Package 'powerEQTL'

April 29, 2020

Type Package Title Power and Sample Size Calculation for eQTL Analysis Version 0.1.7

Date 2020-04-29

Author Xianjun Dong [aut, ctb], Tzuu-Wang Chang [aut, ctb], Scott T. Weiss [aut, ctb], Weiliang Qiu [aut, cre]

Maintainer Weiliang Qiu <weiliang.qiu@gmail.com>

Depends R (>= 3.6.0)

Imports stats, powerMediation

Description Power and sample size calculation for eQTL analysis based on ANOVA or simple linear regression. It can also calculate power/sample size for testing the association of a SNP to a continuous type phenotype.

License GPL (≥ 2)

URL https://github.com/sterding/powerEQTL

LazyData TRUE NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-29 12:00:02 UTC

R topics documented:

nEffectEQTL.ANOVA	. 2
nMAFeQTL.ANOVA	. 4
nMAFeQTL.SLR	. 6
nSlopeEQTL.SLR	. 7
werEQTL.ANOVA	. 9
werEQTL.ANOVA2	. 11
werEQTL.scRNAseq	. 13
werEQTL.SLR	. 15

powerLME	17
powerLMEnoCov	. 19
ssEQTLANOVA	21
ssEQTL.ANOVA2	23
ssEQTL.SLR	25
	27

Index

minEffectEQTL.ANOVA Calculation of Minimum Detectable Effect Size for EQTL Analysis Based on Un-Balanced One-Way ANOVA

Description

Calculation of minimum detectable effect size (δ/σ) for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA.

Usage

Arguments

MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
mypower	Desired power for the eQTL analysis.
verbose	logic. indicating if intermediate results should be output.

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_power_a000000982.htm, the power calculation formula is

 $power = Pr(F \ge F_{1-\alpha}(k-1, N-k)|F \sim F_{k-1, N-k, \lambda}),$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha}(k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k,

and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^{k} w_i \left(\mu_i - \mu\right)^2,$$

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^k w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^{3} w_i = 1$.

We assume that $\mu_2 - \mu_1 = \mu_3 - \mu_2 = \delta$, where μ_1, μ_2 , and μ_3 are the mean gene expression level for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively.

Denote p as the minor allele frequency (MAF) of a SNP. Under Hardy-Weinberg equilibrium, we have genotype frequencies: $p_2 = p^2$, $p_1 = 2pq$, and $p_0 = q^2$, where p_2 , p_1 , and p_0 are genotype for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively, q = 1 - p. Then ncp can be simplified as

$$ncp = 2pqN\left(\frac{\delta}{\sigma}\right)^2,$$

Value

minimum detectable effect size δ/σ .

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

powerEQTL.ANOVA, powerEQTL.ANOVA2, ssEQTL.ANOVA, ssEQTL.ANOVA2

```
myntotal = 234,
mypower = 0.8,
verbose = TRUE)
```

minMAFeQTL.ANOVA

Calculation of Minimum Detectable Minor Allele Frequency for EQTL Analysis Based on Un-Balanced One-Way ANOVA

Description

Calculation of minimum detectable minor allele frequency (MAF) for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA.

Usage

Arguments

effsize	Effect size δ/σ .
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
mypower	Desired power for the eQTL analysis.
verbose	logic. indicating if intermediate results should be output.

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer. htm#statug_power_a0000000982.htm, the power calculation formula is

$$power = Pr(F \ge F_{1-\alpha}(k-1, N-k) | F \sim F_{k-1, N-k, \lambda}),$$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha} (k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k, and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^{k} w_i \left(\mu_i - \mu\right)^2,$$

4

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^k w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^{3} w_i = 1$.

We assume that $\mu_2 - \mu_1 = \mu_3 - \mu_2 = \delta$, where μ_1, μ_2 , and μ_3 are the mean gene expression level for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively.

