
Package ‘popkin’
December 18, 2019

Title Estimate Kinship and FST under Arbitrary Population Structure

Version 1.3.0

Description Provides functions to estimate the kinship matrix of individuals from a large set of bial-
lelic SNPs, and extract inbreeding coefficients and the generalized FST (Wright's fixation in-
dex). Method described in Ochoa and Storey (2016) <doi:10.1101/083923>.

Depends
Imports Rcpp (>= 0.12.10), RColorBrewer, graphics, grDevices

LinkingTo Rcpp, RcppEigen

Suggests BEDMatrix, testthat, knitr, rmarkdown, lfa

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

URL https://github.com/StoreyLab/popkin/

BugReports https://github.com/StoreyLab/popkin/issues

NeedsCompilation yes

Author Alejandro Ochoa [aut, cre] (<https://orcid.org/0000-0003-4928-3403>),
John D. Storey [aut] (<https://orcid.org/0000-0001-5992-402X>)

Maintainer Alejandro Ochoa <alejandro.ochoa@duke.edu>

Repository CRAN

Date/Publication 2019-12-17 23:30:02 UTC

R topics documented:
popkin-package . 2
fst . 3
inbr . 4
inbr_diag . 5

1

https://github.com/StoreyLab/popkin/
https://github.com/StoreyLab/popkin/issues

2 popkin-package

mean_kinship . 7
n_eff . 8
plot_popkin . 10
popkin . 14
pwfst . 16
rescale_popkin . 17
validate_kinship . 18
weights_subpops . 19

Index 21

popkin-package A package for estimating kinship and FST under arbitrary population
structure

Description

The heart of this package is the popkin function, which estimates the kinship matrix of all in-
dividual pairs from their genotype matrix. Inbreeding coefficients, the generalized FST , and the
individual-level pairwise FST matrix are extracted from the kinship matrix using inbr, fst, and
pwfst, respectively. fst accepts weights for individuals to balance subpopulations obtained with
weights_subpops. Kinship matrices can be renormalized (to change the most recent common an-
cestor population or MRCA) using rescale_popkin. Lastly, kinship and pairwise FST matrices
can be visualized using plot_popkin (with the help of inbr_diag for kinship matrices only).

Author(s)

Maintainer: Alejandro Ochoa <alejandro.ochoa@duke.edu> (ORCID)

Authors:

• John D. Storey <jstorey@princeton.edu> (ORCID)

See Also

Useful links:

• https://github.com/StoreyLab/popkin/

• Report bugs at https://github.com/StoreyLab/popkin/issues

Examples

estimate and visualize kinship and FST from a genotype matrix

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals
subpops2 <- 1:3 # alternate labels treat every individual as a different subpop

NOTE: for BED-formatted input, use BEDMatrix!

https://orcid.org/0000-0003-4928-3403
https://orcid.org/0000-0001-5992-402X
https://github.com/StoreyLab/popkin/
https://github.com/StoreyLab/popkin/issues

fst 3

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
all downstream analysis require "kinship", none use "X" after this
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

plot the kinship matrix, marking the subpopulations
note inbr_diag replaces the diagonal of kinship with inbreeding coefficients
plot_popkin(inbr_diag(kinship), labs = subpops)

extract inbreeding coefficients from kinship
inbreeding <- inbr(kinship)

estimate FST
weights <- weights_subpops(subpops) # weigh individuals so subpopulations are balanced
Fst <- fst(kinship, weights) # use kinship matrix and weights to calculate fst
Fst <- fst(inbreeding, weights) # estimate more directly from inbreeding vector (same result)

estimate and visualize the pairwise FST matrix
pairwise_fst <- pwfst(kinship) # estimated matrix
leg_title <- expression(paste('Pairwise ', F[ST])) # fancy legend label
NOTE no need for inbr_diag() here!
plot_popkin(pairwise_fst, labs = subpops, leg_title = leg_title)

rescale the kinship matrix using different subpopulations (implicitly changes the MRCA)
kinship2 <- rescale_popkin(kinship, subpops2)

fst Calculate FST from a population-level kinship matrix or vector of in-
breeding coefficients

