correlation of the level 1 residual. Currently ignored in the analytical power

calculations.
var_ratio Ratio of the random slope variance to the within-subject variance.
icc_slope Proportion of slope variance at the cluster level.
icc_pre_subject

Amount of baseline variance at the subject level. N.B. the variance at the
subject-level also included the cluster-level variance. If there’s no random slopes,
this would be the subject-level ICC, i.e. correlation between time points.

icc_pre_cluster

Amount of baseline variance at the cluster level.
effect_size The treatment effect. Either a numeric indicating the mean difference (unstan-

dardized) between the treatments at posttest, or a standardized effect using the
cohend helper function.

cohend Deprecated; now act as a shortcut to cohend helper function. Equivalent to using
effect_size = cohend(cohend, standardizer = "pretest_SD", treatment = "control")

partially_nested

logical; indicates if there’s clustering in both arms or only in the treatment
arm.

dropout Dropout process, see dropout_weibull or dropout_manual. Assumed to be 0
if NULL.

deterministic_dropout

logical; if FALSE the input to dropout will be treated as random and dropout
will be sampled from a multinomial distribution. N.B.: the random dropout will
be sampled independently in both treatment arms.
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Details

Comparing a combination of parameter values
It is possible to setup a grid of parameter combinations by entering the values as vectors. All unique
combinations of the inputs will be returned. This is useful if you want see how different values of
the parameters affect power. See also the convenience function get_power_table.

Standardized and unstandardized inputs
All parameters of the models can be specified. However, many of the raw parameter values in a mul-
tilevel/LMM do no directly affect the power of the test of the treatment:time-coefficient. Power
will depend greatly on the relative size of the parameters, therefore, it is possible to setup your calcu-
lations using only standardized inputs, or by a combination of raw inputs and standardized inputs.
For instance, if sigma_subject_slope and icc_slope is specified, the sigma_cluster_slope
will be solved for. Only the cluster-level parameters can be solved when standardized and raw val-
ues are mixed. sigma_error is 10 by default. More information regarding the standardized inputs
are available in the two-level and three-level vignettes.

Difference between 0 and NA
For the variance components 0 and NA/NULL have different meanings. A parameter that is 0 is still
kept in the model, e.g. if icc_pre_cluster = 0 a random intercept is estimated at the cluster
level, but the true value is 0. If the argument is either NULL or NA it is excluded from the model. This
choice will matter when running simulations, or if Satterthwaite dfs are used.

The default behavior if a parameters is not specified is that cor_subject and cor_cluster is 0,
and the other variance components are NULL.

Effect size and Cohen’s d
The argument effect_size let’s you specify the average difference in change between the treat-
ment groups. You can either pass a numeric value to define the raw difference in means at posttest,
or use a standardized effect size, see cohend for more details on the standardized effects.

The argument cohend is kept for legacy reasons, and is equivalent to using effect_size = cohend(cohend, standardizer = "pretest_SD", treatment = "control").

Two- or three-level models
If either sigma_cluster_slope or icc_slope and sigma_cluster_intercept or icc_pre_cluster
is NULL it will be assumed a two-level design is wanted.

Unequal cluster sizes and unbalanced allocation
It is possible to specify different cluster sizes using unequal_clusters. Cluster sizes can vary
between treatment arms by also using per_treatment. The number of clusters per treatment can
also be set by using per_treatment. Moreover, cluster sizes can be sampled from a distribution,
and treated as a random variable. See per_treatment and unequal_clusters for examples of
their use.

Missing data and dropout
Accounting for missing data in the power calculations is possible. Currently, dropout can be spec-
ified using either dropout_weibull or dropout_manual. It is possible to have different dropout
patterns per treatment group using per_treatment. See their respective help pages for examples
of their use.

If deterministic_dropout = TRUE then the proportion of dropout is treated is fixed. However,
exactly which subjects dropout is randomly sampled within treatments. Thus, clusters can become
slightly unbalanced, but generally power varies little over realizations.
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For random dropout, deterministic_dropout = FALSE, the proportion of dropout is converted
to the probability of having exactly i measurements, and the actual dropout is sampled from a
multinomial distribution. In this case, the proportion of dropout varies over the realizations from
the multinomial distribution, but will match the dropout proportions in expectation. The random
dropout in each treatment group is sampled from independent multinomial distributions.

