
Package ‘portfolioBacktest’
August 3, 2020

Title Automated Backtesting of Portfolios over Multiple Datasets

Version 0.2.2

Date 2020-07-29

Description Automated backtesting of multiple portfolios over multiple
datasets of stock prices in a rolling-window fashion. Intended for
researchers and practitioners to backtest a set of different portfolios,
as well as by a course instructor to assess the students in their portfolio
design in a fully automated and convenient manner, with results conveniently
formatted in tables and plots. Each portfolio design is easily defined as a
function that takes as input a window of the stock prices and outputs the
portfolio weights. Multiple portfolios can be easily specified as a list
of functions or as files in a folder. Multiple datasets can be conveniently
extracted randomly from different markets, different time periods, and
different subsets of the stock universe. The results can be later assessed
and ranked with tables based on a number of performance criteria (e.g.,
expected return, volatility, Sharpe ratio, drawdown, turnover rate, return
on investment, computational time, etc.), as well as plotted in a number of
ways with nice barplots and boxplots.

Maintainer Daniel P. Palomar <daniel.p.palomar@gmail.com>

URL https://CRAN.R-project.org/package=portfolioBacktest,

https://github.com/dppalomar/portfolioBacktest

BugReports https://github.com/dppalomar/portfolioBacktest/issues

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 2.10)

Imports digest, doSNOW, evaluate, foreach, ggplot2,
PerformanceAnalytics, quantmod, R.utils, rlang, snow, utils,
xts, zoo, stats, quadprog

Suggests CVXR, DT, ggfortify, gridExtra, knitr, prettydoc, readtext,
rmarkdown, R.rsp, stringi, testthat

1

https://CRAN.R-project.org/package=portfolioBacktest
https://github.com/dppalomar/portfolioBacktest
https://github.com/dppalomar/portfolioBacktest/issues

2 portfolioBacktest-package

VignetteBuilder knitr, rmarkdown, R.rsp

NeedsCompilation no

Author Daniel P. Palomar [cre, aut],
Rui Zhou [aut]

Repository CRAN

Date/Publication 2020-08-03 10:50:08 UTC

R topics documented:
portfolioBacktest-package . 2
add_performance . 3
backtestBoxPlot . 4
backtestChartCumReturns . 6
backtestChartDrawdown . 7
backtestChartStackedBar . 8
backtestLeaderboard . 10
backtestSelector . 11
backtestSummary . 13
backtestTable . 14
dataset10 . 16
genRandomFuns . 16
plotPerformanceVsParams . 18
portfolioBacktest . 19
SP500_symbols . 22
stockDataDownload . 23
stockDataResample . 24
summaryBarPlot . 25
summaryTable . 26

Index 29

portfolioBacktest-package

portfolioBacktest: Automated Backtesting of Portfolios over Multiple
Datasets

Description

Automated backtesting of multiple portfolios over multiple datasets of stock prices in a rolling-
window fashion. Intended for researchers and practitioners to backtest a set of different portfolios,
as well as by a course instructor to assess the students in their portfolio design in a fully automated
and convenient manner, with results conveniently formatted in tables and plots. Each portfolio
design is easily defined as a function that takes as input a window of the stock prices and outputs
the portfolio weights. Multiple portfolios can be easily specified as a list of functions or as files in a
folder. Multiple datasets can be conveniently extracted randomly from different markets, different
time periods, and different subsets of the stock universe. The results can be later assessed and

add_performance 3

ranked with tables based on a number of performance criteria (e.g., expected return, volatility,
Sharpe ratio, drawdown, turnover rate, return on investment, computational time, etc.), as well as
plotted in a number of ways with nice barplots and boxplots.

Functions

stockDataDownload, stockDataResample, portfolioBacktest, backtestSelector, backtestTable,
backtestBoxPlot, backtestLeaderboard, backtestChartCumReturns, backtestChartDrawdown,
backtestChartStackedBar backtestSummary, summaryTable, summaryBarPlot

Data

dataset10, SP500_symbols

Help

For a quick help see the README file: GitHub-README.

For more details see the vignette: CRAN-vignette.

Author(s)

Daniel P. Palomar and Rui ZHOU

add_performance Add a new performance measure to backtests

Description

Add a new performance measure to backtests

Usage

add_performance(bt, name, fun, desired_direction = 1)

Arguments

bt Backtest results as produced by the function portfolioBacktest.

name String with name of new performance measure.

fun Function to compute new performance measure from any element returned by
portfolioBacktest, e.g., return, wealth, and w_bop.

desired_direction

Number indicating whether the new measure is desired to be larger (1), which is
the default, or smaller (-1).