Description

This function simply returns the weighted mean inbreeding coefficient. If weights are NULL (de-
fault), the regular mean is calculated. If a kinship matrix is provided, then the inbreeding coef-
ficients are extracted from its diagonal using inbr (requires the diagonal to contains self-kinship
values (φTjj = 1

2 (1 + fTj)) as popkin returns, and not inbreeding coefficients (fTj) as inbr_diag
returns).

Usage

fst(x, weights = NULL)

Arguments

x The vector of inbreeding coefficients, or the kinship matrix if x is a matrix.

weights Weights for individuals (optional, defaults to uniform weights)

4 inbr

Details

The returned weighted mean inbreeding coefficient equals the generalized FST if all individuals are
"locally outbred" (i.e. if the self-relatedness of every individual stems entirely from the population
structure rather than due partly to having unusually closely related parents, such as first or second
cousins). Note most individuals in population-scale human data are locally outbred. If there are
locally-inbred individuals, the returned value will overestimate FST .

Value

FST

Examples

Get FST from a genotype matrix

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix "kinship" from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels
weights <- weights_subpops(subpops) # can weigh individuals so subpopulations are balanced
Fst <- fst(kinship, weights) # use kinship matrix and weights to calculate fst

Fst <- fst(kinship) # no (or NULL) weights implies uniform weights

inbr <- inbr(kinship) # if you extracted inbr for some other analysis...
Fst <- fst(inbr, weights) # ...use this inbreeding vector as input too!

inbr Extract inbreeding coefficients from a kinship matrix

Description

The kinship matrix contains inbreeding coefficients fTj along the diagonal, present as φTjj = 1
2 (1 +

fTj). This function extracts the vector of fTj values from the input kinship matrix.

Usage

inbr(kinship)

inbr_diag 5

Arguments

kinship The n× n kinship matrix.

Value

The length-n vector of inbreeding coefficient for each individual.

Examples

#########
illustrate the main transformation on a 2x2 kinship matrix:
same inbreeding values for both individuals
inbr <- 0.2
corresponding self kinship (diagonal values) for both individuals
kinship_self <- (1 + inbr)/2
actual kinship matrix (zero kinship between individuals)
kinship <- matrix(c(kinship_self, 0, 0, kinship_self), nrow=2)
expected output of inbr (extracts inbreeding coefficients)
inbr_exp <- c(inbr, inbr)
actual output from this function
inbr_obs <- inbr(kinship)
verify that they match (up to machine precision)
stopifnot(all(abs(inbr_obs - inbr_exp) < .Machine$double.eps))

#########
Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

extract inbreeding coefficients from Kinship
inbr <- inbr(kinship)

inbr_diag Replace kinship diagonal with inbreeding coefficients

Description

The usual kinship matrix contains self-kinship values φTjj = 1
2 (1 + fTj) where fTj are inbreeding

coefficients. This function returns a modified kinship matrix with each φTjj replaced with fj (off-
diagonal j 6= k values stay the same). The resulting matrix is better for visualization, but is not
appropriate for modeling (e.g. in mixed-effects models for association or heritability estimation).

6 inbr_diag

Usage

inbr_diag(kinship)

Arguments

kinship A kinship matrix with self-kinship values along the diagonal. Can pass multiple
kinship matrices contained in a list. If NULL, it is returned as-is.

Value

The modified kinship matrix, with inbreeding coefficients along the diagonal, preseving column
and row names. If the input was a list of kinship matrices, the output is the corresponding list of
transformed matrices. NULL inputs are preserved without causing errors.

See Also

The inverse function is given by coanc_to_kinship.

