Package 'powerSurvEpi'

February 7, 2018

Version 0.1.0

Date 2018-02-07
Title Power and Sample Size Calculation for Survival Analysis of Epidemiological Studies

Author

Weiliang Qiu <stwxq@channing. harvard.edu>, Jorge Chavarro <JCHAVARR@hsph. harvard. edu>, Ross Lazarus <ross.] ner <stbar@channing. harvard.edu>, Jing Ma <jing.ma@channing. harvard. edu>.
Maintainer Weiliang Qiu stwxq@channing.harvard.edu
Depends R (>= 3.1.0)
Imports stats, survival
Description Functions to calculate power and
sample size for testing main effect or interaction effect in
the survival analysis of epidemiological studies
(non-randomized studies), taking into account the correlation between the covariate of the interest and other covariates. Some calculations also take into account the competing risks and stratified analysis.
This package also includes a set of functions to calculate power and sample size for testing main effect in the survival analysis of randomized clinical trials.

License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-07 16:55:46 UTC

R topics documented:

numDEpi 2
numDEpi.default 4
Oph 6
power.stratify 7
powerCT 9
powerCT.default 12
powerCT.default0 14
powerEpi 15
powerEpi.default 17
powerEpiCont 19
powerEpiCont.default 21
powerEpiInt 22
powerEpiInt.default0 24
powerEpiInt.default1 26
powerEpiInt2 28
ssize.stratify 29
ssizeCT 31
ssizeCT.default 34
ssizeEpi 36
ssizeEpi.default 38
ssizeEpiCont 40
ssizeEpiCont.default 41
ssizeEpiInt 43
ssizeEpiInt.default0 45
ssizeEpiInt.default1 47
ssizeEpiInt2 48
Index 51
numDEpi Calculate Number of Deaths Required for Cox Proportional Hazards Regression with Two Covariates for Epidemiological Studies

Description

Calculate number of deaths required for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates. Some parameters will be estimated based on a pilot data set.

Usage
 numDEpi $\mathrm{X} 1, \mathrm{X} 2$, power, theta, alpha $=0.05$)

Arguments

X1
a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X1 should be binary and take only two possible values: zero and one.
a nPil ot by 1 vector, where nPilot is the number of subjects in the pilot study. This vector records the values of the second covariate for the $n P i l o t$ subjects in the pilot study. X2 can be binary or non-binary.
power the postulated power.
theta postulated hazard ratio
alpha type I error rate.

Details

This is an implementation of the calculation of the number of required deaths derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} should be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of deaths required to achieve a power of $1-\beta$ is

$$
D=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p)\left(1-\rho^{2}\right)}
$$

where

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ 1).
p and $r h o$ will be estimated from a pilot data set.

Value

D the number of deaths required to achieve the desired power with given type I error rate.
$\mathrm{p} \quad$ proportion of subjects taking $X_{1}=1$.
rho2 square of the correlation between X_{1} and X_{2}.

Note

(1) The formula can be used to calculate power for a randomized trial study by setting rho2=0.
(2) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio θ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

```
numDEpi.default
```


Examples

\# generate a toy pilot data set
X1 <- c(rep(1, 39), rep(0, 61))
set.seed(123456)
X2 <- sample(c(0, 1), 100, replace = TRUE)
res <- numDEpi (X1, X2, power $=0.8$, theta $=2$, alpha $=0.05$)
print(res)
\# proportion of subjects died of the disease of interest.
psi <- 0.505
\# total number of subjects required to achieve the desired power ceiling(res\$D / psi)

```
numDEpi.default Calculate Number of Deaths Required for Cox Proportional Hazards
``` Regression with Two Covariates for Epidemiological Studies

\section*{Description}

Calculate number of deaths required for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

\section*{Usage}
numDEpi.default(power, theta, p, rho2, alpha = 0.05)

\section*{Arguments}
power the postulated power.
theta postulated hazard ratio
\(\mathrm{p} \quad\) proportion of subjects taking the value one for the covariate of interest.
rho2 square of the correlation between the covariate of interest and the other covariate.
alpha type I error rate.

\section*{Details}

This is an implementation of the calculation of the number of required deaths derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
\]
where the covariate \(X_{1}\) is of our interest. The covariate \(X_{1}\) should be a binary variable taking two possible values: zero and one, while the covariate \(X_{2}\) can be binary or continuous.
Suppose we want to check if the hazard of \(X_{1}=1\) is equal to the hazard of \(X_{1}=0\) or not. Equivalently, we want to check if the hazard ratio of \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of deaths required to achieve a power of \(1-\beta\) is
\[
D=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p)\left(1-\rho^{2}\right)}
\]
where
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) 1).

\section*{Value}

The number of deaths required to achieve the desired power with given type I error rate.

Note
(1) The formula can be used to calculate power for a randomized trial study by setting rho \(2=0\).
(2) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio \(\theta\) measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio \(\theta\) measures the difference of effect on the cause-specific hazard.

\section*{References}

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

\section*{See Also}
```

numDEpi

```

\section*{Examples}
```


# Example at the end of Section 5.2 of Latouche et al. (2004)

# for a cohort study.

D <- numDEpi.default(power = 0.8, theta = 2, p = 0.39,
rho2 = 0.132^2, alpha = 0.05)
\# proportion of subjects died of the disease of interest.
psi <- 0.505
\# total number of subjects required to achieve the desired power
ceiling(D / psi)

```
Oph

\section*{Description}

The Ophthalmology data set is described in Example 14.41 on page 807 in Rosner (2006).

\section*{Usage}
data(Oph)

\section*{Format}

A data frame with 354 observations on the following 3 variables.
times a numeric vector recording the survival/censoring time for each event/censoring.
status a numeric vector recording if a observed time is event time (status=1) or censoring time (status=0).
group a factor with levels C (indicating control group) and E (indicating experimental group).

\section*{Details}

This data set was from a clinical trial (Berson et al., 1993) conducted to test the efficacy of different vitamin supplements in preventing visual loss in patients with retinitis pigmentosa. Rosner (2006) used the data from this clinical trial to illustrate the analysis of survival data (Sections 14.9-14.12 of Rosner (2006)).

The data set consists of two groups of participants: (1) the experimental group (i.e., group E in which participants receiving 15,000 IU of vitamin A per day) and (2) the control group (i.e., group C in which participants receiving 75 IU of vitamin A per day).

The participants were enrolled over a 2-year period (1984-1987) and followed for a maximum of 6 years. The follow-up was terminated in September 1991. Some participants dropped out of the study before September 1991 and had not failed. Dropouts were due to death, other diseases, or side effects possibly due to the study medications, or unwillingness to comply (take study medications). There are 6 time points (at 1st year, 2nd year, 3rd year, 4th year, 5-th year, and 6-th year) in this data set.
Rosner (2006, page 786) defined the participants who do not reach a disease endpoint during their period of follow-up as censored observations. A participant has been censored at time \(t\) if the participant has been followed up to time \(t\) and has not failed. Noninformative censoring is assumed. That is, participants who are censored have the same underlying survival curve after their censoring time as patients who are not censored.

\section*{Source}

Created based on Table 14.12 on page 787 of Rosner (2006).

\section*{References}

Berson, E.L., Rosner, B., Sandberg, M.A., Hayes, K.C., Nicholson, B.W., Weigel-DiFranco, C., and Willett, W.C. (1993). A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Archives of Ophthalmology. 111:761-772.

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{Examples}
data(Oph)
power.stratify
Power Calculation for Survival Analysis with Binary Predictor and Exponential Survival Function

\section*{Description}

Power calculation for survival analysis with binary predictor and exponential survival function.

