
Package ‘poplite’
May 13, 2019

Version 0.99.23

Date 2019-5-13

Title Tools for Simplifying the Population and Querying of SQLite
Databases

Depends R (>= 3.1), methods, dplyr (>= 0.8.0.1), DBI (>= 0.7)

Imports igraph, lazyeval, dbplyr, RSQLite (>= 2.0)

Suggests testthat, Lahman, VariantAnnotation

Description Provides objects and accompanying methods which facilitates populating and query-
ing SQLite databases.

License GPL-3

URL https://github.com/dbottomly/poplite

Collate tableSchemaList.R Database.R external_funcs.R

NeedsCompilation no

Author Daniel Bottomly [cre, aut],
Shannon McWeeney [aut],
Beth Wilmot [aut]

Maintainer Daniel Bottomly <bottomly@ohsu.edu>

Repository CRAN

Date/Publication 2019-05-13 18:10:03 UTC

R topics documented:
clinical . 2
Database-class . 2
External methods . 4
Helper Functions . 5
TableSchemaList-class . 6

Index 9

1

https://github.com/dbottomly/poplite

2 Database-class

clinical Example sample tracking dataset

Description

A synthetic sample tracking dataset consisting of a clinical table containing clinical information
on a set given fictional patients (samples in this context). A samples table which contains addition
information on the samples in the clinical dataset including whether they have had DNA collected
from them. Finally there is a DNA table which indicates the quality of a given DNA specimen as
well as the ID provided by the DNA isolation lab. See the vignette for more descriptions and an
example of loading and querying the data using poplite.

Usage

data("clinical")

Format

The format is:

"clinical" data.frame
"samples" data.frame
"dna" data.frame

Examples

data(clinical)
str(clinical)
str(samples)
str(dna)

Database-class Class "Database"

Description

An object representing an SQLite database containing both the location of the file as well as a
TableSchemaList object describing the structure of the database.

Objects from the Class

Objects can be created by calls of the form Database(tbsl, db.file).

Database-class 3

Slots

tbsl: Object of class "TableSchemaList" representing the current or desired database schema

db.file: Single file path to the desired location of the database

connection: An object of class "SQLiteConnection"

Methods

isOpen signature(obj = "Database"): Return a logical value indicating if the database con-
nection is open

columns signature(obj = "Database"): Returns a list of the database table columns indexed
by table name

dbFile signature(obj = "Database"): Returns the file path associated with the database

populate signature(obj = "Database"), . . . , use.tables = NULL, should.debug = FALSE:
Populate an SQLite database using the schema and location from the Database object and
the data to be inserted as specified in the dta.func element of the TableSchemaList. The
use.tables argument can be used to limit the tables populated. The should.debug argument
outputs more verbose messages regarding the SQL queries.

schema signature(obj = "Database"): Returns the associated TableSchemaList object

tables signature(obj = "Database"): Returns a character vector containing the table names

Author(s)

Daniel Bottomly

See Also

TableSchemaList

Examples

if (require(Lahman) && require(RSQLite))
{
baseball.teams <- makeSchemaFromData(TeamsFranchises, name="team_franch")
baseball.teams <- append(baseball.teams, makeSchemaFromData(Teams, name="teams"))

relationship(baseball.teams, from="team_franch", to="teams") <- franchID ~ franchID

baseball.db <- Database(baseball.teams, tempfile())

tables(baseball.db)
columns(baseball.db)
schema(baseball.db)

populate(baseball.db, teams=Teams, team_franch=TeamsFranchises)

examp.con <- dbConnect(SQLite(), dbFile(baseball.db))

4 External methods

dbListTables(examp.con)

head(dbReadTable(examp.con, "teams"))
head(dbReadTable(examp.con, "team_franch"))

dbDisconnect(examp.con)

}

External methods Specific methods for generics defined in external packages.

Description

These functions provide convienient interfaces to functionality provided in external packages (cur-
rently only dplyr). See the vignette and below examples.

Usage

filter(.data, ..., .preserve = FALSE)
select(.data, ...,.tables=NULL)

Arguments

.data A Database object.

.tables A character vector indicating the table(s) the specified columns refer to.

.preserve Currently ignored.

... For filter, a single valid R expression which would result in a logical vector
upon execution. For select, expression indicating the columns to choose from
the given table(s). See the examples in dplyr::filter and dplyr::select. In
addition, the names of the tables can be prepended to each variable name similar
to SQL statements (e.g. ’table.column’).