Value

List with the portfolio backtest results, see portfolioBacktest.

https://github.com/dppalomar/portfolioBacktest/blob/master/README.md
https://CRAN.R-project.org/package=portfolioBacktest/vignettes/PortfolioBacktest.html

4 backtestBoxPlot

Author(s)

Daniel P. Palomar and Rui Zhou

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
uniform_portfolio <- function(dataset) {

N <- ncol(dataset$adjusted)
return(rep(1/N, N))

}

do backtest
bt <- portfolioBacktest(list("Uniform" = uniform_portfolio), dataset10)

add a new performance measure
bt <- add_performance(bt, name = "SR arithmetic",

fun = function(return, ...)
PerformanceAnalytics::SharpeRatio.annualized(return,

geometric = FALSE))

bt <- add_performance(bt, name = "avg leverage", desired_direction = -1,
fun = function(w_bop, ...)

if(anyNA(w_bop)) NA else mean(rowSums(abs(w_bop))))

backtestBoxPlot Create boxplot from backtest results

Description

Create boxplot from a portfolio backtest obtained with the function portfolioBacktest. By de-
fault the boxplot is based on the package ggplot2 (also plots a dot for each single backtest), but the
user can also specify a simple base plot.

Usage

backtestBoxPlot(
bt,
measure = "Sharpe ratio",
type = c("ggplot2", "simple"),
...

)

backtestBoxPlot 5

Arguments

bt Backtest results as produced by the function portfolioBacktest.

measure String to select a performane measure from "Sharpe ratio", "max drawdown",
"annual return", "annual volatility", "Sterling ratio", "Omega ratio",
and "ROT bps". Default is "Sharpe ratio".

type Type of plot. Valid options: "ggplot2","simple". Default is "ggplot2".

... Additional parameters. For example: mar for margins as in par() (for the case
of plot type = "simple"); and alpha for the alpha of each backtest dot (for the
case of plot type = "ggplot2"), set to 0 to remove the dots.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

summaryBarPlot, backtestChartCumReturns, backtestChartDrawdown, backtestChartStackedBar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)
ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

}

do backtest
bt <- portfolioBacktest(list("Quintile" = quintile_portfolio), dataset10,

benchmark = c("uniform", "index"))

now we can plot
backtestBoxPlot(bt, "Sharpe ratio")
backtestBoxPlot(bt, "Sharpe ratio", type = "simple")

6 backtestChartCumReturns

backtestChartCumReturns

Chart of the cumulative returns or wealth for a single backtest

Description

Create chart of the cumulative returns or wealth for a single backtest obtained with the function
portfolioBacktest. By default the chart is based on the package ggplot2, but the user can also
specify a plot based on PerformanceAnalytics.

Usage

backtestChartCumReturns(
bt,
portfolios = names(bt),
dataset_num = 1,
type = c("ggplot2", "simple"),
...

)

Arguments

bt Backtest results as produced by the function portfolioBacktest.

portfolios String with portfolio names to be charted. Default charts all portfolios in the
backtest.

dataset_num Dataset index to be charted. Default is dataset_num = 1.

type Type of plot. Valid options: "ggplot2","simple". Default is "ggplot2".

... Additional parameters.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

summaryBarPlot, backtestBoxPlot, backtestChartDrawdown, backtestChartStackedBar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)

backtestChartDrawdown 7

ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

}

do backtest
bt <- portfolioBacktest(list("Quintile" = quintile_portfolio), dataset10,

benchmark = c("uniform", "index"))

now we can chart
backtestChartCumReturns(bt)

backtestChartDrawdown Chart of the drawdown for a single backtest

Description

Create chart of the drawdown for a single backtest obtained with the function portfolioBacktest.
By default the chart is based on the package ggplot2, but the user can also specify a plot based on
PerformanceAnalytics.

Usage

backtestChartDrawdown(
bt,
portfolios = names(bt),
dataset_num = 1,
type = c("ggplot2", "simple"),
...

)

Arguments

bt Backtest results as produced by the function portfolioBacktest.

portfolios String with portfolio names to be charted. Default charts all portfolios in the
backtest.

dataset_num Dataset index to be charted. Default is dataset_num = 1.

type Type of plot. Valid options: "ggplot2","simple". Default is "ggplot2".

... Additional parameters.

Author(s)

Daniel P. Palomar and Rui Zhou

8 backtestChartStackedBar

See Also

summaryBarPlot, backtestBoxPlot, backtestChartCumReturns, backtestChartStackedBar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)
ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

}

do backtest
bt <- portfolioBacktest(list("Quintile" = quintile_portfolio), dataset10,

benchmark = c("uniform", "index"))

now we can chart
backtestChartDrawdown(bt)

backtestChartStackedBar

Chart of the weight allocation over time for a portfolio over a single
backtest

Description

Create chart of the weight allocation over time for a portfolio over a single backtest obtained with
the function portfolioBacktest. By default the chart is based on the package ggplot2, but the
user can also specify a plot based on PerformanceAnalytics.

