Do Markov chain Monte Carlo (MCMC) simulation of Potts models (Potts, 1952, <doi:10.1017/S0305004100027419>), which are the multi-color generalization of Ising models (so, as as special case, also simulates Ising models). Use the Swendsen-Wang algorithm (Swendsen and Wang, 1987, <doi:10.1103/PhysRevLett.58.86>) so MCMC is fast. Do maximum composite likelihood estimation of parameters (Besag, 1975, <doi:10.2307/2987782>, Lindsay, 1988, <doi:10.1090/conm/080>).
Version: | 0.5-9 |
Depends: | R (≥ 3.0.2) |
Imports: | stats, graphics |
Suggests: | pooh (≥ 0.2) |
Published: | 2020-03-23 |
Author: | Charles J. Geyer and Leif Johnson |
Maintainer: | Charles J. Geyer <charlie at stat.umn.edu> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://www.stat.umn.edu/geyer/mcmc/ |
NeedsCompilation: | yes |
Materials: | NEWS ChangeLog |
CRAN checks: | potts results |
Reference manual: | potts.pdf |
Vignettes: |
CLL Crash Course |
Package source: | potts_0.5-9.tar.gz |
Windows binaries: | r-devel: potts_0.5-9.zip, r-release: potts_0.5-9.zip, r-oldrel: potts_0.5-9.zip |
macOS binaries: | r-release: potts_0.5-9.tgz, r-oldrel: potts_0.5-9.tgz |
Old sources: | potts archive |
Please use the canonical form https://CRAN.R-project.org/package=potts to link to this page.