Value

An object of class tbl_sqlite.

Author(s)

Daniel Bottomly

See Also

filter,select

Helper Functions 5

Examples

if (require(Lahman))
{

baseball.teams <- makeSchemaFromData(TeamsFranchises, name="team_franch")
baseball.teams <- append(baseball.teams, makeSchemaFromData(Teams, name="teams"))

relationship(baseball.teams, from="team_franch", to="teams") <- franchID ~ franchID

baseball.db <- Database(baseball.teams, tempfile())

populate(baseball.db, teams=Teams, team_franch=TeamsFranchises)

select(baseball.db, .tables="teams")

select(baseball.db, .tables=c("teams", "team_franch"))

select(baseball.db, yearID:WCWin, franchName)

filter(baseball.db, active == "Y")

select(filter(baseball.db, active == "Y" & W > 50 & teamID == "CAL"), active, W, teamID)
}

Helper Functions Functions to facilitate the creation of poplite\’s data structures.

Description

These functions facilitate the creation of TableSchemaList objects from existing or supplementary
R data structures such as the data.frame.

Usage

makeSchemaFromData(tab.df, name=NULL,dta.func=NULL)
makeSchemaFromFunction(dta.func, name,...)
correct.df.names(tab.df)

Arguments

tab.df A data.frame representing a database table

name Desired name of the database table

dta.func An optional function which will take a specified object and turn it into a SQLite
table. The function parameters should have the same names as the objects sup-
plied to populate.

... Arbitary objects provided to the function specified in dta.func. They should
be of the same type and be named like the objects to be passed to populate.

6 TableSchemaList-class

Value
makeSchemaFromData

A TableSchemaList object
makeSchemaFromData

A TableSchemaList object
correct.df.names

A data.frame with valid names for SQLite

Author(s)

Daniel Bottomly

See Also

TableSchemaList

Examples

if (require(Lahman))
{

franches <- makeSchemaFromData(TeamsFranchises, name="team_franch")
show(franches)

makeSchemaFromFunction(function(x) head(x), name="team_franch", x=TeamsFranchises)

test.df <- TeamsFranchises
names(test.df)[1] <- "franch.ID"

names(test.df)

names(correct.df.names(test.df))
}

TableSchemaList-class Class "TableSchemaList"

Description

A list-based representation of a SQLite database which provides a simple approach to loading data
into a database as well as merging with the existing data. See the vignette for more complex exam-
ples.

Objects from the Class

Objects can be created by calls of the form new("TableSchemaList", tab.list, search.cols).

TableSchemaList-class 7

Slots

tab.list: Object of class "list" A list of lists with each list representing a table and each ele-
ment containing information on the definition of columns. There should be 6 elements to the
list: db.cols a character vector containing the names of the columns db.schema a character
vector of the same length as db.cols which contains the columns types (e.g. TEXT, INTE-
GER) db.constr a character string containing the statement at the end of a query indicating
constraints dta.func a function which when applied to the input (usually a list) provides
a data.frame to be inserted into the database. should.ignore a boolean value indicating
whether duplicates implied by the constraints should be ignored upon insertion foreign.keys
a list (or NULL) containing several elements named by each table to be joined. The two el-
ements are local.keys which are the columns that should be kept from joining of the two
tables and ext.keys which are the columns used in the joining.

Methods

length signature(obj = "TableSchemaList") Return the number of tables in the object
append signature(obj = "TableSchemaList"), x, values, after=length(x): Return a new TableSchemaList

object consisting of x, the object to be modified, values the object(s) to be added and after
the element of x to place them after.

columns signature(obj = "TableSchemaList") Returns a list of length equal to the number of
tables where each element contains columns for the given table.

tables signature(obj = "TableSchemaList") Returns a vector of the table names in the object.
createTable signature(obj = "TableSchemaList"), table.name, mode=c("normal", "merge"):

Produces a create table statement based on the table specified in table.name and whether the
table should be temporary for merging purposes or normal permanent table

insertStatement signature(obj = "TableSchemaList"), table.name, mode=c("normal", "merge"):
Produces an insert statement based on the table specified in table.name and whether the ta-
ble should be temporary for merging purposes or normal permanent table. This insert state-
ment will be used in conjunction with dbGetPreparedQuery in the RSQLite package and the
data.frame resulting from the dta.func function to populate the initial database table.