Usage

backtestChartStackedBar(
bt,
portfolio = names(bt[1]),
dataset_num = 1,
type = c("ggplot2", "simple"),
legend = FALSE

)

backtestChartStackedBar 9

Arguments

bt Backtest results as produced by the function portfolioBacktest.

portfolio String with portfolio name to be charted. Default charts the first portfolio in the
backtest.

dataset_num Dataset index to be charted. Default is dataset_num = 1.

type Type of plot. Valid options: "ggplot2","simple". Default is "ggplot2".

legend Boolean to choose whether legend is plotted or not. Default is legend = FALSE.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

summaryBarPlot, backtestBoxPlot, backtestChartCumReturns, backtestChartDrawdown

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

for better illustration, let's use only the first 5 stocks
dataset10_5stocks <- lapply(dataset10, function(x) {x$adjusted <- x$adjusted[, 1:5]; return(x)})

define GMVP (with heuristic not to allow shorting)
GMVP_portfolio_fun <- function(dataset) {

X <- diff(log(dataset$adjusted))[-1] # compute log returns
Sigma <- cov(X) # compute SCM
design GMVP
w <- solve(Sigma, rep(1, nrow(Sigma)))
w <- abs(w)/sum(abs(w))
return(w)

}

backtest
bt <- portfolioBacktest(list("GMVP" = GMVP_portfolio_fun), dataset10_5stocks, rebalance_every = 20)

now we can chart
backtestChartStackedBar(bt, "GMVP", type = "simple")
backtestChartStackedBar(bt, "GMVP", type = "simple", legend = TRUE)
backtestChartStackedBar(bt, "GMVP")
backtestChartStackedBar(bt, "GMVP", legend = TRUE)

10 backtestLeaderboard

backtestLeaderboard Leaderboard of portfolios from the backtest results

Description

Leaderboard of portfolios according to the backtesting results and a ranking based on the combina-
tion of several performance criteria. Since the different performance measures hava different ranges
and distributions, each is first transformed according to its empirical distribution function (along the
empirical distribution of the portfolios being ranked) to obtain percentile scores. After that trans-
formation, each of the measures has an empirical uniform distribution in the interval [0,100] and
can be weighted to obtain the final ranking.

Usage

backtestLeaderboard(
bt = NA,
weights = list(),
summary_fun = median,
show_benchmark = TRUE

)

Arguments

bt Backtest results as produced by the function portfolioBacktest.

weights List of weights for the different performance measures as obtained in backtestSummary()$performance
(i.e., "Sharpe ratio", "max drawdown", "annual return", "annual volatility",
"Sterling ratio", "Omega ratio", "ROT bps", "cpu_time", and "failure
ratio"), as well as "cpu time" and "failure rate". For example: weights =
list("Sharpe ratio" = 8,"max drawdown" = 4).

summary_fun Summary function to be employed (e.g., median or mean).

show_benchmark Logical value indicating whether to include benchmarks in the summary (default
is TRUE).

Value

List with the following elements:

leaderboard_scores

Matrix with the individual scores for the portfolios (as chosen in weights) and
the final score.

leaderboard_performance

Matrix with all the performance measures for the portfolios.

error_summary Error messages generated by each portfolio on each dataset. Useful for debug-
ging and give feedback to the portfolio managers of the different portfolios.

backtestSelector 11

Author(s)

Daniel P. Palomar and Rui Zhou

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)
ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

}

do backtest
bt <- portfolioBacktest(quintile_portfolio, dataset10,

benchmark = c("uniform", "index"))

see all performance measures available for the ranking
backtestSummary(bt)$performance

show leaderboard
leaderboard <- backtestLeaderboard(bt, weights = list("Sharpe ratio" = 6,

"max drawdown" = 1,
"ROT (bps)" = 1,
"cpu time" = 1,
"failure rate" = 1))

leaderboard$leaderboard_scores

backtestSelector Selector of portfolio backtest results

Description

Select the results from a portfolio backtest.

Usage

backtestSelector(
bt,
portfolio_index = NULL,
portfolio_name = NULL,

12 backtestSelector

measures = NULL
)

Arguments

bt Backtest results as produced by the function portfolioBacktest.
portfolio_index

Index number of a portfolio, e.g., 1 means to select the performance of the first
portfolio recorded in bt.

portfolio_name String name of a portfolio, e.g., "GMVP" means to select the performance of
portfolio with name "GMVP" in bt. Only considered when portfolio_index is
not passed.

measures String vector to select performane measures (default is all) from "Sharpe ratio",
"max drawdown", "annual return", "annual volatility", "Sterling ratio",
"Omega ratio", and "ROT bps".

Value

List with the following elements:

performance Performance measures selected by argument measures.

error Error status (TRUE or FALSE) of portfolio over each dataset (TRUE is when the
portfolio function generates an error or the maximum CPU time is exceeded).

error_message Error messages generated by portfolio function over each dataset. Useful for
debugging purposes.

cpu_time CPU usage by portfolio function over each dataset.

portfolio Portfolio weights generated by portfolio function over each dataset.

return Portfolio returns over each dataset.

wealth Portfolio wealth (aka cumulative returns or cumulative P&L) over each dataset.