Examples

#########
illustrate the main transformation on a 2x2 kinship matrix:
same inbreeding values for both individuals
inbr <- 0.2
corresponding self kinship (diagonal values) for both individuals
kinship_self <- (1 + inbr)/2
kinship between the two individuals
kinship_between <- 0.1
actual kinship matrix
kinship <- matrix(c(kinship_self, kinship_between, kinship_between, kinship_self), nrow=2)
expected output of inbr_diag (replaces self kinship with inbreeding)
kinship_inbr_diag_exp <- matrix(c(inbr, kinship_between, kinship_between, inbr), nrow=2)
actual output from this function
kinship_inbr_diag_obs <- inbr_diag(kinship)
verify that they match (up to machine precision)
stopifnot(all(abs(kinship_inbr_diag_obs - kinship_inbr_diag_exp) < .Machine$double.eps))

for a list of matrices, returns list of transformed matrices:
inbr_diag(list(kinship, kinship))

a list with NULL values also works
inbr_diag(list(kinship, NULL, kinship))

#########
Construct toy data (to more closely resemble real data analysis)
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

mean_kinship 7

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

lastly, replace diagonal of kinship matrix with inbreeding coefficients
kinship_inbr_diag <- inbr_diag(kinship)

mean_kinship Calculate the weighted mean kinship

Description

This function computes a particular weighted mean kinship that arises in the context of kinship and
FST estimators and in the definition of the effective sample size. This function allows for weights
to be zero or even negative, but they are internally normalized to sum to one.

Usage

mean_kinship(kinship, weights = NULL)

Arguments

kinship The kinship matrix

weights Weights for individuals (optional). If NULL (default), uniform weights are used.

Value

The weighted mean kinship matrix, equivalent to drop(weights %*% kinship %*% weights) for
normalized weights (which sum to one).

Examples

construct a dummy kinship matrix
kinship <- matrix(c(0.5, 0, 0, 0.6), nrow=2)

this is the ordinary mean
mean_kinship(kinship)

weighted mean with twice as much weight on the second individual
(weights are internally normalized to sum to one)
weights <- c(1, 2)
mean_kinship(kinship, weights)

8 n_eff

n_eff Calculates the effective sample size of the data

Description

The effective sample size (neff) is the equivalent number of independent haplotypes that gives
the same variance as that observed under the given population. The variance in question is for
the weighted sample mean ancestral allele frequency estimator. It follows that neff equals the
inverse of the weighted mean kinship. If max=TRUE, a calculation is performed that implicitly uses
optimal weights which maximize neff : here neff equals the sum of the elements of the inverse
kinship matrix. However, if nonneg=TRUE and if the above solution has negative weights (common),
optimal non-negative weights are found instead (there are three algorithms available, see algo). If
max=FALSE, then the input weights are used in this calculation, and if weights are NULL, uniform
weights are used.

Usage

n_eff(
kinship,
max = TRUE,
weights = NULL,
nonneg = TRUE,
algo = c("gradient", "newton", "heuristic"),
tol = 1e-10

)

Arguments

kinship An n× n kinship matrix.

max If TRUE, returns the maximum neff value among those computed using all possi-
ble vectors of weights that sum to one (and which are additionally non-negative
if nonneg=TRUE). If FALSE, neff is computed using the specific weight vector
provided.

weights Weights for individuals (optional). If NULL, uniform weights are used. This
parameter is ignored if max=TRUE.

nonneg If TRUE (default) and max=TRUE, non-negative weights that maximize neff are
found. See algo. This has no effect if max=FALSE.

algo Algorithm for finding optimal non-negative weights (applicable only if nonneg=TRUE
and max=TRUE and the weights found by matrix inversion are non-negative).
May be abbreviated. If "gradient" (default), an optimized gradient descent algo-
rithm is used (fastest; recommended). If "newton", the exact multivariate new-
ton’s Method is used (slowest since (n+ 1)× (n+ 1) Hessian matrix needs to
be inverted at every iteration; use if possible to confirm that "gradient" gives the
best answer). If "heuristic", if the optimal solution by the inverse matrix method
contains negative weights, the most negative weight in an iteration is forced to
be zero in all subsequent iterations and the rest of the weights are solved for

n_eff 9

using the inverse matrix method, repeating until all resulting weights are non-
negative (also slow, since inversion of large matrices is required; least likely to
find optimal solution).

tol Tolerance parameter for "gradient" and "newton" algorithms. The algorithms
converge when the norm of the step vector is smaller than this tolerance value.