mergeStatement signature(obj = "TableSchemaList"), table.name: Produces a statement
joining an existing table and a temporary one and inserting into a new (non-temporary) tables

’relationship<-’ signature(obj = "TableSchemaList"), from, to, value: Provides a mecha-
nism to specify how two tables are connected to each other in a database. The arguments
from and to should refer to tables in the specified TableSchemaList. The value should be a
formula describing how the column(s) correspond to each other. The special value ’.’ refers to
the autoincremented integer column if applicable. The simplest use would be to specify that
two tables should be joined on the same column (e.g. column1~column1). Another typical use
would be two say that the combination of one or more columns in one table should uniquely
identify a row in another table (e.g. .~column1+column2).

’constraint<-’ signature(obj = "TableSchemaList"), obj, table.name, should.ignore=T, con-
str.name=NULL, value: Allows the specification of uniqueness constraints for a given table
(table.name) using the specified columns provided as a single sided formula (e.g. ~ column).
should.ignore specifies whether a row of the input dataset should be ultimately ignored if
determined to be duplicate in terms of the specified columns, by default it is set to TRUE. By
default, constr.name sets the constraint name as ’table.name_idx’, this can be changed by
specifying constr.name. Setting this to NULL removes the constraint.

8 TableSchemaList-class

Author(s)

Daniel Bottomly

Examples

if (require(Lahman))
{

baseball.teams <- new("TableSchemaList")

franches <- makeSchemaFromData(TeamsFranchises, name="team_franch")

baseball.teams <- append(baseball.teams, franches)

teams <- makeSchemaFromData(Teams, name="teams")

baseball.teams <- append(baseball.teams, teams)

salaries <- makeSchemaFromData(Salaries, name="salaries")

baseball.teams <- append(baseball.teams, salaries)

relationship(baseball.teams, from="team_franch", to="teams") <- franchID ~ franchID

relationship(baseball.teams, from="teams", to="salaries") <- teamID ~ teamID

constraint(baseball.teams, "team_franch") <- ~franchID

tables(baseball.teams)

columns(baseball.teams)

}

Index

∗Topic classes
Database-class, 2
TableSchemaList-class, 6

∗Topic datasets
clinical, 2

∗Topic utilities
External methods, 4
Helper Functions, 5

append,TableSchemaList,TableSchemaList-method
(TableSchemaList-class), 6

clinical, 2
columns (TableSchemaList-class), 6
columns,Database-method

(Database-class), 2
columns,TableSchemaList-method

(TableSchemaList-class), 6
constraint<- (TableSchemaList-class), 6
constraint<-,TableSchemaList-method

(TableSchemaList-class), 6
correct.df.names (Helper Functions), 5
createTable (TableSchemaList-class), 6
createTable,TableSchemaList-method

(TableSchemaList-class), 6

Database (Database-class), 2
Database-class, 2
dbFile (Database-class), 2
dbFile,Database-method

(Database-class), 2
dna (clinical), 2

External methods, 4

filter, 4
filter (External methods), 4

Helper Functions, 5

insertStatement
(TableSchemaList-class), 6

insertStatement,TableSchemaList-method
(TableSchemaList-class), 6

isOpen,Database-method
(Database-class), 2

length (TableSchemaList-class), 6
length,TableSchemaList-method

(TableSchemaList-class), 6

makeSchemaFromData (Helper Functions), 5
makeSchemaFromFunction (Helper

Functions), 5
mergeStatement (TableSchemaList-class),

6
mergeStatement,TableSchemaList-method

(TableSchemaList-class), 6

populate (Database-class), 2
populate,Database-method

(Database-class), 2

relationship<- (TableSchemaList-class),
6

relationship<-,TableSchemaList-method
(TableSchemaList-class), 6

samples (clinical), 2
schema (Database-class), 2
schema,Database-method

(Database-class), 2
select, 4
select (External methods), 4

tables (TableSchemaList-class), 6
tables,Database-method

(Database-class), 2
tables,TableSchemaList-method

(TableSchemaList-class), 6
TableSchemaList, 3, 6
TableSchemaList

(TableSchemaList-class), 6
TableSchemaList-class, 6

9

	clinical
	Database-class
	External methods
	Helper Functions
	TableSchemaList-class
	Index