Denote p as the minor allele frequency (MAF) of a SNP. Under Hardy-Weinberg equilibrium, we have genotype frequencies: $p_2 = p^2$, $p_1 = 2pq$, and $p_0 = q^2$, where p_2 , p_1 , and p_0 are genotype for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively, q = 1 - p. Then ncp can be simplified as

$$ncp = 2pqN\left(rac{\delta}{\sigma}
ight)^2,$$

Value

minimum detectable MAF.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

powerEQTL.ANOVA, powerEQTL.ANOVA2, ssEQTL.ANOVA, ssEQTL.ANOVA2

```
minMAFeQTL.ANOVA(effsize = 1,
    typeI = 0.05,
    nTests = 200000,
    myntotal = 234,
    mypower = 0.8,
    verbose = TRUE)
```

minMAFeQTL.SLR

Description

Minimum detectable minor allele frequency (MAF) calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using simple linear regression.

Usage

```
minMAFeQTL.SLR(slope,
    typeI = 0.05,
    nTests = 200000,
    myntotal = 200,
    mypower = 0.8,
    mystddev = 0.13,
    verbose = TRUE)
```

Arguments

slope	Slope of the simple linear regression.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
mypower	Desired power for the eQTL analysis.
mystddev	Standard deviation of the random error term ϵ in simple linear regression.
verbose	logic. indicating if intermediate results should be output.

Details

To test if a SNP is associated with a gene probe, we use the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used. To test if the SNP is associated with the gene probe, we test the null hypothesis $H_0: \beta_1 = 0$.

Denote p as the minor allele frequency (MAF) of the SNP. Under Hardy-Weinberg equilibrium, we can calculate the variance of genotype of the SNP: $\sigma_x^2 = 2p(1-p)$, where σ_x^2 is the variance of the predictor (i.e. the SNP) x_i .

We then can use Dupont and Plummer's (1998) power/sample size calculation formula to calculate the minimum detectable slope, adjusting for multiple testing.

Value

The estimated minimum detectable MAF.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dupont, W.D. and Plummer, W.D.. Power and Sample Size Calculations for Studies Involving Linear Regression. Controlled Clinical Trials. 1998;19:589-601.

See Also

powerEQTL.SLR,ssEQTL.SLR

Examples

```
minMAFeQTL.SLR(slope = 0.1299513,
    typeI = 0.05,
    nTests = 200000,
    myntotal = 176,
    mypower = 0.8,
    mystddev = 0.13,
    verbose = TRUE)
```

minSlopeEQTL.SLR	Minimum Detectable Slope Calculation for EQTL Analysis Based on
	Simple Linear Regression

Description

Minimum detectable slope calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using simple linear regression.

Usage

```
minSlopeEQTL.SLR(
   MAF,
   typeI = 0.05,
   nTests = 2e+05,
   myntotal = 200,
   mypower = 0.8,
   mystddev = 0.13,
   verbose = TRUE)
```

Arguments

MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
mypower	Desired power for the eQTL analysis.
mystddev	Standard deviation of the random error term ϵ in simple linear regression
verbose	logic. indicating if intermediate results should be output.

Details

To test if a SNP is associated with a gene probe, we use the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used. To test if the SNP is associated with the gene probe, we test the null hypothesis H_0 : $\beta_1 = 0$.

Denote p as the minor allele frequency (MAF) of the SNP. Under Hardy-Weinberg equilibrium, we can calculate the variance of genotype of the SNP: $\sigma_x^2 = 2p(1-p)$, where σ_x^2 is the variance of the predictor (i.e. the SNP) x_i .

We then can use Dupont and Plummer's (1998) power/sample size calculation formula to calculate the minimum detectable slope, adjusting for multiple testing.

Value

The estimated minimum detectable slope.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dupont, W.D. and Plummer, W.D.. Power and Sample Size Calculations for Studies Involving Linear Regression. Controlled Clinical Trials. 1998;19:589-601.