Generally, power based on fixed dropout is a good approximation of random dropout.

Value

A list or data.frame of parameters values, either of class plcp or plcp_multi if multiple pa-
rameters are compared.

See Also

cohend, get_power, simulate.plcp

Examples

# Three level model with both subject- and cluster-level random slope
# Power calculation using standardized inputs
p <- study_parameters(n1 = 11,

n2 = 5,
n3 = 4,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
effect_size = cohend(-0.8))

get_power(p)

# The same calculation with all parameters specified directly
p <- study_parameters(n1 = 11,

n2 = 5,
n3 = 4,
T_end = 10,
fixed_intercept = 37,
fixed_slope = -0.65,
sigma_subject_intercept = 2.8,
sigma_subject_slope = 0.4726944,
sigma_cluster_intercept = 0,
sigma_cluster_slope = 0.1084435,
sigma_error = 2.8,
cor_subject = -0.5,
cor_cluster = 0,
effect_size = cohend(-0.8))

get_power(p)

# Standardized and unstandardized inputs
p <- study_parameters(n1 = 11,

n2 = 5,
n3 = 4,
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sigma_subject_intercept = 2.8,
icc_pre_cluster = 0.07,
sigma_subject_slope = 0.47,
icc_slope = 0.05,
sigma_error = 2.8,
effect_size = cohend(-0.8))

get_power(p)

## Two-level model with subject-level random slope
p <- study_parameters(n1 = 11,

n2 = 40,
icc_pre_subject = 0.5,
var_ratio = 0.03,
effect_size = cohend(-0.8))

get_power(p)

# add missing data
p <- update(p, dropout = dropout_weibull(0.2, 1))
get_power(p)

## Comparing a combination of values
p <- study_parameters(n1 = 11,

n2 = c(5, 10),
n3 = c(2, 4),
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = c(0, 0.05),
effect_size = cohend(c(-0.5, -0.8))
)

get_power(p)

summary.plcp_multi_sim

Summarize simulations based on a combination of multiple parameter
values

Description

Summarize simulations based on a combination of multiple parameter values

Usage

## S3 method for class 'plcp_multi_sim'
summary(object, para = "time:treatment",
model = NULL, alpha = 0.05, model_selection = NULL,
LRT_alpha = 0.1, ...)
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Arguments

object A multiple simulation object created with simulate.plcp_multi

para The name of the fixed or random effect that should be summarized.

model Specifies which model that should be summarized. Accepts either a character
with the name used in sim_formula_compare, or an integer value.

alpha Indicates the significance level. Default is 0.05 (two-tailed), one-tailed tests are
not yet implemented.

model_selection

Indicates if model selection should be performed. If NULL (default), all models
are returned, if FW or BW model selection is performed using LRT, and the result
is based on the selected model from each simulation. See summary.plcp_sim
for more information.

LRT_alpha Indicates the alpha level used when comparing models during model selection.

... Optional arguments.

Value

A list with class plcp_multi_sim_summary. It can be coursed to a data.frame, using as.data.frame.
Each row summarizes one of the parameter combinations used in the simulation. In addition to the
setup parameter values, it contains the following columns:

• parameter is the name of the coefficient

• M_est is the mean of the estimates taken over all the simulations.

• theta is the population parameter values specified with study_parameters

• M_se is the mean estimated standard error taken over all the simulations.

• SD_est is the empirical standard error; i.e. the standard deviation of the distribution of the
generated estimates

• power is the empirical power of the Wald Z test, i.e. the proportion of simulated p-values <
alpha

• power_satt is the empirical power of the Wald t test using Satterthwaite’s degree of freedom
approximation.

• satt_NA is the proportion of Satterthwaite’s approximations that failed.

