
Package ‘poolr’
February 21, 2020

Version 0.8-2

Date 2020-02-12

Title Methods for Pooling P-Values from (Dependent) Tests

Depends R (>= 3.5.0), Matrix

Imports methods, stats, utils

Suggests testthat

Description
Functions for pooling/combining the results (i.e., p-values) from (dependent) hypothesis tests. In-
cluded are Fisher's method, Stouffer's method, the inverse chi-square method, the Bonfer-
roni method, Tippett's method, and the binomial test. Each method can be ad-
justed based on an estimate of the effective number of tests or using empirically derived null dis-
tribution using pseudo replicates. For Fisher's, Stouffer's, and the inverse chi-square method, di-
rect generalizations based on multivariate theory are also available (lead-
ing to Brown's method, Strube's method, and the generalized inverse chi-square method).

License GPL (>= 2)

ByteCompile TRUE

LazyData TRUE

Encoding UTF-8

NeedsCompilation no

Author Ozan Cinar [aut, cre] (<https://orcid.org/0000-0003-0329-1977>),
Wolfgang Viechtbauer [aut] (<https://orcid.org/0000-0003-3463-4063>)

Maintainer Ozan Cinar <ozancinar86@gmail.com>

Repository CRAN

Date/Publication 2020-02-21 14:40:02 UTC

R topics documented:
poolr-package . 2
binotest . 3
bonferroni . 6
empirical . 10

1

2 poolr-package

fisher . 12
grid2ip . 16
invchisq . 16
meff . 20
mvnconv . 23
mvnlookup . 25
print.poolr . 26
stouffer . 27
tippett . 31

Index 35

poolr-package Methods for Pooling P-Values from (Dependent) Tests

Description

The poolr package contains functions for pooling/combining the results (i.e., p-values) from (de-
pendent) hypothesis tests. Included are Fisher’s method, Stouffer’s method, the inverse chi-square
method, the Bonferroni method, Tippett’s method, and the binomial test. Each method can be
adjusted based on an estimate of the effective number of tests or using empirically-derived null
distribution using pseudo replicates. For Fisher’s, Stouffer’s, and the inverse chi-square method,
direct generalizations based on multivariate theory are also available (leading to Brown’s method,
Strube’s method, and the generalized inverse chi-square method).

Note that you can also read the documentation of the package online at https://ozancinar.
github.io/poolr/ (where it is nicely formatted, equations are shown correctly, and the output
from all examples is provided).

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Brown, M. B. (1975). 400: A method for combining non-independent, one-sided tests of signifi-
cance. Biometrics, 31(4), 987-992.

Fisher, R. A. (1932). Statistical Methods for Research Workers (4th ed.). Edinburgh: Oliver and
Boyd.

Lancaster, H. O. (1961). The combination of probabilities: An application of orthonormal functions.
Australian Journal of Statistics, 3(1), 20-33.

Strube, M. J. (1985). Combining and comparing significance levels from nonindependent hypothe-
sis tests. Psychological Bulletin, 97(2), 334-341.

Tippett, L. H. C. (1931). Methods of Statistics. London: Williams Norgate.

Wilkinson, B. (1951). A statistical consideration in psychological research. Psychological Bulletin,
48(2), 156-158.

https://ozancinar.github.io/poolr/
https://ozancinar.github.io/poolr/

binotest 3

binotest Binomial Test

Description

Function to carry out the binomial test.

Usage

binotest(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

Binomial Test

By default (i.e., when adjust = "none"), the function applies the binomial test to the p-values
(Wilkinson, 1951). Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of the
k hypothesis tests to be combined, the combined p-value is then computed with

pc =

k∑
x=r

(
k

x

)
αx(1− α)k−x

4 binotest

where

r =

k∑
i=1

I(pi ≤ α)

denotes the number of hypothesis tests that are significant at α.

The binomial test assumes that the p-values to be combined are independent. If this is not the
case, the method can either be conservative (not reject often enough) or liberal (reject too often),
depending on the correlation structure among the tests. In this case, one can adjust the method
to account for such dependence (to bring the Type I error rate closer to some desired nominal
significance level).