See Also

powerEQTL.SLR,ssEQTL.SLR

powerEQTL.ANOVA

Examples

```
minSlopeEQTL.SLR(
    MAF = 0.1,
    typeI = 0.05,
    nTests = 2e+05,
    myntotal = 176,
    mypower = 0.8,
    mystddev = 0.13,
    verbose = TRUE)
```

powerEQTL.ANOVA	Power Calculation for EQTL Analysis Based on Un-Balanced One-
	Way ANOVA

Description

Power calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA.

Usage

Arguments

MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
mystddev	Standard deviation of gene expression levels in one group of subjects. As- sume all 3 groups of subjects (mutation homozygote, heterozygote, wild-type homozygote) have the same standard deviation of gene expression levels.
deltaVec	A vector having 2 elements. The first element is equal to $\mu_2 - \mu_1$ and the second elementis equal to $\mu_3 - \mu_2$, where μ_1 is the mean gene expression level for the mutation homozygotes, μ_2 is the mean gene expression level for the heterozygotes, and μ_3 is the mean gene expression level for the wild-type gene expression level.
verbose	logic. indicating if intermediate results should be output.

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_power_a0000000982.htm, the power calculation formula is

$$power = Pr(F \ge F_{1-\alpha}(k-1, N-k) | F \sim F_{k-1, N-k, \lambda}),$$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha} (k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k, and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^k w_i \left(\mu_i - \mu\right)^2,$$

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^{k} w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^{3} w_i = 1$.

Value

power of the test after Bonferroni correction for multiple testing.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

minEffectEQTL.ANOVA, powerEQTL.ANOVA2, ssEQTL.ANOVA, ssEQTL.ANOVA2

```
nTests = 200000,
myntotal = 234,
mystddev = 0.13,
deltaVec = c(0.13, 0.13))
```

powerEQTL.ANOVA2

Power Calculation for EQTL Analysis Based on Un-Balanced One-Way ANOVA

Description

Power calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA (assuming Hardy-Weinberg equilibrium).

Usage

Arguments

effsize	effect size δ/σ , where $\delta = \mu_2 - \mu_1 = \mu_3 - \mu_2$, μ_1 , μ_2 , μ_3 are the mean gene expression level of mutation homozygotes, heterozygotes, and wild-type homozygotes, and σ is the standard deviation of gene expression levels (assuming each genotype group has the same variance).
MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
myntotal	integer. Number of subjects.
verbose	logic. indicating if intermediate results should be output.

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer. htm#statug_power_a0000000982.htm, the power calculation formula is

power = $Pr(F \ge F_{1-\alpha}(k-1, N-k) | F \sim F_{k-1, N-k, \lambda}),$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha}(k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k,

and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^{k} w_i \left(\mu_i - \mu\right)^2,$$

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^{k} w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^{3} w_i = 1$.

We assume that $\mu_2 - \mu_1 = \mu_3 - \mu_2 = \delta$, where μ_1, μ_2 , and μ_3 are the mean gene expression level for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively.

Denote p as the minor allele frequency (MAF) of a SNP. Under Hardy-Weinberg equilibrium, we have genotype frequencies: $p_2 = p^2$, $p_1 = 2pq$, and $p_0 = q^2$, where p_2 , p_1 , and p_0 are genotype for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively, q = 1 - p. Then ncp can be simplified as

$$ncp = 2pqN\left(rac{\delta}{\sigma}
ight)^2,$$

Value

power of the test after Bonferroni correction for multiple testing.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

minEffectEQTL.ANOVA, powerEQTL.ANOVA, ssEQTL.ANOVA, ssEQTL.ANOVA2

myntotal = 234, verbose = TRUE)

powerEQTL.scRNAseq Power Calculation for Association Between Genotype and Gene Expression Based on Single Cell RNAseq Data

Description

Power calculation for association between genotype and gene expression based on single cell RNAseq data.