• prop_zero is the proportion of the simulated estimates that are zero; only shown for random
effects.

summary.plcp_sim Summarize the results from a simulation of a single study design-
object

Description

Summarize the results from a simulation of a single study design-object
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Usage

## S3 method for class 'plcp_sim'
summary(object, model = NULL, alpha = 0.05,
para = NULL, ...)

## S3 method for class 'plcp_sim_formula_compare'
summary(object, model = NULL,
alpha = 0.05, model_selection = NULL, LRT_alpha = 0.1,
para = NULL, ...)

Arguments

object A simulate.plcp-object

model Indicates which model that should be returned. Default is NULL which return
results from all model formulas. Can also be a character matching the names
used in sim_formula_compare.

alpha Indicates the significance level. Default is 0.05 (two-tailed), one-tailed tests are
not yet implemented.

para Selects a parameter to return. Default is NULL, which returns all parameters.
If multiple model formulas are compared a named list can be used to specify
different parameters per model.

... Currently not used
model_selection

indicates if the summary should be based on a LRT model selection strategy.
Default is NULL, which returns all models, if FW or BW a forward or backward
model selection strategy is used, see Details.

LRT_alpha Indicates the alpha level used if doing LRT model comparisons.

Details

Model selection
It is possible to summarize the performance of a data driven model selection strategy based on the
formulas used in the simulation (see sim_formula_compare). The two model selection strategies
are:

• FW: Forward selection of the models. Starts with the first model formula and compares it
with the next formula. Continues until the test of M_i vs M_i + 1 is non-significant, and
then picks M_i. Thus if three models are compared, and the comparison of M_1 vs M_2 is
non-significant, M_3 will not be tested and M_1 is the winning model.

• BW: Backward selection of the models. Starts with the last model formula and compares it
with the previous formula. Continues until the test of M_i vs M_i - 1 is significant or until
all adjacent formulas have been compared. Thus if three models are compared, and the com-
parison of M_3 vs M_2 is non-significant, M2 vs M1 will be tested and M2 will be picked if
significant, and M1 if not.

The model comparison is performed using a likelihood ratio test based the REML criterion. Hence,
it assumed you are comparing models with the same fixed effects, and that one of the models is a
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reduced version of the other (nested models). The LRT test is done as a post-processing step, so
model_selection option will not re-run the simulation. This also means that different alpha levels
for the LRTs can be investigated without re-running the simulation.

Data transformation

If the data has been transformed sim_formula(data_transform = ...), then true parameter val-
ues (thetas shown in the summary will most likely no longer apply. Hence, relative bias and CI
coverage will be in relation to the original model. However, the empirical estimates will be summa-
rized correctly, enabling investigation of power and Type I errors using arbitrary transformations.

Value

Object with class plcp_sim_summary. It contains the following output:

• parameter is the name of the coefficient

• M_est is the mean of the estimates taken over all the simulations.

• M_se is the mean estimated standard error taken over all the simulations.

• SD_est is the empirical standard error; i.e. the standard deviation of the distribution of the
generated estimates.

• power is the empirical power of the Wald Z test, i.e. the proportion of simulated p-values <
alpha.

• power_satt is the empirical power of the Wald t test using Satterthwaite’s degree of freedom
approximation.

• satt_NA is the proportion of Satterthwaite’s approximations that failed.

• prop_zero is the proportion of the simulated estimates that are zero; only shown for random
effects.

transform_to_posttest Helper to transform the simulated longitudinal data.frame

Description

This is en example of a data transformation applied during simulation. It takes the longitudinal data
and transforms it into a pretest-posttest model in wide format. Useful if you want to compare the
longitudinal LMM with e.g. AN(C)OVA models.

Usage

transform_to_posttest(data)

Arguments

data a data.frame created using simulate_data
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Value

a data.frame with y now only includes the posttest values. Also includes three new columns:

• pre subject-level pretest scores.

• pre_cluster cluster-level pretest scores.

• pre_subject_c subject-level pretest scores center around the cluster-level pretest.