\section*{Usage}
power.stratify(
n ,
timeUnit,
gVec,
PVec,
HR,
lambda0Vec,
power.ini = 0.8,
power.low \(=0.001\),
power.upp \(=0.999\),
```

alpha = 0.05,
verbose = TRUE)

```

\section*{Arguments}
n
timeUnit
gVec

PVec \(\quad \mathrm{m}\) by 1 vector. The s-th element is the proportion of subjects in treatment group 1 for the s-th stratum, where \(m\) is the number of strata.
HR Scalar. Hazard ratio (Ratio of the hazard for treatment group 1 to the hazard for treatment group 0, i.e. reference group).
lambda0Vec m by 1 vector. The s-th element is the hazard for treatment group 0 (i.e., reference group) in the s-th stratum.
power.ini Scalar. Initial power estimate.
power.low Scalar. Lower bound for power.
power.upp Scalar. Upper bound for power.
alpha Scalar. Type I error rate.
verbose Logical. Indicating if intermediate results will be output or not.

\section*{Details}

We assume (1) there is only one predictor and no covariates in the survival model (exponential survival function); (2) there are m strata; (3) the predictor x is a binary variable indicating treatment group \(1(x=1)\) or treatment group \(0(x=0)\); (3) the treatment effect is constant over time (proportional hazards); (4) the hazard ratio is the same in all strata, and (5) the data will be analyzed by the stratified \(\log\) rank test.
The sample size formula is Formula (1) on page 801 of Palta M and Amini SB (1985):
\[
n=\left(Z_{\alpha}+Z_{\beta}\right)^{2} / \mu^{2}
\]
where \(\alpha\) is the Type I error rate, \(\beta\) is the Type II error rate (power \(=1-\beta\)), \(Z_{\alpha}\) is the \(100(1-\alpha)\) percentile of standard normal distribution, and
\[
\mu=\log (\delta) \sqrt{\sum_{s=1}^{m} g_{s} P_{s}\left(1-P_{s}\right) V_{s}}
\]
and
\[
V_{s}=P_{s}\left[1-\frac{1}{\lambda_{1 s}}\left\{\exp \left[-\lambda_{1 s}(T-1)\right]-\exp \left(-\lambda_{1 s} T\right)\right\}\right]+\left(1-P_{s}\right)\left[1-\frac{1}{\lambda_{2 s}}\left\{\exp \left[-\lambda_{2 s}(T-1)\right]-\exp \left(-\lambda_{2 s} T\right\}\right]\right.
\]

In the above formulas, \(m\) is the number of strata, \(T\) is the total study length, \(\delta\) is the hazard ratio, \(g_{s}\) is the proportion of the total sample size in stratum \(s, P_{s}\) is the proportion of stratum \(s\), which is in treatment group 1 , and \(\lambda_{i s}\) is the hazard for the \(i\)-th treatment group in stratum \(s\).

\section*{Value}

A list of 2 elments.
\begin{tabular}{ll}
power & Estimated power \\
res.optim & \begin{tabular}{l}
Object returned by funciton optim. We used numerical optimization method to \\
calculate power based on sample size calculation formula.
\end{tabular}
\end{tabular}

\section*{References}

Palta M and Amini SB. (1985). Consideration of covariates and stratification in sample size determination for survival time studies. Journal of Chronic Diseases. 38(9):801-809.

\section*{See Also}
```

ssize.stratify

```

\section*{Examples}
```


# example on page 803 of Palta M and Amini SB. (1985).

res.power <- power.stratify(
n = 146,
timeUnit = 1.25,
gVec = c(0.5, 0.5),
PVec = c(0.5, 0.5),
HR = 1 / 1.91,
lambda0Vec = c(2.303, 1.139),
power.ini = 0.8,
power.low = 0.001,
power.upp = 0.999,
alpha = 0.05,
verbose = TRUE
)

```
powerCT

\section*{Description}

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials. Some parameters will be estimated based on a pilot data set.

\section*{Usage}
powerCT(formula, dat, \(\mathrm{nE}, \mathrm{nC}, \mathrm{RR}\), alpha \(=0.05\))

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
A formula object, e.g. Surv(time, status) \(\sim x\), where time is a vector of \\
survival/censoring time, status is a vector of censoring indicator, \(x\) is the group \\
indicator, which is a factor object in \(R\) and takes only two possible values (C for \\
control group and E for experimental group). See also the documentation of the \\
function survfit in the library survival.
\end{tabular} \\
dat & \begin{tabular}{l}
a data frame representing the pilot data set and containing at least 3 columns: \\
(1) survival/censoring time; (2) censoring indicator; (3) group indicator which \\
is a factor object in R and takes only two possible values (C for control group \\
and E for experimental group).
\end{tabular} \\
nE & \begin{tabular}{l}
number of participants in the experimental group.
\end{tabular} \\
nC & \begin{tabular}{l}
number of participants in the control group.
\end{tabular} \\
RR & postulated hazard ratio. \\
alpha & type I error rate.
\end{tabular}

\section*{Details}

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).
The movitation of this function is that some times we do not have information about \(m\) or \(p_{E}\) and \(p_{C}\) available, but we have a pilot data set that can be used to estimate \(p_{E}\) and \(p_{C}\) hence \(m\), where \(m=n_{E} p_{E}+n_{C} p_{C}\) is the expected total number of events over both groups, \(n_{E}\) and \(n_{C}\) are numbers of participants in group E (experimental group) and group C (control group), respectively. \(p_{E}\) is the probability of failure in group E (experimental group) over the maximum time period of the study (t years). \(p_{C}\) is the probability of failure in group C (control group) over the maximum time period of the study (t years).
Suppose we want to compare the survival curves between an experimental group \((E)\) and a control group \((C)\) in a clinical trial with a maximum follow-up of \(t\) years. The Cox proportional hazards regression model is assumed to have the form:
\[
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
\]

Let \(n_{E}\) be the number of participants in the \(E\) group and \(n_{C}\) be the number of participants in the \(C\) group. We wish to test the hypothesis \(H 0: R R=1\) versus \(H 1: R R\) not equal to 1 , where \(R R=\exp \left(\beta_{1}\right)=\) underlying hazard ratio for the \(E\) group versus the \(C\) group. Let \(R R\) be the postulated hazard ratio, \(\alpha\) be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group \(\mathrm{C}=n_{E} / n_{C}=k\), then the power of the test is
\[
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right)
\]
where
\[
m=n_{E} p_{E}+n_{C} p_{C}
\]
and \(z_{1-\alpha / 2}\) is the \(100(1-\alpha / 2)\) percentile of the standard normal distribution \(N(0,1), \Phi\) is the cumulative distribution function (CDF) of \(N(0,1)\).
\(p_{C}\) and \(p_{E}\) can be calculated from the following formulaes:
\[
p_{C}=\sum_{i=1}^{t} D_{i}, p_{E}=\sum_{i=1}^{t} E_{i}
\]
where \(D_{i}=\lambda_{i} A_{i} C_{i}, E_{i}=R R \lambda_{i} B_{i} C_{i}, A_{i}=\prod_{j=0}^{i-1}\left(1-\lambda_{j}\right), B_{i}=\prod_{j=0}^{i-1}\left(1-R R \lambda_{j}\right), C_{i}=\) \(\prod_{j=0}^{i-1}\left(1-\delta_{j}\right)\). And \(\lambda_{i}\) is the probability of failure at time \(i\) among participants in the control group, given that a participant has survived to time \(i-1\) and is not censored at time \(i-1\), i.e., the approximate hazard time \(i\) in the control group, \(i=1, \ldots, t ; R R l a m b d a_{i}\) is the probability of failure at time \(i\) among participants in the experimental group, given that a participant has survived to time \(i-1\) and is not censored at time \(i-1\), i.e., the approximate hazard time \(i\) in the experimental group, \(i=1, \ldots, t\), delta is the prbability that a participant is censored at time \(i\) given that he was followed up to time \(i\) and has not failed, \(i=0,1, \ldots, t\), which is assumed the same in each group.