Usage

```
powerEQTL.scRNAseq(
  delta,
  n,
  m,
  sigma.y,
  theta = 0.2,
  rho = 0.8,
  alpha = 0.05,
  nTests = 1)
```

Arguments

delta	numeric. slope under alternative hypothesis, i.e., $\beta_1 = \delta$ under $H_a : \beta_1 \neq 0$.
n	integer. number of subjects
m	integer. number of cells per subject
sigma.y	numeric. conditional standard deviation of the gene expression given SNP
theta	numeric. minor allele frequency (between 0 and 0.5)
rho	numeric. intra-class correlation (i.e., correlation between y_{ij} and y_{ik} for the j -th and k -th cells of the i -th subject)
alpha	numeric. Type I error rate for one pair (SNP, gene)
nTests	integer. Number of tests, i.e., number of (SNP, gene) pairs, in eQTL analysis

Details

We assume the following simple linear mixed effects model for each (SNP, gene) pair to characterize the association between genotype and gene expression:

$$y_{ij} = \beta_{0i} + \beta_1 * x_i + \epsilon_{ij},$$

where

$$\beta_{0i} \sim N\left(\beta_0, \sigma_\beta^2\right),$$

and

$$\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$$

i = 1, ..., n, j = 1, ..., m, n is the number of subjects, m is the number of cells per subject, y_{ij} is the gene expression level for the j-th cell of the i-th subject, x_i is the genotype for the i-th subject using additive coding. That is, $x_i = 0$ indicates the i-th subject is a wildtype homozygote, $x_i = 1$ indicates the i-th subject is a heterozygote, and $x_i = 2$ indicates the i-th subject is a mutation homozygote.

We would like to test the following hypotheses:

$$H_0:\beta_1=0,$$

and

$$H_a:\beta_1=\delta,$$

where $\delta \neq 0$.

For a given SNP, we assume Hardy-Weinberg Equilibrium and denote the minor allele frequency of the SNP as θ .

We can derive the power calculation formula is

$$power = 1 - \Phi \left(z_{\alpha^*/2} - a \times b \right) + \Phi \left(-z_{\alpha^*/2} - a \times b \right),$$

where

$$a = \frac{\sqrt{2\theta \left(1 - \theta\right)}}{\sigma_y}$$

and

$$b = \frac{\delta\sqrt{m(n-1)}}{\sqrt{1+(m-1)\rho}}$$

and $z_{\alpha^*/2}$ is the upper $100\alpha^*/2$ percentile of the standard normal distribution, $\alpha^* = \alpha/nTests$, nTests is the number of (SNP, gene) pairs, $\sigma_y = \sqrt{\sigma_\beta^2 + \sigma_\epsilon^2}$, and $\rho = \sigma_\beta^2 / (\sigma_\beta^2 + \sigma_\epsilon^2)$ is the intraclass correlation.

Value

the power to be calculated.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dong X and Qiu W. Power Calculation for Association Between Genotype and Gene Expression Based on Single Cell RNAseq Data. manuscript. (2020)

14

powerEQTL.SLR

Examples

```
n = 102
m = 227868
power = powerEQTL.scRNAseq(
    delta = 0.6,
    n = n,
    m = m,
    sigma.y = 0.29,
    theta = 0.05,
    rho = 0.8,
    alpha = 0.05,
    nTests = 1e+6)
print(power)
```

powerEQTL.SLR

Power Calculation for EQTL Analysis Based on Simple Linear Regression

Description

Power calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using simple linear regression.

Usage

```
powerEQTL.SLR(
   MAF,
   typeI = 0.05,
   nTests = 2e+05,
   slope = 0.13,
   myntotal = 200,
   mystddev = 0.13,
   verbose = TRUE)
```

Arguments

MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
slope	Slope β_1 of the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used.

myntotal	integer. Number of subjects.
mystddev	Standard deviation of the random error term ϵ in simple linear regression.
verbose	logic. indicating if intermediate results should be output.

Details

To test if a SNP is associated with a gene probe, we use the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used. To test if the SNP is associated with the gene probe, we test the null hypothesis $H_0: \beta_1 = 0$.