Details

The maximum neff possible is 2n, where n is the number of individuals; this value is attained only
when all haplotypes are independent (a completely unstructured population in Hardy-Weinberg
equilibrium). The minimum neff possible is 1, which is attained in an extremely structured pop-
ulation with FST of 1, where every individual has exactly the same haplotype at every locus (no
heterozygotes). Moreover, for K extremely-differentiated subpopulations (FST =1 per subpopula-
tion) neff equals K. In this way, neff is smaller than the ideal value of 2n depending on the
amount of kinship (covariance) in the data.

Occasionally, depending on the quality of the input kinship matrix, the estimated neff may be
outside the theoretical [1, 2n] range, in which case the return value is set to the closest boundary
value. The quality of the results depends on the success of matrix inversion (which for numerical
reasons may incorrectly contain negative eigenvalues, for example) or of the gradient optimization.

Value

A list containing n_eff and weights (optimal weights if max = TRUE, input weights otherwise).

Examples

Get n_eff from a genotype matrix

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix "kinship" from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels
weights <- weights_subpops(subpops) # can weigh individuals so subpopulations are balanced

use kinship matrix to calculate n_eff
default mode returns maximum n_eff possible across all non-negative weights that sum to one
also returns the weights that were optimal
obj <- n_eff(kinship)
n_eff_max <- obj$n_eff
w_max <- obj$weights

version that uses weights provided
obj <- n_eff(kinship, max = FALSE, weights = weights)
n_eff_w <- obj$n_eff

10 plot_popkin

w <- obj$weights # returns input weights renormalized for good measure

no (or NULL) weights implies uniform weights
obj <- n_eff(kinship, max = FALSE)
n_eff_u <- obj$n_eff
w <- obj$weights # uniform weights

plot_popkin Visualize one or more kinship matrices

Description

This function plots one or more kinship matrices and a shared legend for the color key. Many
options allow for fine control of individual or subpopulation labeling. This code assumes input
matrices are symmetric.

Usage

plot_popkin(
kinship,
titles = NULL,
col = NULL,
col_n = 100,
mar = NULL,
mar_pad = 0.2,
oma = 1.5,
diag_line = FALSE,
panel_letters = toupper(letters),
panel_letters_cex = 1.5,
ylab = "Individuals",
ylab_adj = NA,
ylab_line = 0,
layout_add = TRUE,
layout_rows = 1,
leg_per_panel = FALSE,
leg_title = "Kinship",
leg_cex = 1,
leg_n = 5,
leg_mar = 3,
leg_width = 0.3,
names = FALSE,
names_cex = 1,
names_line = NA,
names_las = 2,
labs = NULL,
labs_cex = 1,

plot_popkin 11

labs_las = 0,
labs_line = 0,
labs_sep = TRUE,
labs_lwd = 1,
labs_col = "black",
labs_ticks = FALSE,
labs_text = TRUE,
labs_even = FALSE,
null_panel_data = FALSE,
weights = NULL,
raster = is.null(weights),
...