\section*{Value}
mat. lambda a matrix with 9 columns and nTimes +1 rows, where nTimes is the number of observed time points for the control group in the data set. The 9 columns are (1) time - observed time point for the control group; (2) lambda; (3) RRlambda; (4) delta; (5) A; (6) B; (7) C; (8) D; (9) E. Please refer to the Details section for the definitions of elements of these quantities. See also Table 14.24 on page 809 of Rosner (2006).
mat.event a matrix with 5 columns and nTimes +1 rows, where \(n T i m e s\) is the number of observed time points for control group in the data set. The 5 columns are (1) time - observed time point for the control group; (2) nEvent. C - number of events in the control group at each time point; (3) nCensored. C - number of censorings in the control group at each time point; (4) nSurvive. C - number of alived in the control group at each time point; (5) nRisk.C - number of participants at risk in the control group at each time point. Please refer to Table 14.12 on page 787 of Rosner (2006).
pC estimated probability of failure in group \(C\) (control group) over the maximum time period of the study (t years).
\(\mathrm{pE} \quad\) estimated probability of failure in group E (experimental group) over the maximum time period of the study (t years).
power the power of the test.

Note
(1) The estimates of \(R R l a m b d a_{i}=R R * \lambda_{i}\). That is, RRlambda is not directly estimated based on data from the experimental group; (2) The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

\section*{References}

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129
Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{See Also}
powerCT.default0, powerCT.default

\section*{Examples}
```


# Example 14.42 in Rosner B. Fundamentals of Biostatistics.

# (6-th edition). (2006) page 809

library(survival)
data(Oph)
res <- powerCT(formula = Surv(times, status) ~ group, dat = Oph,
nE = 200, nC = 200, RR = 0.7, alpha = 0.05)

# Table 14.24 on page 809 of Rosner (2006)

print(round(res\$mat.lambda, 4))

# Table 14.12 on page 787 of Rosner (2006)

print(round(res\$mat.event, 4))

# the power

print(round(res\$power, 2))

```
powerCT.default

\section*{Description}

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

\section*{Usage}
powerCT.default(\(\mathrm{nE}, \mathrm{nC}, \mathrm{pE}, \mathrm{pC}, \mathrm{RR}, \mathrm{alpha}=0.05\))

\section*{Arguments}
\[
\mathrm{nE}
\]
number of participants in the experimental group.
\(\mathrm{nC} \quad\) number of participants in the control group.
\(\mathrm{pE} \quad\) probability of failure in group E (experimental group) over the maximum time period of the study (t years).
pC probability of failure in group \(C\) (control group) over the maximum time period of the study (t years).
RR postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).
Suppose we want to compare the survival curves between an experimental group \((E)\) and a control group \((C)\) in a clinical trial with a maximum follow-up of \(t\) years. The Cox proportional hazards regression model is assumed to have the form:
\[
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
\]

Let \(n_{E}\) be the number of participants in the \(E\) group and \(n_{C}\) be the number of participants in the \(C\) group. We wish to test the hypothesis \(H 0: R R=1\) versus \(H 1: R R\) not equal to 1 , where \(R R=\exp \left(\beta_{1}\right)=\) underlying hazard ratio for the \(E\) group versus the \(C\) group. Let \(R R\) be the postulated hazard ratio, \(\alpha\) be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group \(\mathrm{C}=n_{E} / n_{C}=k\), then the power of the test is
\[
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right),
\]
where
\[
m=n_{E} p_{E}+n_{C} p_{C}
\]
and \(z_{1-\alpha / 2}\) is the \(100(1-\alpha / 2)\) percentile of the standard normal distribution \(N(0,1), \Phi\) is the cumulative distribution function (CDF) of \(N(0,1)\).

\section*{Value}

The power of the test.

\section*{Note}

The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

\section*{References}

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{See Also}
powerCT. default0, powerCT

\section*{Examples}
```

    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page }80
    powerCT.default(nE = 200, nC = 200, pE = 0.3707, pC = 0.4890,
        RR = 0.7, alpha = 0.05)
    ```

\section*{Description}

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

\section*{Usage}
powerCT.default0(k, m, RR, alpha = 0.05)

\section*{Arguments}
\(k \quad\) ratio of participants in group E (experimental group) compared to group C (control group).
\(m \quad\) expected total number of events over both groups.
RR postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

Suppose we want to compare the survival curves between an experimental group \((E)\) and a control group \((C)\) in a clinical trial with a maximum follow-up of \(t\) years. The Cox proportional hazards regression model is assumed to have the form:
\[
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
\]

Let \(n_{E}\) be the number of participants in the \(E\) group and \(n_{C}\) be the number of participants in the \(C\) group. We wish to test the hypothesis \(H 0: R R=1\) versus \(H 1: R R\) not equal to 1 , where \(R R=\exp \left(\beta_{1}\right)=\) underlying hazard ratio for the \(E\) group versus the \(C\) group. Let \(R R\) be the postulated hazard ratio, \(\alpha\) be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group \(\mathrm{C}=n_{E} / n_{C}=k\), then the power of the test is
\[
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right)
\]
where \(z_{1-\alpha / 2}\) is the \(100(1-\alpha / 2)\) percentile of the standard normal distribution \(N(0,1), \Phi\) is the cumulative distribution function (CDF) of \(N(0,1)\).

\section*{Value}

The power of the test.

\section*{Note}

The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

\section*{References}

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129
Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{See Also}
powerCT.default, powerCT

\section*{Examples}
```

    \# Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    \# (6-th edition). (2006) page 809
    powerCT.defaulto(k = 1, m = 171.9, RR = 0.7, alpha = 0.05)
    ```
```

powerEpi

```

Power Calculation for Cox Proportional Hazards Regression with Two Covariates for Epidemiological Studies

\section*{Description}

Power calculation for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates. Some parameters will be estimated based on a pilot data set.

\section*{Usage}
powerEpi (X1, X2, failureFlag, n , theta, alpha \(=0.05\))

\section*{Arguments}

X1 a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.
X2 a nPilot by 1 vector, where nPilot is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 can be binary or non-binary.
failureFlag anPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
n
total number of subjects
theta
postulated hazard ratio
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
\]
where the covariate \(X_{1}\) is of our interest. The covariate \(X_{1}\) should be a binary variable taking two possible values: zero and one, while the covariate \(X_{2}\) can be binary or continuous.

Suppose we want to check if the hazard of \(X_{1}=1\) is equal to the hazard of \(X_{1}=0\) or not. Equivalently, we want to check if the hazard ratio of \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp \left(\beta_{1}\right)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right)
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) 1).
\(p, \rho^{2}\), and \(\psi\) will be estimated from a pilot data set.

\section*{Value}
power the power of the test.
\(\mathrm{p} \quad\) proportion of subjects taking \(X_{1}=1\).
rho2 square of the correlation between \(X_{1}\) and \(X_{2}\).
psi proportion of subjects died of the disease of interest.

Note
(1) The formula can be used to calculate power for a randomized trial study by setting rho \(2=0\).
(2) When \(\rho^{2}=0\), the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio \(\theta\) measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio \(\theta\) measures the difference of effect on the cause-specific hazard.

\section*{References}

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

\section*{See Also}
powerEpi.default

\section*{Examples}
```


# generate a toy pilot data set

X1 <- c(rep (1, 39), rep(0, 61))
set.seed(123456)
X2 <- sample(c(0, 1), 100, replace = TRUE)
failureFlag <- sample(c(0, 1), 100, prob = c(0.5, 0.5), replace = TRUE)
powerEpi(X1 = X1, X2 = X2, failureFlag = failureFlag,
n = 139, theta = 2, alpha = 0.05)

```
powerEpi.default

Power Calculation for Cox Proportional Hazards Regression with Two Covariates for Epidemiological Studies

\section*{Description}

Power calculation for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

\section*{Usage}
powerEpi.default(n, theta, \(\mathrm{p}, \mathrm{psi}\), rho2, alpha \(=0.05\))

\section*{Arguments}
n
theta
p
psi proportion of subjects died of the disease of interest.
rho2 square of the correlation between the covariate of interest and the other covariate.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
\]
where the covariate \(X_{1}\) is of our interest. The covariate \(X_{1}\) should be a binary variable taking two possible values: zero and one, while the covariate \(X_{2}\) can be binary or continuous.
Suppose we want to check if the hazard of \(X_{1}=1\) is equal to the hazard of \(X_{1}=0\) or not. Equivalently, we want to check if the hazard ratio of \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp \left(\beta_{1}\right)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right)
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\).

\section*{Value}

The power of the test.