Denote p as the minor allele frequency (MAF) of the SNP. Under Hardy-Weinberg equilibrium, we can calculate the variance of genotype of the SNP: $\sigma_x^2 = 2p(1-p)$, where σ_x^2 is the variance of the predictor (i.e. the SNP) x_i .

We then can use Dupont and Plummer's (1998) power/sample size calculation formula to calculate the minimum detectable slope, adjusting for multiple testing.

Value

power of the test after Bonferroni correction for multiple testing.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dupont, W.D. and Plummer, W.D.. Power and Sample Size Calculations for Studies Involving Linear Regression. Controlled Clinical Trials. 1998;19:589-601.

See Also

ssEQTL.SLR,minSlopeEQTL.SLR

```
powerEQTL.SLR(
    MAF = 0.1,
    typeI = 0.05,
    nTests = 2e+05,
    slope = 0.13,
    myntotal = 176,
    mystddev = 0.13,
    verbose = TRUE)
```

powerLME

Description

Power calculation for simple linear mixed effects model.

Usage

```
powerLME(
    delta,
    n,
    m,
    sigma.y,
    sigma.x,
    rho = 0.8,
    alpha = 0.05,
    nTests = 1)
```

Arguments

delta	numeric. slope under alternative hypothesis, i.e., $\beta_1 = \delta$ under $H_a : \beta_1 \neq 0$.
n	integer. number of subjects
m	integer. number of observations per subject
sigma.y	numeric. conditional standard deviation of the outcome y given the predictor x
sigma.x	numeric. standard deviation of the predictor x
rho	numeric. intra-class correlation (i.e., correlation between y_{ij} and y_{ik} for the j -th and k -th observations of the i -th subject)
alpha	numeric. Type I error rate for one test
nTests	integer. Number of tests

Details

We assume the following simple linear mixed effects model to characterize the association between the predictor x and the outcome y:

$$y_{ij} = \beta_{0i} + \beta_1 * x_i + \epsilon_{ij},$$

where

$$\beta_{0i} \sim N\left(\beta_0, \sigma_\beta^2\right),$$

and

$$\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right),$$

i = 1, ..., n, j = 1, ..., m, n is the number of subjects, m is the number of observations per subject, y_{ij} is the outcome value for the j-th observation of the i-th subject, x_i is the predictor value for the i-th subject.

and

$$H_a:\beta_1=\delta_2$$

 $H_0: \beta_1 = 0,$

where $\delta \neq 0$.

We can derive the power calculation formula is

$$power = 1 - \Phi \left(z_{\alpha^*/2} - a \times b \right) + \Phi \left(-z_{\alpha^*/2} - a \times b \right),$$

 $a = \frac{\hat{\sigma}_x}{\sigma_y}$

where

and

$$b = \frac{\delta\sqrt{m(n-1)}}{\sqrt{1+(m-1)\mu}}$$

and $z_{\alpha^*/2}$ is the upper $100\alpha^*/2$ percentile of the standard normal distribution, $\alpha^* = \alpha/nTests$, nTests is the number of tests, $\sigma_y = \sqrt{\sigma_\beta^2 + \sigma_\epsilon^2}$, $\hat{\sigma}_x = \sqrt{\sum_{i=1}^n (x_i - \bar{x})^2/(n-1)}$, and $\rho = \sigma_\beta^2/(\sigma_\beta^2 + \sigma_\epsilon^2)$ is the intra-class correlation.

Value

the power to be calculated.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dong X and Qiu W. Power Calculation for Association Between Genotype and Gene Expression Based on Single Cell RNAseq Data. manuscript. (2020)

Examples

```
n = 102
m = 227868
power = powerLME(
    delta = 0.6,
    n = n,
    m = m,
    sigma.y = 0.29,
    sigma.x = 0.308,
    rho = 0.8,
    alpha = 0.05,
    nTests = 1e+6)
```

print(power)

powerLMEnoCov

Description

Power calculation for simple linear mixed effects model without covariate.