)

Arguments

kinship A numeric kinship matrix or a list of matrices. Note kinship may contain NULL
elements (makes blank plots with titles; good for placeholders or non-existent
data)

titles Titles to add to each matrix panel (default is no titles)

col Colors for heatmap (default is a red-white-blue palette symmetric about zero
constructed using RColorBrewer).

col_n The number of colors to use in the heatmap (applies if col = NULL).

mar Margins shared by all panels (if a vector) or for each panel (if a list of such
vectors). If the vector has length 1, mar corresponds to the shared lower and
left margins, while the top and right margins are set to zero. If this length
is 2, mar[1] is the same as above, while mar[2] is the top margin. If this
length is 4, then mar is a fully-specified margin vector in the standard format
c(bottom,left,top,right) that \link[graphics]{par}('mar') expects. Vectors
of invalid lengths produce a warning. Note the padding mar_pad below is added
to every margin if set. If NULL, the original margin values are used without
change, and are reset for every panel that has a NULL value. The original mar-
gins are also reset after plotting is complete.

mar_pad Margin padding added to all panels (mar above and leg_mar below). Default
0.2. Must be a scalar or a vector of length 4 to match \link[graphics]{par}('mar').

oma Outer margin vector. If length 1, the value of oma is applied to the left outer mar-
gin only (so ylab below displays correctly) and zero outer margins elsewhere. If
length 4, all outer margins are expected in standard format \link[graphics]{par}('mar')
expects (see mar above). mar_pad above is never added to outer margins. If
NULL, no outer margins are set (previous settings are preserved). Vectors of in-
valid lengths produce a warning.

diag_line If TRUE adds a line along the diagonal (default no line). May also be a vector of
logicals to set per panel (lengths must agree).

panel_letters Vector of strings for labeling panels (default A-Z). No labels are added if NULL,
or when there is only one panel except if its set to a single letter in that case (this
behavior is useful if goal is to have multiple external panels but popkin only
creates one of these panels).

12 plot_popkin

panel_letters_cex

Scaling factor of panel letters (default 1.5).

ylab The y-axis label (default "Individuals"). If length(ylab) == 1, the label is
placed in the outer margin (shared across panels); otherwise length(ylab)
must equal the number of panels and each label is placed in the inner margin
of the respective panel.

ylab_adj The value of "adj" passed to \link[graphics]{mtext}. If length(ylab) == 1,
only the first value is used, otherwise length(ylab_adj) must equal the num-
ber of panels.

ylab_line The value of "line" passed to \link[graphics]{mtext}. If length(ylab) == 1,
only the first value is used, otherwise length(ylab_line) must equal the num-
ber of panels.
LAYOUT OPTIONS

layout_add If TRUE (default) then \link[graphics]{layout} is called internally with appropri-
ate values for the required number of panels for each matrix, the desired number
of rows (see layout_rows below) plus the color key legend. The original layout
is reset when plotting is complete and if layout_add = TRUE. If a non-standard
layout or additional panels (beyond those provided by plot_popkin) are de-
sired, set to FALSE and call \link[graphics]{layout} yourself beforehand.

layout_rows Number of rows in layout, used only if layout_add = TRUE.
LEGEND (COLOR KEY) OPTIONS

leg_per_panel If TRUE, every kinship matrix get its own legend/color key (best for matrices with
very different scales). If FALSE (default), a single legend/color key is shared by
all kinship matrix panels.

leg_title The name of the variable that the heatmap colors measure (default "Kinship"),
or a vector of such values if they vary per panel.

leg_cex Scaling factor for leg_title (default 1), or a vector of such values if they vary
per panel.

leg_n The desired number of ticks in the legend y-axis (input to \link{pretty}, see that
for more details), or a vector of such values if they vary per panel.

leg_mar Margin values for the legend panel only, or a list of such values if they vary
per panel. A length-4 vector (in c(bottom,left,top,right) format that
\link[graphics]{par}('mar') expects) specifies the full margins, to which mar_pad
is added. Otherwise, the margins used in the last panel are preserved with the
exception that the left margin is set to zero, and if leg_mar is length-1, it is used
to specify the right margin (plus the value of mar_pad, see above).
INDIVIDUAL LABEL OPTIONS

leg_width The width of the legend panel, relative to the width of the kinship panel. This
value is passed to \link[graphics]{layout} (ignored if layout_add = FALSE).