\section*{Note}
(1) The formula can be used to calculate power for a randomized trial study by setting rho \(2=0\).
(2) When \(\mathrm{rho} 2=0\), the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio \(\theta\) measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio \(\theta\) measures the difference of effect on the cause-specific hazard.

\section*{References}

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

\section*{See Also}
powerEpi

\section*{Examples}
```


# Example at the end of Section 5.2 of Latouche et al. (2004)

# for a cohort study.

powerEpi.default(n = 139, theta = 2, p = 0.39, psi = 0.505,
rho2 = 0.132^2, alpha = 0.05)

```
```

powerEpiCont
Power Calculation for Cox Proportional Hazards Regression with Nonbinary Covariates for Epidemiological Studies

```

\section*{Description}

Power calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies. Some parameters will be estimated based on a pilot data set.

\section*{Usage}
powerEpiCont(formula, dat, X1, failureFlag, n, theta, alpha = 0.05)

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
a formula object relating the covariate of interest to other covariates to calculate \\
the multiple correlation coefficient. The variables in formula must be in the data \\
frame dat.
\end{tabular} \\
dat & \begin{tabular}{l}
a nPilot by \(p\) data frame representing the pilot data set, where \(n P i l o t ~ i s ~ t h e ~\) \\
number of subjects in the pilot study and the \(p(>1)\) columns contains the \\
covariate of interest and other covariates. \\
the covariate of interest.
\end{tabular} \\
X1 \\
failureFlag & \begin{tabular}{l}
a nPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) \\
or alive (failureFlag=0).
\end{tabular} \\
n total number of subjects.
\end{tabular}

\section*{Details}

This is an implementation of the power calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2}\right)
\]
where the covariate \(X_{1}\) is a nonbinary variable and \(\boldsymbol{X}_{2}\) is a vector of other covariates.

Suppose we want to check if the hazard ratio of the main effect \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp \left(\beta_{1}\right)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}\right)
\]
where \(\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi\) is the proportion of subjects died of the disease of interest, and \(\rho\) is the multiple correlation coefficient of the following linear regression:
\[
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
\]

That is, \(\rho^{2}=R^{2}\), where \(R^{2}\) is the proportion of variance explained by the regression of \(X_{1}\) on the vector of covriates \(\boldsymbol{X}_{2}\).
\(r h o\) will be estimated from a pilot study.

\section*{Value}
\begin{tabular}{ll}
power & The power of the test. \\
rho2 & square of the correlation between \(X_{1}\) and \(X_{2}\). \\
sigma2 & variance of the covariate of interest. \\
psi & proportion of subjects died of the disease of interest.
\end{tabular}

\section*{Note}
(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate power for a randomized trial study by setting rho2=0.

\section*{References}

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

\section*{See Also}
```

powerEpiCont.default

```

\section*{Examples}
```

    # generate a toy pilot data set
    set.seed(123456)
    X1 <- rnorm(100, mean = 0, sd = 0.3126)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
    dat <- data.frame(X1 = X1, X2 = X2, failureFlag = failureFlag)
    powerEpiCont(formula = X1 ~ X2, dat = dat, X1 = X1, failureFlag = failureFlag,
        n = 107, theta = exp(1), alpha = 0.05)
    ```

\title{
powerEpiCont.default Power Calculation for Cox Proportional Hazards Regression with Nonbinary Covariates for Epidemiological Studies
}

\section*{Description}

Power calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

\section*{Usage}
powerEpiCont.default(n, theta, sigma2, psi, rho2, alpha = 0.05)

\section*{Arguments}
n total number of subjects.
theta postulated hazard ratio.
sigma2 variance of the covariate of interest.
psi proportion of subjects died of the disease of interest.
rho2 square of the multiple correlation coefficient between the covariate of interest and other covariates.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2}\right)
\]
where the covariate \(X_{1}\) is a nonbinary variable and \(\boldsymbol{X}_{2}\) is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp \left(\beta_{1}\right)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}\right)
\]
where \(\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi\) is the proportion of subjects died of the disease of interest, and \(\rho\) is the multiple correlation coefficient of the following linear regression:
\[
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
\]

That is, \(\rho^{2}=R^{2}\), where \(R^{2}\) is the proportion of variance explained by the regression of \(X_{1}\) on the vector of covriates \(\boldsymbol{X}_{2}\).

\section*{Value}

The power of the test.

\section*{Note}
(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate power for a randomized trial study by setting rho2=0.

\section*{References}

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

\section*{See Also}
powerEpiCont

\section*{Examples}
```

    # example in the EXAMPLE section (page 557) of Hsieh and Lavori (2000).
    # Hsieh and Lavori (2000) assumed one-sided test,
    # while this implementation assumed two-sided test.
    # Hence alpha=0.1 here (two-sided test) will correspond
    # to alpha=0.05 of one-sided test in Hsieh and Lavori's (2000) example.
    powerEpiCont.default(n = 107, theta = exp(1), sigma2 = 0.3126^2,
        psi = 0.738, rho2 = 0.1837, alpha = 0.1)
    ```
```

powerEpiInt

```

Power Calculation Testing Interaction Effect for Cox Proportional Hazards Regression with two covariates for Epidemiological Studies (Both covariates should be binary)

\section*{Description}

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates. Some parameters will be estimated based on a pilot study.

\section*{Usage}
powerEpiInt(X1, X2, failureFlag, n , theta, alpha = 0.05)

\section*{Arguments}

X1
a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X1 should be binary and take only two possible values: zero and one.
X2
a nPil ot by 1 vector, where nPilot is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 should be binary and take only two possible values: zero and one.
failureFlag anPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
n
total number of subjects.
theta
postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right),
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp (\gamma)=\theta\) is:
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{\delta}[\log (\theta)]^{2} \psi}\right)
\]
where
\[
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
\]
\(\psi\) is the proportion of subjects died of the disease of interest, and \(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(X_{2}=\) 0), \(p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=\right.\) 1, and, \(X_{2}=1\)).
\(p_{00}, p_{01}, p_{10}, p_{11}\), and \(\psi\) will be estimated from the pilot data.

\section*{Value}
power the power of the test.
p estimated \(\operatorname{Pr}\left(X_{1}=1\right)\)
q estimated \(\operatorname{Pr}\left(X_{2}=1\right)\)
p0 estimated \(\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\)
p1 \(\quad\) estimated \(\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)\)
rho2 square of the estimated \(\operatorname{corr}\left(X_{1}, X_{2}\right)\)
G
a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
mya estimated number of subjects taking values \(X_{1}=0\) and \(X_{2}=0\).
myb estimated number of subjects taking values \(X_{1}=0\) and \(X_{2}=1\).
myc estimated number of subjects taking values \(X_{1}=1\) and \(X_{2}=0\).
myd estimated number of subjects taking values \(X_{1}=1\) and \(X_{2}=1\).
psi proportion of subjects died of the disease of interest.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
powerEpiInt.default0, powerEpiInt2

\section*{Examples}
```

    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
    powerEpiInt(X1, X2, failureFlag, n = 184, theta = 3, alpha = 0.05)
    ```

\section*{Description}

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
powerEpiInt.default0(n, theta, \(\mathrm{p}, \mathrm{psi}, \mathrm{G}, \mathrm{rho2}\), alpha \(=0.05\))

\section*{Arguments}
n
theta
p
psi
G
total number of subjects.
postulated hazard ratio. proportion of subjects taking the value one for the covariate of interest. proportion of subjects died of the disease of interest.
a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
rho2
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right),
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp (\gamma)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{G}[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right)
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]

If \(X_{1}\) and \(X_{2}\) are uncorrelated, we have \(p_{0}=p_{1}=p\) leading to \(1 /[(1-q) q]\). For \(q=0.5\), we have \(G=4\).

\section*{Value}

The power of the test.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
powerEpiInt.default1, powerEpiInt2

\section*{Examples}
```

    # Example at the end of Section 4 of Schmoor et al. (2000).
    powerEpiInt.default0(n = 184, theta = 3, p = 0.61, psi = 139 / 184,
        G = 4.79177, rho2 = 0.015^2, alpha = 0.05)
    ```

\section*{Description}

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
powerEpiInt.default1 (n, theta, psi, p00, p01, p10, p11, alpha = 0.05)

\section*{Arguments}
n
theta
psi proportion of subjects died of the disease of interest.
p00 proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=0\), i.e., \(p_{00}=\operatorname{Pr}\left(X_{1}=\right.\) 0 , and, \(X_{2}=0\)).
p01 proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=1\), i.e., \(p_{01}=\operatorname{Pr}\left(X_{1}=\right.\) 0 , and, \(X_{2}=1\)).
p10 proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=0\), i.e., \(p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(X_{2}=0\)).
p11 proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=1\), i.e., \(p_{11}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(X_{2}=1\)).
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp (\gamma)=\theta\) is:
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{\delta}[\log (\theta)]^{2} \psi}\right)
\]
where
\[
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
\]
\(\psi\) is the proportion of subjects died of the disease of interest, and \(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(X_{2}=\) \(0), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(X_{2}=1\)).