Usage

```
powerLMEnoCov(
   delta,
   n,
   m,
   sigma.y,
   rho = 0.8,
   alpha = 0.05,
   nTests = 1)
```

Arguments

delta	numeric. slope under alternative hypothesis, i.e., $\beta_1 = \delta$ under $H_a : \beta_1 \neq 0$.
n	integer. number of subjects
m	integer. number of observations per subject
sigma.y	numeric. conditional standard deviation of the outcome y given the predictor x
rho	numeric. intra-class correlation (i.e., correlation between y_{ij} and y_{ik} for the j -th and k -th observations of the i -th subject)
alpha	numeric. Type I error rate for one test
nTests	integer. Number of tests

Details

We assume the following simple linear mixed effects model to characterize the association between the predictor x and the outcome y:

$$y_{ij} = \beta_{0i} + \epsilon_{ij},$$

where

 $\beta_{0i} \sim N\left(\beta_0, \sigma_\beta^2\right),$

and

$$\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$$

i = 1, ..., n, j = 1, ..., m, n is the number of subjects, m is the number of observations per subject, y_{ij} is the outcome value for the j-th observation of the i-th subject.

We would like to test the following hypotheses:

$$H_0:\beta_0=0,$$

and

$$H_a: \beta_0 = \delta_s$$

where $\delta \neq 0$.

We can derive the power calculation formula is

$$power = 1 - \Phi \left(z_{\alpha^*/2} - a \times b \right) + \Phi \left(-z_{\alpha^*/2} - a \times b \right),$$

where

and

$$\delta\sqrt{mn}$$

 $a = \frac{1}{\sigma_u}$

$$b = \frac{1}{\sqrt{1 + (m-1)\rho}}$$

and $z_{\alpha^*/2}$ is the upper $100\alpha^*/2$ percentile of the standard normal distribution, $\alpha^* = \alpha/nTests$, nTests is the number of tests, $\sigma_y = \sqrt{\sigma_{\beta}^2 + \sigma_{\epsilon}^2}$ and $\rho = \sigma_{\beta}^2/\left(\sigma_{\beta}^2 + \sigma_{\epsilon}^2\right)$ is the intra-class correlation.

Value

the power to be calculated.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dong X and Qiu W. Power Calculation for Association Between Genotype and Gene Expression Based on Single Cell RNAseq Data. manuscript. (2020)

Examples

```
n = 17
m = 5
sigma.y = 0.68
power = powerLMEnoCov(
    delta = 1.3*sigma.y,
    n = n,
    m = m,
    sigma.y = sigma.y,
    rho = 0.8,
    alpha = 0.05,
    nTests = 20345)
```

print(power)

20

ssEQTL.ANOVA

Description

Sample size calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA.

Usage

```
ssEQTL.ANOVA(
    MAF,
    typeI = 0.05,
    nTests = 2e+05,
    mypower = 0.8,
    mystddev = 0.13,
    deltaVec = c(0.13, 0.13))
```

Arguments

MAF	Minor allele frequency.				
typeI	Type I error rate for testing if a SNP is associated to a gene probe.				
nTests	integer. Number of tests in eQTL analysis.				
mypower	Desired power for the eQTL analysis.				
mystddev	Standard deviation of gene expression levels in one group of subjects. As- sume all 3 groups of subjects (mutation homozygote, heterozygote, wild-type homozygote) have the same standard deviation of gene expression levels.				
deltaVec	A vector having 2 elements. The first element is equal to $\mu_2 - \mu_1$ and the second elementis equal to $\mu_3 - \mu_2$, where μ_1 is the mean gene expression level for the mutation homozygotes, μ_2 is the mean gene expression level for the heterozygotes, and μ_3 is the mean gene expression level for the wild-type gene expression level.				