Author(s)

Rui Zhou and Daniel P. Palomar

Examples

library(portfolioBacktest)
data("dataset10") # load dataset

define your own portfolio function
uniform_portfolio <- function(dataset) {

N <- ncol(dataset$adjusted)
return(rep(1/N, N))

}

do backtest
bt <- portfolioBacktest(list("Uniform" = uniform_portfolio), dataset10)

backtestSummary 13

extract your interested portfolio result
bt_sel <- backtestSelector(bt, portfolio_name = "Uniform")
names(bt_sel)

backtestSummary Summary of portfolio backtest

Description

Summarize the results from a portfolio backtest.

Usage

backtestSummary(
bt,
portfolio_indexes = NA,
portfolio_names = NA,
summary_fun = median,
show_benchmark = TRUE

)

Arguments

bt Backtest results as produced by the function portfolioBacktest.
portfolio_indexes

Numerical vector of portfolio indexes whose performance will be summarized,
e.g., c(1,2) means to summarize the performance of the first and second port-
folios recorded in bt.

portfolio_names

String vector of portfolio names whose performance will be summarized, e.g.,
c("Uniform","GMVP") means to summarize the performance of portfolios with
names "Uniform" and "GMVP" in bt (default is names(bt) except the bench-
mark names). Only considered when portfolio_indexes is not passed.

summary_fun Summary function to be employed (e.g., median or mean).

show_benchmark Logical value indicating whether to include benchmarks in the summary (default
is TRUE).

Value

List with the following elements:

performance_summary

Performance criteria: "Sharpe ratio", "max drawdown", "annual return",
"annual volatility", "Sterling ratio", "Omega ratio", and "ROT bps".
Default is "Sharpe ratio".

14 backtestTable

failure_rate Failure rate of each portfolio (failure is when the portfolio function generates an
error or the maximum CPU time is exceeded).

cpu_time_summary

Summary of the CPU usage by each portfolio function.

error_message Error messages generated by each portfolio function over each dataset. Useful
for debugging purposes.

Author(s)

Rui Zhou and Daniel P. Palomar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
uniform_portfolio <- function(dataset) {

N <- ncol(dataset$adjusted)
return(rep(1/N, N))

}

do backtest
bt <- portfolioBacktest(list("Uniform" = uniform_portfolio), dataset10)

show the summary
bt_sum <- backtestSummary(bt)
names(bt_sum)
bt_sum$performance_summary

backtestTable Table with portfolio backtest results

Description

Create table with the results from a portfolio backtest.

Usage

backtestTable(
bt,
portfolio_indexes = NA,
portfolio_names = NA,
show_benchmark = TRUE,
measures = NULL

)

backtestTable 15

Arguments

bt Backtest results as produced by the function portfolioBacktest.
portfolio_indexes

Numerical vector of portfolio indexes whose performance will be summarized,
e.g., c(1,2) means to summarize the performance of the first and second port-
folios recorded in bt.

portfolio_names

String vector of portfolio names whose performance will be summarized, e.g.,
c("Uniform","GMVP") means to summarize the performance of portfolios with
names "Uniform" and "GMVP" in bt (default is names(bt) except the bench-
mark names). Only considered when portfolio_indexes is not passed.

show_benchmark Logical value indicating whether to include benchmarks in the summary (default
is TRUE).

measures String vector to select performane measures (default is all) from "Sharpe ratio",
"max drawdown", "annual return", "annual volatility", "Sterling ratio",
"Omega ratio", "ROT bps", "error", "cpu_time", and "error_message".

Value

List with the following elements:

<performance criterion>

One item per performance measures as selected by argument measures.

error Error status (TRUE or FALSE) for each portfolio over each dataset (TRUE is when
the portfolio function generates an error or the maximum CPU time is exceeded).

cpu_time CPU usage by each portfolio function over each dataset.

error_message Error messages generated by each portfolio function over each dataset. Useful
for debugging purposes.

Author(s)

Rui Zhou and Daniel P. Palomar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
uniform_portfolio <- function(dataset) {

N <- ncol(dataset$adjusted)
return(rep(1/N, N))

}

do backtest
bt <- portfolioBacktest(list("Uniform" = uniform_portfolio), dataset10)

16 genRandomFuns

show the backtest results in table
bt_tab <- backtestTable(bt)
bt_tab[c("Sharpe ratio", "max drawdown")]

dataset10 Ten datasets obtained by resampling the S&P 500

Description

Ten datasets of stock market data resampled from the S&P 500. Each resample contains a random
selection of 50 stocks from the S&P 500 universe and a period of two years with a random initial
point.