\section*{Value}

The power of the test.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
powerEpiInt.default0, powerEpiInt2

\section*{Examples}
```


# Example at the end of Section 4 of Schmoor et al. (2000).

# p00, p01, p10, and p11 are calculated based on Table III on page 448

# of Schmoor et al. (2000).

powerEpiInt.default1(n = 184, theta = 3, psi = 139 / 184,
p00 = 50 / 184, p01 = 21 / 184, p10 = 78 / 184, p11 = 35 / 184,
alpha = 0.05)

```

\section*{Description}

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
powerEpiInt2(n, theta, psi, mya, myb, myc, myd, alpha = 0.05)

\section*{Arguments}
n
total number of subjects.
theta
psi proportion of subjects died of the disease of interest.
mya number of subjects taking values \(X_{1}=0\) and \(X_{2}=0\) obtained from a pilot study.
myb number of subjects taking values \(X_{1}=0\) and \(X_{2}=1\) obtained from a pilot study.
myc number of subjects taking values \(X_{1}=1\) and \(X_{2}=0\) obtained from a pilot study.
myd proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=1\) obtained from a pilot study.
alpha type I error rate.

\section*{Details}

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the power required to detect a hazard ratio as small as \(\exp (\gamma)=\theta\) is
\[
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{G}[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right),
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]
and \(p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=\) \(m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n_{o b s}, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+\) \(m y d) / n_{o b s}, n_{o b s}=m y a+m y b+m y c+m y d\).
\(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).

\section*{Value}

The power of the test.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
powerEpiInt.default0, powerEpiInt.default1

\section*{Examples}
```

    # Example at the end of Section 4 of Schmoor et al. (2000).
    # mya, myb, myc, and myd are obtained from Table III on page 448
    # of Schmoor et al. (2000).
    powerEpiInt2(n = 184, theta = 3, psi = 139 / 184,
        mya = 50, myb = 21, myc = 78, myd = 35, alpha = 0.05)
    ```
ssize.stratify Sample size calculation for Survival Analysis with Binary Predictor and Exponential Survival Function

\section*{Description}

Sample size calculation for survival analysis with binary predictor and exponential survival function.

\section*{Usage}
ssize.stratify(
power,
timeUnit,
gVec,
PVec,
HR,
lambda0Vec,
alpha = 0.05,
verbose = TRUE)

\section*{Arguments}
power Scalar. Power of the test.
timeUnit Scalar. Total study length.
gVec \(\quad \mathrm{m}\) by 1 vector. The s-th element is the proportion of the total sample size for the \(s\)-th stratum, where \(m\) is the number of strata.

PVec \(\quad \mathrm{m}\) by 1 vector. The s-th element is the proportion of subjects in treatment group 1 for the s-th stratum, where \(m\) is the number of strata.
HR Scalar. Hazard ratio (Ratio of the hazard for treatment group 1 to the hazard for treatment group 0 , i.e. reference group).
lambda0Vec \(\quad \mathrm{m}\) by 1 vector. The s-th element is the hazard for treatment group 0 (i.e., reference group) in the s-th stratum.
alpha Scalar. Type I error rate.
verbose Logical. Indicating if intermediate results will be output or not.

\section*{Details}

We assume (1) there is only one predictor and no covariates in the survival model (exponential survival function); (2) there are m strata; (3) the predictor x is a binary variable indicating treatment group \(1(x=1)\) or treatment group \(0(x=0)\); (3) the treatment effect is constant over time (proportional hazards); (4) the hazard ratio is the same in all strata, and (5) the data will be analyzed by the stratified log rank test.
The sample size formula is Formula (1) on page 801 of Palta M and Amini SB (1985):
\[
n=\left(Z_{\alpha}+Z_{\beta}\right)^{2} / \mu^{2}
\]
where \(\alpha\) is the Type I error rate, \(\beta\) is the Type II error rate (power \(=1-\beta\)), \(Z_{\alpha}\) is the \(100(1-\alpha)\) percentile of standard normal distribution, and
\[
\mu=\log (\delta) \sqrt{\sum_{s=1}^{m} g_{s} P_{s}\left(1-P_{s}\right) V_{s}}
\]
and
\(V_{s}=P_{s}\left[1-\frac{1}{\lambda_{1 s}}\left\{\exp \left[-\lambda_{1 s}(T-1)\right]-\exp \left(-\lambda_{1 s} T\right)\right\}\right]+\left(1-P_{s}\right)\left[1-\frac{1}{\lambda_{2 s}}\left\{\exp \left[-\lambda_{2 s}(T-1)\right]-\exp \left(-\lambda_{2 s} T\right\}\right]\right.\)

In the above formulas, \(m\) is the number of strata, \(T\) is the total study length, \(\delta\) is the hazard ratio, \(g_{s}\) is the proportion of the total sample size in stratum \(s, P_{s}\) is the proportion of stratum \(s\), which is in treatment group 1, and \(\lambda_{i s}\) is the hazard for the \(i\)-th treatment group in stratum \(s\).

\section*{Value}

The sample size.

\section*{References}

Palta M and Amini SB. (1985). Consideration of covariates and stratification in sample size determination for survival time studies. Journal of Chronic Diseases. 38(9):801-809.

\section*{See Also}
```