Adjustment Based on the Effective Number of Tests

When adjust is set to "nyholt", "liji", "gao" or "galwey", the binomial test is adjusted based
on an estimate of the effective number of tests (see meff for details on these methods for estimating
the effective number of tests). In this case, argument R needs to be set to a correlation matrix that
reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the combined p-value is then computed with

pc =

m∑
x=r̃

(
m

x

)
αx(1− α)m−x

where
r̃ = br ×m/kc

and b·c is the floor function.

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution

When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated
the p-values to be combined can be assumed to follow a multivariate normal distribution and a
matrix is available that reflects the correlations among the test statistics (which is specified via
the R argument). In this case, test statistics are repeatedly simulated from a multivariate normal
distribution under the joint null hypothesis, converted into one- or two-sided p-values (depending on
the side argument), and the binomial test is applied. Repeating this process size times yields a null
distribution based on which the combined p-value can be computed, or more precisely, estimated,
since repeated applications of this method will yield (slightly) different results. To obtain a stable
estimate of the combined p-value, size should be set to a large value (the default is 10000, but this
can be increased for a more precise estimate). If we consider the combined p-value an estimate of

binotest 5

the ‘true’ combined p-value that would be obtained for a null distribution of infinite size, we can
also construct a 95% (pseudo) confidence interval based on a binomial distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate
estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.

ci confidence interval for the combined p-value (only when adjust = "empirical";
otherwise NULL).

k number of p-values that were combined.

m estimate of the effective number of tests (only when adjust is one of "nyholt",
"liji", "gao" or "galwey"; otherwise NULL).

adjust chosen adjustment method.

statistic value of the (adjusted) test statistic.

fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Wilkinson, B. (1951). A statistical consideration in psychological research. Psychological Bulletin,
48(2), 156-158.

6 bonferroni

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply the binomial test
binotest(p)

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
binotest(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
binotest(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
binotest(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
binotest(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
binotest(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
binotest(p, adjust = "empirical", R = r)

generate the empirical distribution in batches of size 100
binotest(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm
binotest(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

bonferroni Bonferroni Method

Description

Function to carry out the Bonferroni method.

Usage

bonferroni(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

bonferroni 7

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

Bonferroni Method

By default (i.e., when adjust = "none"), the function applies the Bonferroni method to the p-
values. Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of the k hypothesis
tests to be combined, the combined p-value is then computed with

pc = min(1,min(p1, p2, . . . , pk)× k).

The Bonferroni method does not assume that the p-values to be combined are independent. How-
ever, if the p-values are not independent, the method can become quite conservative (not reject
often enough), depending on the correlation structure among the tests. In this case, one can adjust
the method to account for such dependence (to bring the Type I error rate closer to some desired
nominal significance level).

Adjustment Based on the Effective Number of Tests

When adjust is set to "nyholt", "liji", "gao" or "galwey", the Bonferroni method is adjusted
based on an estimate of the effective number of tests (see meff for details on these methods for
estimating the effective number of tests). In this case, argument R needs to be set to a correlation
matrix that reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

8 bonferroni

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the combined p-value is then computed with

pc = min(1,min(p1, p2, . . . , pk)×m).

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution
When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated
the p-values to be combined can be assumed to follow a multivariate normal distribution and a
matrix is available that reflects the correlations among the test statistics (which is specified via
the R argument). In this case, test statistics are repeatedly simulated from a multivariate normal
distribution under the joint null hypothesis, converted into one- or two-sided p-values (depending
on the side argument), and the Bonferroni method is applied. Repeating this process size times
yields a null distribution based on which the combined p-value can be computed, or more precisely,
estimated, since repeated applications of this method will yield (slightly) different results. To obtain
a stable estimate of the combined p-value, size should be set to a large value (the default is 10000,
but this can be increased for a more precise estimate). If we consider the combined p-value an
estimate of the ‘true’ combined p-value that would be obtained for a null distribution of infinite
size, we can also construct a 95% (pseudo) confidence interval based on a binomial distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate
estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.

bonferroni 9

ci confidence interval for the combined p-value (only when adjust = "empirical";
otherwise NULL).

k number of p-values that were combined.

m estimate of the effective number of tests (only when adjust is one of "nyholt",
"liji", "gao" or "galwey"; otherwise NULL).

adjust chosen adjustment method.

statistic value of the (adjusted) test statistic.

fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. British
Medical Journal, 310(6973), 170.