names If TRUE, the column and row names are plotted in the heatmap, or a vector of
such values if they vary per panel.

names_cex Scaling factor for the column and row names, or a vector of such values if they
vary per panel.

names_line Line where column and row names are placed, or a vector of such values if they
vary per panel.

plot_popkin 13

names_las Orientation of labels relative to axis. Default (2) makes labels perpendicular to
axis.
SUBPOPULATION LABEL OPTIONS

labs Subpopulation labels for individuals. Use a matrix of labels to show groupings
at more than one level (for a hierarchy or otherwise). If input is a vector or a
matrix, the same subpopulation labels are shown for every heatmap panel; the
input must be a list of such vectors or matrices if the labels vary per panel.

labs_cex A vector of label scaling factors for each level of labs, or a list of such vectors if
labels vary per panel.

labs_las A vector of label orientations (in format that \link[graphics]{mtext} expects) for
each level of labs, or a list of such vectors if labels vary per panel.

labs_line A vector of lines where labels are placed (in format that \link[graphics]{mtext}
expects) for each level of labs, or a list of such vectors if labels vary per panel.

labs_sep A vector of logicals that specify whether lines separating the subpopulations are
drawn for each level of labs, or a list of such vectors if labels vary per panel.

labs_lwd A vector of line widths for the lines that divide subpopulations (if labs_sep =
TRUE) for each level of labs, or a list of such vectors if labels vary per panel.

labs_col A vector of colors for the lines that divide subpopulations (if labs_sep = TRUE)
for each level of labs, or a list of such vectors if labels vary per panel.

labs_ticks A vector of logicals that specify whether ticks separating the subpopulations are
drawn for each level of labs, or a list of such vectors if labels vary per panel.

labs_text A vector of logicals that specify whether the subpopulation labels are shown for
each level of labs, or a list of such vectors if labels vary per panel. Useful for
including separating lines or ticks without text.

labs_even A vector of logicals that specify whether the subpopulations labels are drawn
with equal spacing for each level of labs, or a list of such vectors if labels vary
per panel. When TRUE, lines mapping the equally-spaced labels to the unequally-
spaced subsections of the heatmap are also drawn.

null_panel_data

If FALSE (default), panels with NULL kinship matrices must not have titles or
other parameters set, and no panel letters are used in these cases. If TRUE, panels
with NULL kinship matrices must have titles and other parameters set. In the
latter case, these NULL panels also get panel letters. The difference is important
when checking that lengths of non-singleton parameters agree.

weights A vector with weights for every individual, or a list of such vectors if they vary
per panel. The width of every individual becomes proportional to their weight.
Individuals with zero or negative weights are omitted.

raster A logical equivalent to useRaster option in the image function used internally,
or a vector of such logicals if the choice varies per panel. If weights are non-
NULL in a given panel, raster = FALSE is forced (this is necessary to plot images
where columns and rows have variable width). If weights are NULL, the default
is raster = TRUE, but in this case the user may override (for example, so panels
are visually coherent when some use weights while others do not, as there are
small differences in rendering implementation for each value of raster). Note

14 popkin

that a multipanel figure with a list of weights sets raster = FALSE to all panels
by default, even if the weights were only applied to a subset of panels.
AXIS LABEL OPTIONS

... Additional options passed to \link[graphics]{image}. These are shared across
panels

Details

plot_popkin plots the input kinship matrices as-is. For best results, a standard kinship matrix (such
as the output of \link{popkin}) should have its diagonal rescaled to contain inbreeding coefficients
(\link{inbr_diag} does this) before plot_popkin is used.

This function permits the labeling of individuals (from row and column names when names = TRUE)
and of subpopulations (passed through labs). The difference is that the labels passed through labs
are assumed to be shared by many individuals, and lines (or other optional visual aids) are added to
demarcate these subgroups.