power.stratify

```

\section*{Examples}
```


# example on page 803 of Palta M and Amini SB. (1985).

n <- ssize.stratify(
power = 0.9,
timeUnit = 1.25,
gVec = c(0.5, 0.5),
PVec = c(0.5, 0.5),
HR = 1 / 1.91,
lambda0Vec = c(2.303, 1.139),
alpha = 0.05,
verbose = TRUE
)

```
ssizeCT Sample Size Calculation in the Analysis of Survival Data for Clinical Trials

\section*{Description}

Sample size calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials. Some parameters will be estimated based on a pilot data set.

\section*{Usage}
ssizeCT(formula, dat, power, \(k, R R\), alpha \(=0.05\))

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
A formula object, e.g. Surv(time, status) ~ x , where time is a vector of \\
survival/censoring time, status is a vector of censoring indicator, x is the group \\
indicator, which is a factor object in R and takes only two possible values (C for \\
control group and E for experimental group). See also the documentation of the \\
function survfit in the library survival.
\end{tabular} \\
dat \\
a data frame representing the pilot data set and containing at least 3 columns: \\
(1) survival/censoring time; (2) censoring indicator; (3) group indicator which \\
is a factor object in R and takes only two possible values (C for control group \\
and E for experimental group).
\end{tabular}

\section*{Details}

This is an implementation of the sample size calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

The movitation of this function is that some times we do not have information about \(m\) or \(p_{E}\) and \(p_{C}\) available, but we have a pilot data set that can be used to estimate \(p_{E}\) and \(p_{C}\) hence \(m\), where \(m=n_{E} p_{E}+n_{C} p_{C}\) is the expected total number of events over both groups, \(n_{E}\) and \(n_{C}\) are numbers of participants in group E (experimental group) and group C (control group), respectively. \(p_{E}\) is the probability of failure in group E (experimental group) over the maximum time period of the study (t years). \(p_{C}\) is the probability of failure in group C (control group) over the maximum time period of the study (t years).
Suppose we want to compare the survival curves between an experimental group \((E)\) and a control group \((C)\) in a clinical trial with a maximum follow-up of \(t\) years. The Cox proportional hazards regression model is assumed to have the form:
\[
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
\]

Let \(n_{E}\) be the number of participants in the \(E\) group and \(n_{C}\) be the number of participants in the \(C\) group. We wish to test the hypothesis \(H 0: R R=1\) versus \(H 1: R R\) not equal to 1 , where \(R R=\exp \left(\beta_{1}\right)=\) underlying hazard ratio for the \(E\) group versus the \(C\) group. Let \(R R\) be the postulated hazard ratio, \(\alpha\) be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group \(\mathrm{C}=n_{E} / n_{C}=k\), then the number of participants needed in each group to achieve a power of \(1-\beta\) is
\[
n_{E}=\frac{m k}{k p_{E}+p_{C}}, n_{C}=\frac{m}{k p_{E}+p_{C}}
\]
where
\[
m=\frac{1}{k}\left(\frac{k R R+1}{R R-1}\right)^{2}\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}
\]
and \(z_{1-\alpha / 2}\) is the \(100(1-\alpha / 2)\) percentile of the standard normal distribution \(N(0,1)\).
\(p_{C}\) and \(p_{E}\) can be calculated from the following formulaes:
\[
p_{C}=\sum_{i=1}^{t} D_{i}, p_{E}=\sum_{i=1}^{t} E_{i}
\]
where \(D_{i}=\lambda_{i} A_{i} C_{i}, E_{i}=R R \lambda_{i} B_{i} C_{i}, A_{i}=\prod_{j=0}^{i-1}\left(1-\lambda_{j}\right), B_{i}=\prod_{j=0}^{i-1}\left(1-R R \lambda_{j}\right), C_{i}=\) \(\prod_{j=0}^{i-1}\left(1-\delta_{j}\right)\). And \(\lambda_{i}\) is the probability of failure at time i among participants in the control group, given that a participant has survived to time \(i-1\) and is not censored at time \(i-1\), i.e., the approximate hazard time \(i\) in the control group, \(i=1, \ldots, t ; R R l a m b d a_{i}\) is the probability of failure at time i among participants in the experimental group, given that a participant has survived to time \(i-1\) and is not censored at time \(i-1\), i.e., the approximate hazard time \(i\) in the experimental group, \(i=1, \ldots, t\), delta is the prbability that a participant is censored at time \(i\) given that he was followed up to time \(i\) and has not failed, \(i=0,1, \ldots, t\), which is assumed the same in each group.

\section*{Value}
mat.lambda
mat.event a matrix with 5 columns and nTimes +1 rows, where \(n T i m e s\) is the number of observed time points for control group in the data set. The 5 columns are (1) time - observed time point for the control group; (2) nEvent. C - number of events in the control group at each time point; (3) nCensored. C - number of censorings in the control group at each time point; (4) nSurvive. \(C\) - number of alived in the control group at each time point; (5) nRisk.C - number of participants at risk in the control group at each time point. Please refer to Table 14.12 on page 787 of Rosner (2006).
pC estimated probability of failure in group C (control group) over the maximum time period of the study (t years).
\(\mathrm{pE} \quad\) estimated probability of failure in group E (experimental group) over the maximum time period of the study (t years).
ssize a two-element vector. The first element is \(n_{E}\) and the second element is \(n_{C}\).

\section*{Note}
(1) The estimates of \(R R l a m b d a_{i}=R R * \lambda_{i}\). That is, RRlambda is not directly estimated based on data from the experimental group; (2) The sample size formula assumes that the central-limit theorem is valid and hence is appropriate for large samples. (3) \(n_{E}\) and \(n_{C}\) will be rounded up to integers.

\section*{References}

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{See Also}
```

ssizeCT.default

```

\section*{Examples}
```

    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page }80
    library(survival)
    data(Oph)
    res <- ssizeCT(formula = Surv(times, status) ~ group, dat = Oph,
        power = 0.8, k = 1, RR = 0.7, alpha = 0.05)
    # Table 14.24 on page 809 of Rosner (2006)
    print(round(res$mat.lambda, 4))
    # Table 14.12 on page 787 of Rosner (2006)
    print(round(res$mat.event, 4))
    # the sample size
    print(res$ssize)
    ```
ssizeCT.default \begin{tabular}{c}
Sample Size Calculation in the Analysis of Survival Data for Clinical \\
Trials
\end{tabular}

\section*{Description}

Sample size calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

\section*{Usage}
ssizeCT.default(power, \(k, p E, p C, R R, ~ a l p h a=0.05)\)

\section*{Arguments}
power power to detect the magnitude of the hazard ratio as small as that specified by RR.
k
ratio of participants in group E (experimental group) compared to group C (control group).
\(\mathrm{pE} \quad\) probability of failure in group E (experimental group) over the maximum time period of the study (t years).
\begin{tabular}{ll}
PC & \begin{tabular}{l}
probability of failure in group \(C\) (control group) over the maximum time period \\
of the study (t years).
\end{tabular} \\
RR & postulated hazard ratio. \\
alpha & type I error rate.
\end{tabular}

\section*{Details}

This is an implementation of the sample size calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

Suppose we want to compare the survival curves between an experimental group \((E)\) and a control group \((C)\) in a clinical trial with a maximum follow-up of \(t\) years. The Cox proportional hazards regression model is assumed to have the form:
\[
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
\]

Let \(n_{E}\) be the number of participants in the \(E\) group and \(n_{C}\) be the number of participants in the \(C\) group. We wish to test the hypothesis \(H 0: R R=1\) versus \(H 1: R R\) not equal to 1 , where \(R R=\exp \left(\beta_{1}\right)=\) underlying hazard ratio for the \(E\) group versus the \(C\) group. Let \(R R\) be the postulated hazard ratio, \(\alpha\) be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group \(\mathrm{C}=n_{E} / n_{C}=k\), then the number of participants needed in each group to achieve a power of \(1-\beta\) is
\[
n_{E}=\frac{m k}{k p_{E}+p_{C}}, n_{C}=\frac{m}{k p_{E}+p_{C}}
\]
where
\[
m=\frac{1}{k}\left(\frac{k R R+1}{R R-1}\right)^{2}\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}
\]
and \(z_{1-\alpha / 2}\) is the \(100(1-\alpha / 2)\) percentile of the standard normal distribution \(N(0,1)\).

\section*{Value}

A two-element vector. The first element is \(n_{E}\) and the second element is \(n_{C}\).

\section*{Note}
(1) The sample size formula assumes that the central-limit theorem is valid and hence is appropriate for large samples. (2) \(n_{E}\) and \(n_{C}\) will be rounded up to integers.

\section*{References}

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

\section*{See Also}
ssizeCT

\section*{Examples}
```


# Example 14.42 in Rosner B. Fundamentals of Biostatistics.

# (6-th edition). (2006) page }80

ssizeCT.default(power = 0.8, k = 1, pE = 0.3707, pC = 0.4890,
RR = 0.7, alpha = 0.05)

```
ssizeEpi Sample Size Calculation for Cox Proportional Hazards Regression

\section*{Description}

Sample size calculation for Cox proportional hazards regression with two covariates for Epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

\section*{Usage}
ssizeEpi(X1, X2, failureFlag, power, theta, alpha = 0.05)

\section*{Arguments}
\(\mathrm{X} 1 \quad\) a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X1 should be binary and take only two possible values: zero and one.
X2
a nPil ot by 1 vector, where nPil ot is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 can be binary or non-binary.
failureFlag anPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
power postulated power.
theta postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
\]
where the covariate \(X_{1}\) is of our interest. The covariate \(X_{1}\) has to be a binary variable taking two possible values: zero and one, while the covariate \(X_{2}\) can be binary or continuous.
Suppose we want to check if the hazard of \(X_{1}=1\) is equal to the hazard of \(X_{1}=0\) or not. Equivalently, we want to check if the hazard ratio of \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal
to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) 1).
\(p, \rho^{2}\), and \(\psi\) will be estimated from a pilot study.