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply the Bonferroni method
bonferroni(p)

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
bonferroni(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
bonferroni(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
bonferroni(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
bonferroni(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
bonferroni(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
bonferroni(p, adjust = "empirical", R = r)

10 empirical

generate the empirical distribution in batches of size 100
bonferroni(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm
bonferroni(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

empirical Simulate Empirically-Derived Null Distributions

Description

Function to simulate empirically-derived null distributions of various methods for combining p-
values using pseudo replicates.

Usage

empirical(R, method, side = 2, size = 10000, batchsize, ...)

Arguments

R a k×k symmetric matrix that contains the correlations among the test statistics.

method character string to specify for which method to simulate the null distribution
(either "fisher", "stouffer", "invchisq", "binotest", "bonferroni", or
"tippett").

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

size size of the empirically-derived null distribution that should be generated.

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

This function simulates the null distribution of a particular method for combining p-values when
the test statistics that generate the p-values to be combined can be assumed to follow a multivariate
normal distribution and a matrix is available that reflects the correlations among the test statistics
(which is specified via the R argument). In this case, test statistics are repeatedly simulated from a
multivariate normal distribution under the joint null hypothesis, converted into one- or two-sided p-
values (depending on the side argument), and the chosen method is applied. Repeating this process
size times yields the null distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

empirical 11

Value

A vector of combined p-values as simulated under the joint null hypothesis for a given method.

Note

The R matrix must be positive definite. If it is not, the function uses nearPD to find the nearest
positive definite matrix (Higham, 2002) before simulating the null distribution.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Higham, N. J. (2002). Computing the nearest correlation matrix: A problem from finance. IMA
Journal of Numerical Analysis, 22(3), 329-343.

Examples

create an example correlation matrix with constant positive correlations
R <- matrix(0.6, nrow = 10, ncol = 10)
diag(R) <- 1

generate null distribution for Fisher's method (setting the seed for reproducibility)
set.seed(1234)
psim <- empirical(R, method = "fisher")

Fisher's method is liberal in this scenario (i.e., its actual Type I error
rate is around .14 instead of the nominal significance level of .05)
mean(psim <= .05)

estimate the actual Type I error rate of the other methods in this scenario
psim <- empirical(R, method = "stouffer")
mean(psim <= .05)
psim <- empirical(R, method = "invchisq")
mean(psim <= .05)
psim <- empirical(R, method = "binotest")
mean(psim <= .05)
psim <- empirical(R, method = "bonferroni")
mean(psim <= .05)
psim <- empirical(R, method = "tippett")
mean(psim <= .05)

Stouffer's and the inverse chi-square method also have clearly inflated
Type I error rates and the binomial test just barely. As expected, the
Bonferroni method is overly conservative and so is Tippett's method.

12 fisher

fisher Fisher’s Method

Description

Function to carry out Fisher’s method.

Usage

fisher(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. Finally, method
"generalized" uses a generalization of Fisher’s method based on multivariate
theory. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

Fisher’s Method
By default (i.e., when adjust = "none"), the function applies Fisher’s method to the p-values
(Fisher, 1932). Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of the
k hypothesis tests to be combined, the test statistic is then computed with

X2 = −2

k∑
i=1

ln(pi).

fisher 13

Under the joint null hypothesis, the test statistic follows a chi-square distribution with 2k degrees
of freedom which is used to compute the combined p-value.

Fisher’s method assumes that the p-values to be combined are independent. If this is not the case, the
method can either be conservative (not reject often enough) or liberal (reject too often), depending
on the correlation structure among the tests. In this case, one can adjust the method to account for
such dependence (to bring the Type I error rate closer to some desired nominal significance level).

Adjustment Based on the Effective Number of Tests

When adjust is set to "nyholt", "liji", "gao" or "galwey", Fisher’s method is adjusted based
on an estimate of the effective number of tests (see meff for details on these methods for estimating
the effective number of tests). In this case, argument R needs to be set to a correlation matrix that
reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the test statistic of Fisher’s method can be modified with

X̃2 =
m

k
×X2

which is then assumed to follow a chi-square distribution with 2m degrees of freedom.