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_power_a000000982.htm, the power calculation formula is

 $power = Pr(F \ge F_{1-\alpha}(k-1, N-k) | F \sim F_{k-1, N-k, \lambda}),$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha}(k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k,

and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^{k} w_i \left(\mu_i - \mu\right)^2,$$

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^k w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^3 w_i = 1$.

Value

sample size required for the eQTL analysis to achieve the desired power.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

minEffectEQTL.ANOVA, powerEQTL.ANOVA, powerEQTL.ANOVA2, ssEQTL.ANOVA2

```
ssEQTL.ANOVA(MAF = 0.1,
    typeI = 0.05,
    nTests = 200000,
    mypower = 0.8,
    mystddev = 0.13,
    deltaVec = c(0.13, 0.13))
```

ssEQTL.ANOVA2

Sample Size Calculation for EQTL Analysis Based on Un-Balanced One-Way ANOVA

Description

Sample size calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using un-balanced one-way ANOVA.

Usage

```
ssEQTL.ANOVA2(
  effsize,
  MAF,
  typeI = 0.05,
  nTests = 2e+05,
  mypower = 0.8
)
```

Arguments

effsize	effect size δ/σ , where $\delta = \mu_2 - \mu_1 = \mu_3 - \mu_2$, μ_1 , μ_2 , μ_3 are the mean gene expression level of mutation homozygotes, heterozygotes, and wild-type homozygotes, and σ is the standard deviation of gene expression levels (assuming each genotype group has the same variance).
MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
mypower	Desired power for the eQTL analysis.

Details

The assumption of the ANOVA approach is that the association of a SNP to a gene probe is tested by using un-balanced one-way ANOVA (e.g. Lonsdale et al. 2013). According to SAS online document https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_power_a0000000982.htm, the power calculation formula is

$$power = Pr(F \ge F_{1-\alpha}(k-1, N-k) | F \sim F_{k-1, N-k, \lambda}),$$

where k = 3 is the number of groups of subjects, N is the total number of subjects, $F_{1-\alpha} (k-1, N-k)$ is the $100(1-\alpha)$ -th percentile of central F distribution with degrees of freedoms k-1 and N-k, and $F_{k-1,N-k,\lambda}$ is the non-central F distribution with degrees of freedoms k-1 and N-k and non-central parameter (ncp) λ . The ncp λ is equal to

$$\lambda = \frac{N}{\sigma^2} \sum_{i=1}^{k} w_i \left(\mu_i - \mu\right)^2,$$

where μ_i is the mean gene expression level for the *i*-th group of subjects, w_i is the weight for the *i*-th group of subjects, σ^2 is the variance of the random errors in ANOVA (assuming each group has equal variance), and μ is the weighted mean gene expression level

$$\mu = \sum_{i=1}^k w_i \mu_i.$$

The weights w_i are the sample proportions for the 3 groups of subjects. Hence, $\sum_{i=1}^{3} w_i = 1$.

We assume that $\mu_2 - \mu_1 = \mu_3 - \mu_2 = \delta$, where μ_1, μ_2 , and μ_3 are the mean gene expression level for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively.

Denote p as the minor allele frequency (MAF) of a SNP. Under Hardy-Weinberg equilibrium, we have genotype frequencies: $p_2 = p^2$, $p_1 = 2pq$, and $p_0 = q^2$, where p_2 , p_1 , and p_0 are genotype for mutation homozygotes, heterozygotes, and wild-type homozygotes, respectively, q = 1 - p. Then ncp can be simplified as

$$ncp = 2pqN\left(rac{\delta}{\sigma}
ight)^2,$$

Value

sample size required for the eQTL analysis to achieve the desired power.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Lonsdale J and Thomas J, et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45:580-585, 2013.

See Also

minEffectEQTL.ANOVA, powerEQTL.ANOVA, powerEQTL.ANOVA2, ssEQTL.ANOVA

```
ssEQTL.ANOVA2(
    effsize = 1,
    MAF = 0.1,
    typeI = 0.05,
    nTests = 2e+05,
    mypower = 0.8
)
```

ssEQTL.SLR

Description

Sample size calculation for eQTL analysis that tests if a SNP is associated to a gene probe by using simple linear regression.