\section*{Value}
\(\mathrm{n} \quad\) the total number of subjects required.
\(\mathrm{p} \quad\) the proportion that \(X_{1}\) takes value one.
rho2 square of the correlation between \(X_{1}\) and \(X_{2}\).
psi proportion of subjects died of the disease of interest.

\section*{Note}
(1) The calculated sample size will be round up to an integer.
(2) The formula can be used to calculate sample size required for a randomized trial study by setting rho2=0.
(3) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio \(\exp \left(\beta_{1}\right)=\theta\) measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio \(\theta\) measures the difference of effect on the cause-specific hazard.

\section*{References}

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.

Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

\section*{See Also}
ssizeEpi.default

\section*{Examples}
```


# generate a toy pilot data set

X1 <- c(rep(1, 39), rep(0, 61))
set.seed(123456)
X2 <- sample(c(0, 1), 100, replace = TRUE)
failureFlag <- sample(c(0, 1), 100, prob = c(0.5, 0.5), replace = TRUE)
ssizeEpi(X1 = X1, X2 = X2, failureFlag = failureFlag,
power = 0.80, theta = 2, alpha = 0.05)

```

\section*{Description}

Sample size calculation for Cox proportional hazards regression with two covariates for Epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

\section*{Usage}
ssizeEpi.default(power, theta, p, psi, rho2, alpha = 0.05)

\section*{Arguments}
power postulated power.
theta postulated hazard ratio.
\(\mathrm{p} \quad\) proportion of subjects taking value one for the covariate of interest.
psi proportion of subjects died of the disease of interest.
rho2 square of the correlation between the covariate of interest and the other covariate.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
\]
where the covariate \(X_{1}\) is of our interest. The covariate \(X_{1}\) has to be a binary variable taking two possible values: zero and one, while the covariate \(X_{2}\) can be binary or continuous.
Suppose we want to check if the hazard of \(X_{1}=1\) is equal to the hazard of \(X_{1}=0\) or not. Equivalently, we want to check if the hazard ratio of \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal
to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\).

\section*{Value}

The required sample size to achieve the specified power with the given type I error rate.

\section*{Note}
(1) The calculated sample size will be round up to an integer.
(2) The formula can be used to calculate sample size required for a randomized trial study by setting rho2=0.
(3) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio \(\exp \left(\beta_{1}\right)=\theta\) measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio \(\theta\) measures the difference of effect on the cause-specific hazard.

\section*{References}

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

\section*{See Also}
ssizeEpi

\section*{Examples}
```

    # Examples at the end of Section 5.2 of Latouche et al. (2004)
    # for a cohort study.
    ssizeEpi.default(power = 0.80, theta = 2, p = 0.39 , psi = 0.505,
        rho2 = 0.132^2, alpha = 0.05)
    ```
```

ssizeEpiCont

```

Sample Size Calculation for Cox Proportional Hazards Regression with Nonbinary Covariates for Epidemiological Studies

\section*{Description}

Sample size calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

\section*{Usage}
ssizeEpiCont(formula, dat, X1, failureFlag, power, theta, alpha = 0.05)

\section*{Arguments}
formula a formula object relating the covariate of interest to other covariates to calculate the multiple correlation coefficient. The variables in formula must be in the data frame dat.
dat a nPilot by p data frame representing the pilot data set, where nPilot is the number of subjects in the pilot study and the \(p(>1)\) columns contains the covariate of interest and other covariates.

X1 the covariate of interest.
failureFlag anPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
power postulated power.
theta postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2},\right.
\]
where the covariate \(X_{1}\) is a nonbinary variable and \(\boldsymbol{X}_{2}\) is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a sample size of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}
\]
where \(\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi\) is the proportion of subjects died of the disease of interest, and \(\rho\) is the multiple correlation coefficient of the following linear regression:
\[
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
\]

That is, \(\rho^{2}=R^{2}\), where \(R^{2}\) is the proportion of variance explained by the regression of \(X_{1}\) on the vector of covriates \(\boldsymbol{X}_{2}\).
\(r h o^{2}, \sigma^{2}\), and \(\psi\) will be estimated from a pilot study.

\section*{Value}
\(\mathrm{n} \quad\) the total number of subjects required.
rho2 square of the correlation between \(X_{1}\) and \(X_{2}\).
sigma2 variance of the covariate of interest.
psi proportion of subjects died of the disease of interest.

\section*{Note}
(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate ssize for a randomized trial study by setting rho2=0.

\section*{References}

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

\section*{See Also}
```

ssizeEpiCont.default

```

\section*{Examples}
```

    # generate a toy pilot data set
    set.seed(123456)
    X1 <- rnorm(100, mean = 0, sd = 0.3126)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
    dat <- data.frame(X1 = X1, X2 = X2, failureFlag = failureFlag)
    ssizeEpiCont(formula = X1 ~ X2, dat = dat, X1 = X1, failureFlag = failureFlag,
    power = 0.806, theta = exp(1), alpha = 0.05)
    ```
```

ssizeEpiCont.default Sample Size Calculation for Cox Proportional Hazards Regression
with Nonbinary Covariates for Epidemiological Studies

```

\section*{Description}

Sample size calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

\section*{Usage}
ssizeEpiCont.default(power, theta, sigma2, psi, rho2, alpha = 0.05)

\section*{Arguments}
power postulated power.
theta postulated hazard ratio.
sigma2 variance of the covariate of interest.
psi proportion of subjects died of the disease of interest.
rho2 square of the multiple correlation coefficient between the covariate of interest and other covariates.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2}\right.
\]
where the covariate \(X_{1}\) is a nonbinary variable and \(\boldsymbol{X}_{2}\) is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect \(X_{1}=1\) to \(X_{1}=0\) is equal to 1 or is equal to \(\exp \left(\beta_{1}\right)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a sample size of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}
\]
where \(\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi\) is the proportion of subjects died of the disease of interest, and \(\rho\) is the multiple correlation coefficient of the following linear regression:
\[
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
\]

That is, \(\rho^{2}=R^{2}\), where \(R^{2}\) is the proportion of variance explained by the regression of \(X_{1}\) on the vector of covriates \(\boldsymbol{X}_{2}\).

\section*{Value}

The total number of subjects required.

\section*{Note}
(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate ssize for a randomized trial study by setting rho2=0.