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution

When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated
the p-values to be combined can be assumed to follow a multivariate normal distribution and a
matrix is available that reflects the correlations among the test statistics (which is specified via
the R argument). In this case, test statistics are repeatedly simulated from a multivariate normal
distribution under the joint null hypothesis, converted into one- or two-sided p-values (depending on
the side argument), and Fisher’s method is applied. Repeating this process size times yields a null
distribution based on which the combined p-value can be computed, or more precisely, estimated,
since repeated applications of this method will yield (slightly) different results. To obtain a stable
estimate of the combined p-value, size should be set to a large value (the default is 10000, but this
can be increased for a more precise estimate). If we consider the combined p-value an estimate of
the ‘true’ combined p-value that would be obtained for a null distribution of infinite size, we can
also construct a 95% (pseudo) confidence interval based on a binomial distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

14 fisher

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate
estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).

Adjustment Based on Multivariate Theory

When adjust = "generalized", Fisher’s method is computed based on a Satterthwaite approxima-
tion that accounts for the dependence among the tests, assuming that the test statistics that generated
the p-values follow a multivariate normal distribution. In that case, R needs to be set equal to a ma-
trix that contains the covariances among the −2 ln(pi) values. If a matrix is available that reflects
the correlations among the test statistics, this can be converted into the required covariance matrix
using the mvnconv function. See ‘Examples’.

This generalization of Fisher’s method is sometimes called Brown’s method, based on Brown
(1975), although the paper only describes the method for combining one-sided p-values. Both
one- and two-sided versions of Brown’s method are implemented in poolr.

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.

ci confidence interval for the combined p-value (only when adjust = "empirical";
otherwise NULL).

k number of p-values that were combined.

m estimate of the effective number of tests (only when adjust is one of "nyholt",
"liji", "gao" or "galwey"; otherwise NULL).

adjust chosen adjustment method.

statistic value of the (adjusted) test statistic.

fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

fisher 15

References

Brown, M. B. (1975). 400: A method for combining non-independent, one-sided tests of signifi-
cance. Biometrics, 31(4), 987-992.

Fisher, R. A. (1932). Statistical Methods for Research Workers (4th ed.). Edinburgh: Oliver and
Boyd.

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply Fisher's method
fisher(p)

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
fisher(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
fisher(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
fisher(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
fisher(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
fisher(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
fisher(p, adjust = "empirical", R = r)

generate the empirical distribution in batches of size 100
fisher(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm
fisher(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

use mvnconv() to convert the LD correlation matrix into a matrix with the
covariances among the (two-sided) '-2ln(p_i)' values assuming that the
test statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "m2lp")[1:5,1:5] # show only rows/columns 1-5

adjustment based on generalized method
fisher(p, adjust = "generalized", R = mvnconv(r, target = "m2lp"))

16 invchisq

when using mvnconv() inside fisher() with adjust = "generalized", the
'target' argument is automatically set and doesn't need to be specified
fisher(p, adjust = "generalized", R = mvnconv(r))

grid2ip Results from testing the association between depressive symptoms and
23 SNPs in the GRID2IP gene

Description

Results from testing the association between depressive symptoms (as measured with the CES-D
scale) and 23 single-nucleotide polymorphisms (SNPs) in the GRID2IP gene based on a sample of
886 adolescents (Van Assche et al., 2017).

Usage

grid2ip.p
grid2ip.ld
grid2ip.geno
grid2ip.pheno

Format

Object grid2ip.p is a vector with the 23 p-values of the tests (two-sided). Object grid2ip.ld con-
tains a matrix with the linkage disequilibrium (LD) correlations among the 23 SNPs. grid2ip.geno
is a matrix that contains the genotypes of the adoloscents for the 23 SNPs. grid2ip.pheno is a vec-
tor with the phenotype for the adoloscents (the log-transformed CES-D scale values).