Usage

data(dataset10)

Format

List of 10 datasets, each contains two xts objects:

adjusted 505 x 50 xts with the adjusted prices of the 50 stocks

index 505 x 1 xts with the market index prices

Source

Yahoo! Finance

genRandomFuns Generate multiple versions of a function with randomly chosen param-
eters

Description

Portfolio functions usually contain some parameters that can be tuned. This function creates multi-
ple versions of a function with randomly chosen parameters. After backtesting those portfolios, the
plotting function plotPerformanceVsParams can be used to show the performance vs parameters.

Usage

genRandomFuns(portfolio_fun, params_grid, name = "portfolio", N_funs = NULL)

https://finance.yahoo.com

genRandomFuns 17

Arguments

portfolio_fun Portfolio function with parameters unspecified.

params_grid Named list containing for each parameter the possible values it can take.

name String with the name of the portfolio function.

N_funs Number of functions to be generated.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

plotPerformanceVsParams

Examples

library(portfolioBacktest)

define GMVP with parameters "delay", "lookback", and "regularize"
GMVP_portfolio_fun <- function(dataset) {

prices <- tail(lag(dataset$adjusted, delay), lookback)
X <- diff(log(prices))[-1]
Sigma <- cov(X)
if (regularize)

Sigma <- Sigma + 0.1 * mean(diag(Sigma)) * diag(ncol(Sigma))
design GMVP
w <- solve(Sigma, rep(1, ncol(Sigma)))
return(w/sum(w))

}

generate the functions with random parameters
portfolio_list <- genRandomFuns(portfolio_fun = GMVP_portfolio_fun,

params_grid = list(lookback = c(100, 120, 140, 160),
delay = c(0, 5, 10, 15, 20),
regularize = c(FALSE, TRUE)),

name = "GMVP",
N_funs = 40)

names(portfolio_list)
portfolio_list[[1]]
rlang::env_print(portfolio_list[[1]])
rlang::fn_env(portfolio_list[[1]])$lookback
rlang::fn_env(portfolio_list[[1]])$delay
rlang::fn_env(portfolio_list[[1]])$regularize

18 plotPerformanceVsParams

plotPerformanceVsParams

Plot performance of portfolio function vs choice of parameters

Description

Portfolio functions usually contain some parameters that can be tuned. After generating multiple
versions of a portfolio function with randomly chosen parameters with the function genRandomFuns
and doing the backtesting, this function can be used to plot the performance vs choice of parameters.

Usage

plotPerformanceVsParams(
bt_all_portfolios,
params_subset = NULL,
name_performance = "Sharpe ratio",
summary_fun = median

)

Arguments

bt_all_portfolios

Backtest results as produced by the function portfolioBacktest.

params_subset List of named parameters with a subset of the values to be considered. By default
all the possible values will be considered.

name_performance

String with the name of the performance measure to be used.

summary_fun Summary function to be employed (e.g., median or mean). Defult is median.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

genRandomFuns

Examples

library(portfolioBacktest)

define GMVP with parameters "delay", "lookback", and "regularize"
GMVP_portfolio_fun <- function(dataset) {

prices <- tail(lag(dataset$adjusted, delay), lookback)
X <- diff(log(prices))[-1]
Sigma <- cov(X)

portfolioBacktest 19

if (regularize)
Sigma <- Sigma + 0.01*diag(ncol(Sigma))

design GMVP
w <- solve(Sigma, rep(1, ncol(Sigma)))
return(w/sum(w))

}

generate the functions with random parameters
portfolio_list <- genRandomFuns(portfolio_fun = GMVP_portfolio_fun,

params_grid = list(lookback = c(100, 120, 140, 160),
delay = c(0, 5, 10, 15, 20),
regularize = c(FALSE, TRUE)),

name = "GMVP",
N_funs = 40)

backtest portfolios
bt <- portfolioBacktest(portfolio_list, dataset10)

plot
plotPerformanceVsParams(bt)
plotPerformanceVsParams(bt, params_subset = list(regularize = TRUE))
plotPerformanceVsParams(bt, params_subset = list(delay = 5))
plotPerformanceVsParams(bt, params_subset = list(delay = 5, regularize = TRUE))

portfolioBacktest Backtest multiple portfolios over multiple datasets of stock prices in a
rolling-window basis

Description

Automated backtesting of multiple portfolios over multiple datasets of stock prices in a rolling-
window fashion. Each portfolio design is easily defined as a function that takes as input a window of
the stock prices and outputs the portfolio weights. Multiple portfolios can be easily specified as a list
of functions or as files in a folder. Multiple datasets can be conveniently obtained with the function
stockDataResample that resamples the data downloaded with the function stockDataDownload.
The results can be later assessed and arranged with tables and plots. The backtesting can be highly
time-consuming depending on the number of portfolios and datasets can be performed with parallel
computation over multiple cores. Errors in functions are properly catched and handled so that
the execution of the overal backtesting is not stopped (error messages are stored for debugging
purposes). See vignette for a detailed explanation.