\section*{References}

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

\section*{See Also}
```

ssizeEpiCont

```

\section*{Examples}
```

    # example in the EXAMPLE section (page 557) of Hsieh and Lavori (2000).
    # Hsieh and Lavori (2000) assumed one-sided test,
    # while this implementation assumed two-sided test.
    # Hence alpha=0.1 here (two-sided test) will correspond
    # to alpha=0.05 of one-sided test in Hsieh and Lavori's (2000) example.
    ssizeEpiCont.default(power = 0.806, theta = exp(1), sigma2 = 0.3126^2,
        psi = 0.738, rho2 = 0.1837, alpha = 0.1)
    ```
 ssizeEpiInt Sample Size Calculation Testing Interaction Effect for Cox Propor-
 tional Hazards Regression

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt(X1, X2, failureFlag, power, theta, alpha = 0.05)

\section*{Arguments}

X1 a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.

X2 a nPilot by 1 vector, where nPilot is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 should be binary and take only two possible values: zero and one.
failureFlag anPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
power postulated power.
theta postulated hazard ratio.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right),
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve the desired power \(1-\beta\) is:
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]
and \(p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=\) \(m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+m y d) / n\), \(n=m y a+m y b+m y c+m y d\).
\(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).
\(p_{00}, p_{01}, p_{10}, p_{11}\), and \(\psi\) will be estimated from the pilot data.

\section*{Value}
\(\mathrm{n} \quad\) the total number of subjects required.
p estimated \(\operatorname{Pr}\left(X_{1}=1\right)\)
q estimated \(\operatorname{Pr}\left(X_{2}=1\right)\)
p0 estimated \(\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\)
p1 estimated \(\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)\)
rho2 square of the estimated \(\operatorname{corr}\left(X_{1}, X_{2}\right)\)
G a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
mya estimated number of subjects taking values \(X_{1}=0\) and \(X_{2}=0\).
myb estimated number of subjects taking values \(X_{1}=0\) and \(X_{2}=1\).
myc estimated number of subjects taking values \(X_{1}=1\) and \(X_{2}=0\).
myd \(\quad\) estimated number of subjects taking values \(X_{1}=1\) and \(X_{2}=1\).
psi proportion of subjects died of the disease of interest.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
ssizeEpiInt.default0, ssizeEpiInt2

\section*{Examples}
\# generate a toy pilot data set
X1 <- c \((\operatorname{rep}(1,39), \operatorname{rep}(0,61))\)
set.seed(123456)
X2 <- sample(c(0, 1), 100, replace = TRUE)
failureFlag <- sample \((c(0,1), 100, \operatorname{prob}=c(0.25,0.75)\), replace \(=\) TRUE \()\)
ssizeEpiInt(X1, X2, failureFlag, power \(=0.88\), theta \(=3\), alpha \(=0.05\))
\[
\begin{gathered}
\text { ssizeEpiInt.default0 } \begin{array}{c}
\text { Sample Size Calculation Testing Interaction Effect for Cox Propor- } \\
\text { tional Hazards Regression }
\end{array}
\end{gathered}
\]

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt.default0(power, theta, p, psi, G, rho2, alpha = 0.05)

\section*{Arguments}
\[
\begin{array}{ll}
\text { power } & \text { postulated power. } \\
\text { theta } & \text { postulated hazard ratio. } \\
\text { p proportion of subjects taking value one for the covariate of interest. } \\
\text { psi } & \begin{array}{l}
\text { proportion of subjects died of the disease of interest. } \\
\text { a factor adjusting the sample size. The sample size needed to detect an effect } \\
\text { of a prognostic factor with given error probabilities has to be multiplied by the } \\
\text { factor G when an interaction of the same magnitude is to be detected. }
\end{array} \\
\text { rho2 } & \begin{array}{l}
\text { square of the correlation between the covariate of interest and the other covari- } \\
\text { ate. } \\
\text { alpha }
\end{array} \\
\begin{array}{l}
\text { type I error rate. }
\end{array}
\end{array}
\]

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]

If \(X_{1}\) and \(X_{2}\) are uncorrelated, we have \(p_{0}=p_{1}=p\) leading to \(1 /[(1-q) q]\). For \(q=0.5\), we have \(G=4\).

\section*{Value}

The total number of subjects required.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
```

ssizeEpiInt.default1, ssizeEpiInt2

```

\section*{Examples}
```


# Example at the end of Section 4 of Schmoor et al. (2000).

ssizeEpiInt.default0(power = 0.8227, theta = 3, p = 0.61, psi = 139 / 184,
G = 4.79177, rho2 = 0.015^2, alpha = 0.05)

```

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt.default1 (power, theta, psi, p00, p01, p10, p11, alpha = 0.05)

\section*{Arguments}
power postulated power.
theta postulated hazard ratio.
psi proportion of subjects died of the disease of interest.
p00 proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=0\), i.e., \(p_{00}=\operatorname{Pr}\left(X_{1}=\right.\) 0 , and, \(X_{2}=0\)).
p01 proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=1\), i.e., \(p_{01}=\operatorname{Pr}\left(X_{1}=\right.\) 0 , and, \(X_{2}=1\)).
p10 proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=0\), i.e., \(p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(X_{2}=0\)).
p11 proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=1\), i.e., \(p_{11}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(X_{2}=1\)).
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} \delta}{[\log (\theta)]^{2} \psi}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest,
\[
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
\]
and \(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).

\section*{Value}

The ssize of the test.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
```

ssizeEpiInt.default0, ssizeEpiInt2

```

\section*{Examples}
```

    # Example at the end of Section 4 of Schmoor et al. (2000).
    # p00, p01, p10, and p11 are calculated based on Table III on page 448
    # of Schmoor et al. (2000).
    ssizeEpiInt.default1(power = 0.8227, theta = 3, psi = 139 / 184,
        p00 = 50/184, p01 = 21 / 184, p10 = 78 / 184, p11 = 35 / 184,
        alpha = 0.05)
    ```

Sample Size Calculation Testing Interaction Effect for Cox Proportional Hazards Regression

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt2(power, theta, psi, mya, myb, myc, myd, alpha = 0.05)
ssizeEpiInt2

\section*{Arguments}
power postulated power.
theta postulated hazard ratio.
psi proportion of subjects died of the disease of interest.
mya number of subjects taking values \(X_{1}=0\) and \(X_{2}=0\) from the pilot study.
myb number of subjects taking values \(X_{1}=0\) and \(X_{2}=1\) from the pilot study.
myc number of subjects taking values \(X_{1}=1\) and \(X_{2}=0\) from the pilot study.
myd proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=1\) from the pilot study.
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
\]
where \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]
and \(p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=\) \(m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+m y d) / n\), \(n=m y a+m y b+m y c+m y d\).
\(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).

\section*{Value}

The total number of subjects required.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
ssizeEpiInt.default0, ssizeEpiInt.default1

\section*{Examples}
```


# Example at the end of Section 4 of Schmoor et al. (2000).

# mya, myb, myc, and myd are obtained from Table III on page 448

# of Schmoor et al. (2000).

ssizeEpiInt2(power = 0.8227, theta = 3, psi = 139/184,
mya = 50, myb = 21, myc = 78, myd = 35, alpha = 0.05)

```

\section*{Index}
*Topic datasets
Oph, 6
*Topic design
numDEpi, 2
numDEpi.default, 4
powerCT, 9
powerCT.default, 12
powerCT. default0, 14
powerEpi, 15
powerEpi.default, 17
powerEpiCont, 19
powerEpiCont. default, 21
powerEpiInt, 22
powerEpiInt.defaulto, 24
powerEpiInt.default1, 26
powerEpiInt2, 28
ssizeCT, 31
ssizeCT.default, 34
ssizeEpi, 36
ssizeEpi.default, 38
ssizeEpiCont, 40
ssizeEpiCont. default, 41
ssizeEpiInt, 43
ssizeEpiInt.default0, 45
ssizeEpiInt.default1, 47
ssizeEpiInt2, 48
\(*\) Topic survival
numDEpi, 2
numDEpi. default, 4
power.stratify, 7
powerCT, 9
powerCT. default, 12
powerCT. default0, 14
powerEpi, 15
powerEpi.default, 17
powerEpiCont, 19
powerEpiCont. default, 21
powerEpiInt, 22
powerEpiInt.default0, 24
powerEpiInt.default1, 26
powerEpiInt2, 28
ssize.stratify, 29
ssizeCT, 31
ssizeCT.default, 34
ssizeEpi, 36
ssizeEpi.default, 38
ssizeEpiCont, 40
ssizeEpiCont.default, 41
ssizeEpiInt, 43
ssizeEpiInt.default0, 45
ssizeEpiInt.default1,47
ssizeEpiInt2, 48
numDEpi, 2, 6
numDEpi.default, 4, 4
Oph, 6
power.stratify, 7, 31
powerCT, 9, 13, 15
powerCT.default, 11, 12, 15
powerCT.default0, 11, 13, 14
powerEpi, 15, 18
powerEpi.default, 17, 17
powerEpiCont, 19, 22
powerEpiCont.default, 20, 21
powerEpiInt, 22
powerEpiInt.default0, 24, 24, 27, 29
powerEpiInt.default1, 26, 26, 29
powerEpiInt2, 24, 26, 27, 28
ssize.stratify, 9, 29
ssizeCT, 31, 35
ssizeCT. default, 34,34
ssizeEpi, 36, 39
ssizeEpi.default, 37, 38
ssizeEpiCont, 40,43
ssizeEpiCont.default, 41, 41
ssizeEpiInt, 43
ssizeEpiInt.default0, 45, 45, 48, 50
ssizeEpiInt.default1, 46, 47, 50
ssizeEpiInt2, 45, 46, 48, 48```