Usage

```
ssEQTL.SLR(
    MAF,
    typeI = 0.05,
    nTests = 2e+05,
    slope = 0.13,
    mypower = 0.8,
    mystddev = 0.13,
    n.lower = 2.01,
    n.upper = 1e+30,
    verbose = TRUE)
```

Arguments

MAF	Minor allele frequency.
typeI	Type I error rate for testing if a SNP is associated to a gene probe.
nTests	integer. Number of tests in eQTL analysis.
slope	Slope β_1 of the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used.

mypower	Desired	power fo	or the e	QTL	analysis.
---------	---------	----------	----------	-----	-----------

- mystddev Standard deviation of the random error term ϵ .
- n.lower integer. Lower bound of the total number of subjects.
- n.upper integer. Upper bound of the total number of subjects.
- verbose logic. indicating if intermediate results should be output.

Details

To test if a SNP is associated with a gene probe, we use the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where y_i is the gene expression level of the *i*-th subject, x_i is the genotype of the *i*-th subject, and ϵ_i is the random error term. Additive coding for genotype is used. To test if the SNP is associated with the gene probe, we test the null hypothesis H_0 : $\beta_1 = 0$.

Denote p as the minor allele frequency (MAF) of the SNP. Under Hardy-Weinberg equilibrium, we can calculate the variance of genotype of the SNP: $\sigma_x^2 = 2p(1-p)$, where σ_x^2 is the variance of the predictor (i.e. the SNP) x_i .

We then can use Dupont and Plummer's (1998) power/sample size calculation formula to calculate the minimum detectable slope, adjusting for multiple testing.

Value

sample size required for the eQTL analysis to achieve the desired power.

Author(s)

Xianjun Dong <XDONG@rics.bwh.harvard.edu>, Tzuu-Wang Chang <Chang.Tzuu-Wang@mgh.harvard.edu>, Scott T. Weiss <restw@channing.harvard.edu>, Weiliang Qiu <weiliang.qiu@gmail.com>

References

Dupont, W.D. and Plummer, W.D.. Power and Sample Size Calculations for Studies Involving Linear Regression. Controlled Clinical Trials. 1998;19:589-601.

See Also

powerEQTL.SLR,minSlopeEQTL.SLR

```
ssEQTL.SLR(
    MAF = 0.1,
    typeI = 0.05,
    nTests = 2e+05,
    slope = 0.13,
    mypower = 0.8,
    mystddev = 0.13,
    n.lower = 2.01,
    n.upper = 1e+30,
    verbose = TRUE)
```

Index

*Topic method minEffectEQTL.ANOVA, 2 minMAFeQTL.ANOVA,4 minMAFeQTL.SLR,6 minSlopeEQTL.SLR, 7 powerEQTL.ANOVA, 9 powerEQTL.ANOVA2,11 powerEQTL.scRNAseq, 13 powerEQTL.SLR, 15 powerLME, 17 powerLMEnoCov, 19 ssEQTL.ANOVA, 21 ssEQTL.ANOVA2, 23 ssEQTL.SLR, 25 minEffectEQTL.ANOVA, 2, 10, 12, 22, 24 minMAFeQTL.ANOVA,4 minMAFeQTL.SLR,6 minSlopeEQTL.SLR, 7, 16, 26 powerEQTL.ANOVA, 3, 5, 9, 12, 22, 24 powerEQTL.ANOVA2, 3, 5, 10, 11, 22, 24 powerEQTL.scRNAseq, 13 powerEQTL.SLR, 7, 8, 15, 26 powerLME, 17 powerLMEnoCov, 19 ssEQTL.ANOVA, 3, 5, 10, 12, 21, 24 ssEQTL. ANOVA2, 3, 5, 10, 12, 22, 23 ssEQTL.SLR, 7, 8, 16, 25