Usage

portfolioBacktest(
portfolio_funs = NULL,
dataset_list,
folder_path = NULL,

https://CRAN.R-project.org/package=portfolioBacktest/vignettes/PortfolioBacktest.html

20 portfolioBacktest

price_name = "adjusted",
paral_portfolios = 1,
paral_datasets = 1,
show_progress_bar = FALSE,
benchmark = NULL,
shortselling = TRUE,
leverage = Inf,
T_rolling_window = 252,
optimize_every = 20,
rebalance_every = 1,
execution = c("same day", "next day"),
cost = list(buy = 0, sell = 0, short = 0, long_leverage = 0),
cpu_time_limit = Inf,
return_portfolio = TRUE,
return_returns = TRUE

)

Arguments

portfolio_funs List of functions (can also be a single function), each of them taking as input a
dataset containing a list of xts objects (following the format of each element of
the argument dataset_list) properly windowed (following the rolling-window
approach) and returning the portfolio as a vector of normalized weights. See
vignette for details.

dataset_list List of datasets, each containing a list of xts objects, as generated by the func-
tion stockDataResample.

folder_path If portfolio_funs is not defined, this should contain the path to a folder con-
taining the portfolio functions saved in files. See vignette for details.

price_name Name of the xts column in each dataset that contains the prices to be used in
the portfolio return computation (default is "adjusted").

paral_portfolios

Interger indicating number of portfolios to be evaluated in parallel (default is 1).

paral_datasets Interger indicating number of datasets to be evaluated in parallel (default is 1).
show_progress_bar

Logical value indicating whether to show progress bar (default is FALSE).

benchmark String vector indicating the benchmark portfolios to be incorporated, currently
supports:

• uniform - the uniform portfolio, w = [1/N, ..., 1/N] with N be number of
stocks

• IVP - the inverse-volatility portfolio, with weights be inversely proportional
the standard deviation of returns.

• index - the market index, requires an xts named ‘index‘ in the datasets.

shortselling Logical value indicating whether shortselling is allowed or not (default is TRUE,
so no control for shorselling in the backtesting).

leverage Amount of leverage as in ||w||1 <= leverage (default is Inf, so no control for
leverage in the backtesting).

https://CRAN.R-project.org/package=portfolioBacktest/vignettes/PortfolioBacktest.html
https://CRAN.R-project.org/package=portfolioBacktest/vignettes/PortfolioBacktest.html

portfolioBacktest 21

T_rolling_window

Length of the lookback rolling window (default is 252).

optimize_every How often the portfolio is to be optimized (default is 20).
rebalance_every

How often the portfolio is to be rebalanced (default is 1).

execution String that can be either "same day" (default) or "next day". At the rebalancing
period t, the portfolio has used information up to (and including) period t. Same
day execution means one can get into the position at that period t, whereas the
next day execution means that one can only get into the position the following
day.

cost List containing four different types of transaction costs (common for all as-
sets) for buying, selling, shorting, and long leveraging. The default is cost =
list(buy = 0e-4,sell = 0e-4,short = 0e-4,long_leverage = 0e-4). If some
elements are not specified then they will be automatically set to zero.

cpu_time_limit Time limit for executing each portfolio function over a single data set (default is
Inf, so no time limit).

return_portfolio

Logical value indicating whether to return the portfolios (default is TRUE). Two
portfolios are returned: w_designed is the designed portfolio at each given
rebalancing period (using all the information up to and including that period,
which can be executed either on the same day or the following day) and w_bop
is the "beginning-of-period" portfolio (i.e., at each period it contains the weights
held in the market in the previous period so that the portfolio return at that period
is just the product of the asset returns and w_bop at that period.)

return_returns Logical value indicating whether to return the portfolio returns (default is TRUE).
Two series are returned: return with the portfolio returns and wealth with the
portfolio wealth (aka cumulative P&L).

Value

List with the portfolio backtest results, see vignette-result-format for details. It can be accessed di-
rectly, but we highly recommend the use of the package specific functions to extract any required in-
formation, namely, backtestSelector, backtestTable, backtestBoxPlot, backtestLeaderboard,
backtestSummary, summaryTable, summaryBarPlot.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

stockDataDownload, stockDataResample, backtestSelector, backtestTable, backtestBoxPlot,
backtestLeaderboard, backtestSummary, summaryTable, summaryBarPlot.