See Also

simulate.plcp, study_parameters

Examples

# Compare longitudinal 3-level model to 2-level model
# fit to just the posttest data
#
# Both models are fit to the same dataset during simulation.
p <- study_parameters(n1 = 11,

n2 = 20,
n3 = 3,
icc_pre_subject = 0.5,
icc_pre_cluster = 0.1,
icc_slope = 0.05,
var_ratio = 0.03)

# simulation formulas
# analyze as a posttest only 2-level model
f_pt <- sim_formula("y ~ treatment + (1 | cluster)",

test = "treatment",
data_transform = transform_to_posttest)

# analyze as 3-level longitudinal
f_lt <- sim_formula("y ~ time*treatment +

(1 + time | subject) +
(1 + time | cluster)")

f <- sim_formula_compare("posttest" = f_pt,
"longitudinal" = f_lt)

## Not run:
res <- simulate(p,

formula = f,
nsim = 2000,
cores = parallel::detectCores(),
satterthwaite = TRUE)

summary(res)

## End(Not run)
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unequal_clusters Setup unbalanced cluster sizes

Description

Helps specifying unequal cluster sizes with study_parameters

Usage

unequal_clusters(..., func = NULL, trunc = 1, replace = 1)

Arguments

... Any number of separate numeric arguments specifying each cluster’s size

func A function that generates cluster sizes, used instead of .... See Details.

trunc Cutoff for values generated by func, x < trunc are replaced, used to avoid
negative or 0 values.

replace Indicates what value to replace cluster sizes less than trunc with.

Details

If func is used together with a function that generates random draws, e.g. rnorm or rpois, then
cluster sizes (and possibly the number of clusters), will be treated as a random variable. The ex-
pected power is then reported by averaging over multiple realizations of the random variables.

Unless per_treatment is used, then the same realization of random cluster sizes will be used in
both groups. To use independent realizations from the same distribution for each treatment group,
simply combine the unequal_clusters with per_treatment.

Value

An object of type ’plcp_unequal_clusters’

See Also

per_treatment

Examples

library(dplyr)
n2 <- unequal_clusters(5, 10, 15, 40)
p <- study_parameters(n1 = 11,

n2 = n2,
n3 = 6,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
sigma_error = 1,
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var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

# verify cluster sizes
d <- simulate_data(p)
d %>%

filter(time == 0) %>%
group_by(treatment, cluster) %>%
summarise(n = n())

# Poisson distributed cluster sizes, same in both groups
n2 <- unequal_clusters(func = rpois(n = 5, lambda = 5))
p <- study_parameters(n1 = 11,

n2 = n2,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
sigma_error = 1,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

# Independent draws from same dist
n2 <- unequal_clusters(func = rpois(n = 5, lambda = 5))
p <- study_parameters(n1 = 11,

n2 = per_treatment(n2, n2),
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
sigma_error = 1,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

# Use per_treatment() to specify per treatment ------------------------------
n2 <- per_treatment(unequal_clusters(2, 2, 2, 2, 3, 4, 5),

unequal_clusters(10, 15))
p <- study_parameters(n1 = 11,

n2 = n2,
n3 = 3,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

# verify cluster sizes
d <- simulate_data(p)
d %>%

filter(time == 0) %>%
group_by(treatment, cluster) %>%
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summarise(n = n())

update.plcp Update a study_parameters-object with new settings

Description

Update a study_parameters-object with new settings

Usage

## S3 method for class 'plcp'
update(object, ...)

Arguments

object An object created by study_parameters

... Any number of named arguments that should be updated

Details

Currently only the arguments used to construct the original object can be updated.

Examples

p <- study_parameters(n1 = 11,
n2 = 10,
n3 = 3,
T_end = 10,
icc_pre_subject = 0.5,
icc_pre_cluster = 0,
var_ratio = 0.03,
icc_slope = 0.05,
cohend = -0.8)

p <- update(p, icc_slope = 0.1)
get_ICC_slope(p)

## Not run:
# Using a "new" argument does not work (yet)
update(p, sigma_cluster_slope = 2)

## End(Not run)
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[.plcp_multi_power Subset function for plcp_multi_power-objects

Description

Custom subset function for plcp_multi_power-object to make it compatible with its print method.

Usage

## S3 method for class 'plcp_multi_power'
x[i, ...]

Arguments

x A plcp_multi_power-object.

i Indicates which rows to subset.

... Ignored.
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