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

simple plot of the kinship matrix, marking the subpopulations only
note inbr_diag replaces the diagonal of kinship with inbreeding coefficients
(see vignette for more elaborate examples)
plot_popkin(inbr_diag(kinship), labs = subpops)

popkin Estimate kinship from a genotype matrix and subpopulation assign-
ments

Description

Given the biallelic genotypes of n individuals, this function returns the n × n kinship matrix such
that the kinship estimate between the most distant subpopulations is zero on average (this sets the
ancestral population T to the most recent common ancestor population).

popkin 15

Usage

popkin(
X,
subpops = NULL,
n = NA,
loci_on_cols = FALSE,
mem_factor = 0.7,
mem_lim = NA

)

Arguments

X Genotype matrix, BEDMatrix object, or a function X(m) that returns the geno-
types of all individuals at m successive locus blocks each time it is called, and
NULL when no loci are left.

subpops The length-n vector of subpopulation assignments for each individual. If miss-
ing, every individual is effectively treated as a different population.

n Number of individuals (required only when X is a function, ignored otherwise).
If n is missing but subpops is not, n is taken to be the length of subpops.

loci_on_cols If TRUE, X has loci on columns and individuals on rows; if false (the default),
loci are on rows and individuals on columns. Has no effect if X is a function. If
X is a BEDMatrix object, loci_on_cols = TRUE is set automatically.

mem_factor Proportion of available memory to use loading and processing genotypes. Ig-
nored if mem_lim is not NA.

mem_lim Memory limit in GB, used to break up genotype data into chunks for very large
datasets. Note memory usage is somewhat underestimated and is not controlled
strictly. Default in Linux and Windows is mem_factor times the free system
memory, otherwise it is 1GB (OSX and other systems).

Details

The subpopulation assignments are only used to estimate the baseline kinship (the zero value). If
the user wants to re-estimate the kinship matrix using different subpopulation labels, it suffices to
rescale it using rescale_popkin (as opposed to starting from the genotypes again, which gives the
same answer less efficiently).

The matrix X must have values only in c(0,1,2,NA), encoded to count the number of reference
alleles at the locus, or NA for missing data.

Value

The estimated n× n kinship matrix. If X has names for the individuals, they will be copied to the
rows and columns of this kinship matrix.

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix

16 pwfst

subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

kinship <- popkin(X, subpops) # calculate kinship from genotypes and subpopulation labels

pwfst Estimate the individual-level pairwise FST matrix

Description

This function construct the individual-level pairwise FST matrix implied by the input kinship ma-
trix. If the input is the true kinship matrix, the return value corresponds to the true pairwise FST

matrix. On the other hand, if the input is the estimated kinship returned by popkin, then the return
value is the pairwise FST estimates described in our paper. In all cases the diagonal of the pairwise
FST matrix is zero by definition.

Usage

pwfst(kinship)

Arguments

kinship The n× n kinship matrix

Value

The n× n pairwise FST matrix

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

lastly, compute pairwise FST matrix from the kinship matrix
pwF <- pwfst(kinship)

rescale_popkin 17

rescale_popkin Rescale kinship matrix to set a given kinship value to zero.

Description

Rescales the input kinship matrix ΦT so that the value φTmin in the original kinship matrix becomes
zero, using the formula

ΦT ′
=

ΦT − φTmin
1− φTmin

.

This is equivalent to changing the ancestral population T into T ′ such that φT
′

min = 0. If sub-
population labels subpops are provided, they are used to estimate φTmin. If both subpops and
min_kinship are provided, only min_kinship is used. If both subpops and min_kinship are
omitted, the adjustment is equivalent to min_kinship=min(kinship).

Usage

rescale_popkin(kinship, subpops = NULL, min_kinship = NA)

Arguments

kinship An n× n kinship matrix.

subpops The length-n vector of subpopulation assignments for each individual.

min_kinship A scalar kinship value to define the new zero kinship.

Value

The rescaled n× n kinship matrix, with the desired level of relatedness set to zero.