Examples

library(portfolioBacktest)

https://CRAN.R-project.org/package=portfolioBacktest/vignettes/PortfolioBacktest.html#result-format

22 SP500_symbols

data(dataset10) # load dataset

define your own portfolio function
uniform_portfolio <- function(dataset) {

N <- ncol(dataset$adjusted)
return(rep(1/N, N))

}

do backtest
bt <- portfolioBacktest(list("Uniform" = uniform_portfolio), dataset10)

check your result
names(bt)
backtestSelector(bt, portfolio_name = "Uniform", measures = c("Sharpe ratio", "max drawdown"))
backtestTable(bt, measures = c("Sharpe ratio", "max drawdown"))
bt_summary <- backtestSummary(bt)
summaryTable(bt_summary)

SP500_symbols Stock symbols of the S&P 500 constituents

Description

Stock symbols of the S&P 500 constituents

Usage

data(SP500_symbols)

Format

String vector of stock symbols of the S&P 500 constituents. The market index symbol is concluded
as the attribute "index_symbol".

Source

Yahoo! Finance

https://finance.yahoo.com

stockDataDownload 23

stockDataDownload Download stock data from the Internet

Description

This function is basically a robust wrapper for quantmod:getSymbols to download stock data from
the internet. It will return 6 xts objects of the same dimensions named ‘open‘, ‘high‘, ‘low‘,
‘close‘, ‘volume‘, ‘adjusted‘ and ‘index‘. Additionally, it can return an xts object with an index.
If the download for some stock fails after a few attempts they will be ignored and reported. Also,
stocks with missing values can be optionally removed.

Usage

stockDataDownload(
stock_symbols,
index_symbol = NULL,
from,
to,
rm_stocks_with_na = TRUE,
local_file_path = getwd(),
...

)

Arguments

stock_symbols String vector containing the symbols of the stocks to be downloaded. User can
pass the market index symbol as its attribute ‘index_symbol“ (only considered
when argument ‘index_symbol‘ is not passed).

index_symbol String of the market index symbol.

from String as the starting date, e.g., "2017-08-17".

to String as the ending date (not included), e.g., "2017-09-17".
rm_stocks_with_na

Logical value indicating whether to remove stocks with missing values (ignoring
leading missing values). Default is TRUE.

local_file_path

Path where the stock data will be saved after the first time is downloaded, so that
in future retrievals it will be locally loaded (if the same arguments are used).
Default is getwd(). If local caching is not desired, it can be deactivated by
setting local_file_path = NULL.

... Additional arguments to be passed to quantmod:getSymbols.

Value

List of 7 xts objects named ‘open‘, ‘high‘, ‘low‘, ‘close‘, ‘volume‘, ‘adjusted‘ and ‘index‘. Note
that ‘index‘ will only be returned when correct index symbols is passed.

24 stockDataResample

Author(s)

Rui Zhou and Daniel P. Palomar

See Also

stockDataResample

Examples

Not run:
library(portfolioBacktest)
data(SP500_symbols)

download data from internet
SP500_data <- stockDataDownload(stock_symbols = SP500_symbols,

from = "2009-01-01", to = "2009-12-31")

End(Not run)

stockDataResample Generate random resamples from stock data

Description

This function resamples the stock data downloaded by stockDataDownload to obtain many datasets
for a subsequent backtesting with portfolioBacktest. Given the original data, each resample is
obtained by randomly choosing a subset of the stock names and randomly choosing a time period
over the available long period.

Usage

stockDataResample(
X,
N_sample = 50,
T_sample = 2 * 252,
num_datasets = 10,
rm_stocks_with_na = TRUE

)

Arguments

X List of xts objects matching the structure returned by the function stockDataDownload.
N_sample Number of stocks in each resample.
T_sample Length of each resample (consecutive samples with a random initial time).
num_datasets Number of resampled datasets (chosen randomly among the stock universe).
rm_stocks_with_na

Logical value indicating whether to remove stocks with missing values (ignoring
leading missing values). Default is TRUE.

summaryBarPlot 25

Value

List of datasets resampled from X.

Author(s)

Rui Zhou and Daniel P. Palomar

See Also

stockDataDownload, portfolioBacktest

Examples

Not run:
library(portfolioBacktest)
data(SP500_symbols)

download data from internet
SP500_data <- stockDataDownload(stock_symbols = SP500_symbols,

from = "2009-01-01", to = "2009-12-31")

generate 20 resamples from data, each with 10 stocks and one quarter continuous data
my_dataset_list <- stockDataResample(SP500_data, N = 10, T = 252/4, num_datasets = 20)

End(Not run)

summaryBarPlot Create barplot from backtest summary

Description

After performing a backtest with portfolioBacktest and obtaining a summary of the performance
measures with backtestSummary, this function creates a barplot from the summary. By default the
plot is based on the package ggplot2, but the user can also specify a simple base plot.

Usage

summaryBarPlot(bt_summary, measures = NULL, type = c("ggplot2", "simple"), ...)