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals
subpops2 <- 1:3 # alternate labels treat every individual as a different subpop

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

suppose we first estimate kinship without subpopulations, which will be more biased
kinship <- popkin(X) # calculate kinship from genotypes, WITHOUT subpops
then we visualize this matrix, figure out a reasonable subpopulation partition

now we can adjust the kinship matrix!
kinship2 <- rescale_popkin(kinship, subpops)
prev is faster but otherwise equivalent to re-estimating kinship from scratch with subpops:

18 validate_kinship

kinship2 <- popkin(X, subpops)

can also manually set the level of relatedness min_kinship we want to be zero:
min_kinship <- min(kinship) # a naive choice for example
kinship2 <- rescale_popkin(kinship, min_kinship = min_kinship)

lastly, omiting both subpops and min_kinship sets the minimum value in kinship to zero
kinship3 <- rescale_popkin(kinship2)
equivalent to both of:
kinship3 <- popkin(X)
kinship3 <- rescale_popkin(kinship2, min_kinship = min(kinship))

validate_kinship Validate a kinship matrix

Description

Tests that the input is a valid kinship matrix (a numeric square R matrix). Throws errors if the input
is not as above.

Usage

validate_kinship(kinship)

Arguments

kinship The kinship matrix to validate.

Details

True kinship matrices have values strictly between 0 and 1, and diagonal values strictly between 0.5
and 1. However, estimated matrices may contain values slightly out of range. For greater flexibility,
this function does not check for out-of-range values.

Value

Nothing

Examples

this is a valid (positive) example
kinship <- matrix(c(0.5, 0, 0, 0.6), nrow=2)
this will run without errors or warnings
validate_kinship(kinship)

negative examples

dies if input is missing

weights_subpops 19

try(validate_kinship())

and if input is not a matrix
try(validate_kinship(1:5))

and for non-numeric matrices
char_mat <- matrix(c('a', 'b', 'c', 'd'), nrow=2)
try(validate_kinship(char_mat))

and non-square matrices
non_kinship <- matrix(1:2, nrow=2)
try(validate_kinship(non_kinship))

weights_subpops Get weights for individuals that balance subpopulations

Description

This function returns positive weights that sum to one for individuals using subpopulation labels,
such that every subpopulation receives equal weight. In particular, if there are K subpopulations,
then the sum of weights for every individuals of a given subpopulation will equal 1

K . The weight of
every individual is thus inversely proportional to the number of individuals in its subpopulation.

Usage

weights_subpops(subpops)

Arguments

subpops The length-n vector of subpopulation assignments for each individual.

Value

The length-n vector of weights for each individual.

Examples

if every individual has a different subpopulation, weights are uniform:
subpops <- 1:10
weights <- weights_subpops(subpops)
stopifnot(all(weights == rep.int(1/10,10)))

subpopulations can be strings too
subpops <- c('a', 'b', 'c')
weights <- weights_subpops(subpops)
stopifnot(all(weights == rep.int(1/3,3)))

if there are two subpopulations
and the first has twice as many individuals as the second

20 weights_subpops

then the individuals in this first subpopulation weight half as much
as the ones in the second subpopulation
subpops <- c(1, 1, 2)
weights <- weights_subpops(subpops)
stopifnot(all(weights == c(1/4,1/4,1/2)))

Index

_PACKAGE (popkin-package), 2

coanc_to_kinship, 6

fst, 2, 3

inbr, 2, 3, 4
inbr_diag, 2, 3, 5

mean_kinship, 7

n_eff, 8

plot_popkin, 2, 10
popkin, 2, 3, 14, 16
popkin-package, 2
pwfst, 2, 16

rescale_popkin, 2, 15, 17

validate_kinship, 18

weights_subpops, 2, 19

21

	popkin-package
	fst
	inbr
	inbr_diag
	mean_kinship
	n_eff
	plot_popkin
	popkin
	pwfst
	rescale_popkin
	validate_kinship
	weights_subpops
	Index