Arguments

bt_summary Backtest summary as obtained from the function backtestSummary.

measures String vector to select performane measures (default is all) from ‘Sharpe ratio‘,
‘max drawdown‘, ‘annual return‘, ‘annual volatility‘, ‘Sterling ratio‘, ‘Omega
ratio‘, and ‘ROT bps‘.

type Type of plot. Valid options: "ggplot2","simple". Default is "ggplot2".

26 summaryTable

... Additional parameters (only used for plot type = "simple"); for example: mar
for margins as in par(), inset for the legend inset as in legend(), legend_loc
for the legend location as in legend().

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

summaryTable, backtestBoxPlot, backtestChartCumReturns, backtestChartDrawdown, backtestChartStackedBar

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)
ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

}

do backtest
bt <- portfolioBacktest(list("Quintile" = quintile_portfolio), dataset10,

benchmark = c("uniform", "index"))

now we can obtain the table
bt_summary_median <- backtestSummary(bt)
summaryBarPlot(bt_summary_median, measures = c("max drawdown", "annual volatility"))
summaryBarPlot(bt_summary_median, measures = c("max drawdown", "annual volatility"),

type = "simple")

summaryTable Create table from backtest summary

Description

After performing a backtest with portfolioBacktest and obtaining a summary of the performance
measures with backtestSummary, this function creates a table from the summary. By default the
table is a simple matrix, but if the user has installed the package DT or grid.table nicer tables can
be generated.

summaryTable 27

Usage

summaryTable(
bt_summary,
measures = NULL,
type = c("simple", "DT", "grid.table"),
order_col = NULL,
order_dir = c("asc", "desc"),
page_length = 10

)

Arguments

bt_summary Backtest summary as obtained from the function backtestSummary.

measures String vector to select performane measures (default is all) from ‘Sharpe ratio‘,
‘max drawdown‘, ‘annual return‘, ‘annual volatility‘, ‘Sterling ratio‘, ‘Omega
ratio‘, and ‘ROT bps‘.

type Type of table. Valid options: "simple","DT","grid.table". Default is "simple"
and generates a simple matrix (with the other choices the corresponding package
must be installed).

order_col Column number or column name of the performance measure to be used to sort
the rows (only used for table type = "DT"). By default the last column will be
used.

order_dir Direction to be used to sort the rows (only used for table type = "DT"). Valid
options: "asc","desc". Default is "asc".

page_length Page length for the table (only used for table type = "DT"). Default is 10.

Author(s)

Daniel P. Palomar and Rui Zhou

See Also

summaryBarPlot

Examples

library(portfolioBacktest)
data(dataset10) # load dataset

define your own portfolio function
quintile_portfolio <- function(data) {

X <- diff(log(data$adjusted))[-1]
N <- ncol(X)
ranking <- sort(colMeans(X), decreasing = TRUE, index.return = TRUE)$ix
w <- rep(0, N)
w[ranking[1:round(N/5)]] <- 1/round(N/5)
return(w)

28 summaryTable

}

do backtest
bt <- portfolioBacktest(list("Quintile" = quintile_portfolio),

dataset10,
benchmark = c("uniform", "index"))

now we can obtain the table
bt_summary_median <- backtestSummary(bt)
summaryTable(bt_summary_median, measures = c("max drawdown", "annual volatility"))
summaryTable(bt_summary_median, measures = c("max drawdown", "annual volatility"), type = "DT")

Index

∗ SP500_symbols
SP500_symbols, 22

∗ dataset
dataset10, 16

add_performance, 3

backtestBoxPlot, 3, 4, 6, 8, 9, 21, 26
backtestChartCumReturns, 3, 5, 6, 8, 9, 26
backtestChartDrawdown, 3, 5, 6, 7, 9, 26
backtestChartStackedBar, 3, 5, 6, 8, 8, 26
backtestLeaderboard, 3, 10, 21
backtestSelector, 3, 11, 21
backtestSummary, 3, 10, 13, 21, 25, 26
backtestTable, 3, 14, 21

dataset10, 3, 16

genRandomFuns, 16, 18

plotPerformanceVsParams, 16, 17, 18
portfolioBacktest, 3–10, 12, 13, 15, 18, 19,

24–26
portfolioBacktest-package, 2

quantmod:getSymbols, 23

SP500_symbols, 3, 22
stockDataDownload, 3, 19, 21, 23, 24, 25
stockDataResample, 3, 19–21, 24, 24
summaryBarPlot, 3, 5, 6, 8, 9, 21, 25, 27
summaryTable, 3, 21, 26, 26

29

	portfolioBacktest-package
	add_performance
	backtestBoxPlot
	backtestChartCumReturns
	backtestChartDrawdown
	backtestChartStackedBar
	backtestLeaderboard
	backtestSelector
	backtestSummary
	backtestTable
	dataset10
	genRandomFuns
	plotPerformanceVsParams
	portfolioBacktest
	SP500_symbols
	stockDataDownload
	stockDataResample
	summaryBarPlot
	summaryTable
	Index