References

Van Assche, E., Moons, T., Cinar, O., Viechtbauer, W., Oldehinkel, A. J., Van Leeuwen, K., Ver-
schueren, K., Colpin, H., Lambrechts, D., Van den Noortgate, W., Goossens, L., Claes, S., & van
Winkel, R. (2017). Gene-based interaction analysis shows GABAergic genes interacting with par-
enting in adolescent depressive symptoms. Journal of Child Psychology and Psychiatry, 58(12),
1301-1309.

invchisq Inverse Chi-Square Method

Description

Function to carry out the inverse chi-square method.

Usage

invchisq(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

invchisq 17

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. Finally, method
"generalized" uses a generalization of the inverse chi-square method based
on multivariate theory. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

Inverse Chi-Square Method
By default (i.e., when adjust = "none"), the function applies the inverse chi-square method to
the p-values. Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of the k
hypothesis tests to be combined, the test statistic is then computed with

X2 =

k∑
i=1

F−1(1− pi, 1)

where F−1(·, 1) denotes the inverse of the cumulative distribution function of a chi-square dis-
tribution with one degree of freedom. Under the joint null hypothesis, the test statistic follows a
chi-square distribution with k degrees of freedom which is used to compute the combined p-value.

The inverse chi-square method assumes that the p-values to be combined are independent. If this
is not the case, the method can either be conservative (not reject often enough) or liberal (reject
too often), depending on the correlation structure among the tests. In this case, one can adjust
the method to account for such dependence (to bring the Type I error rate closer to some desired
nominal significance level).

Adjustment Based on the Effective Number of Tests
When adjust is set to "nyholt", "liji", "gao" or "galwey", the inverse chi-square method is
adjusted based on an estimate of the effective number of tests (see meff for details on these methods

18 invchisq

for estimating the effective number of tests). In this case, argument R needs to be set to a correlation
matrix that reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the test statistic of the inverse chi-square method can be modified with

X̃2 =
m

k
×X2

which is then assumed to follow a chi-square distribution with m degrees of freedom.

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution
When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated
the p-values to be combined can be assumed to follow a multivariate normal distribution and a
matrix is available that reflects the correlations among the test statistics (which is specified via
the R argument). In this case, test statistics are repeatedly simulated from a multivariate normal
distribution under the joint null hypothesis, converted into one- or two-sided p-values (depending
on the side argument), and the inverse chi-square method is applied. Repeating this process size
times yields a null distribution based on which the combined p-value can be computed, or more
precisely, estimated, since repeated applications of this method will yield (slightly) different results.
To obtain a stable estimate of the combined p-value, size should be set to a large value (the default
is 10000, but this can be increased for a more precise estimate). If we consider the combined p-value
an estimate of the ‘true’ combined p-value that would be obtained for a null distribution of infinite
size, we can also construct a 95% (pseudo) confidence interval based on a binomial distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate

invchisq 19

estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).

Adjustment Based on Multivariate Theory
When adjust = "generalized", the inverse chi-square method is computed based on a Satterth-
waite approximation that accounts for the dependence among the tests, assuming that the test statis-
tics that generated the p-values follow a multivariate normal distribution. In that case, R needs to
be set equal to a matrix that contains the covariances among the F−1(1 − pi, 1) values. If a ma-
trix is available that reflects the correlations among the test statistics, this can be converted into the
required covariance matrix using the mvnconv function. See ‘Examples’.

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.

ci confidence interval for the combined p-value (only when adjust = "empirical";
otherwise NULL).

k number of p-values that were combined.

m estimate of the effective number of tests (only when adjust is one of "nyholt",
"liji", "gao" or "galwey"; otherwise NULL).

adjust chosen adjustment method.

statistic value of the (adjusted) test statistic.

fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Lancaster, H. O. (1961). The combination of probabilities: An application of orthonormal functions.
Australian Journal of Statistics, 3(1), 20-33.

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply the inverse chi-square method
invchisq(p)

20 meff

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
invchisq(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
invchisq(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
invchisq(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
invchisq(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
invchisq(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
invchisq(p, adjust = "empirical", R = r)

generate the empirical distribution in batches of size 100
invchisq(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm (not run, because this takes slightly longer
and can lead to a note when running the standard package checks)

invchisq(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

use mvnconv() to convert the LD correlation matrix into a matrix with the
covariances among the (two-sided) 'F(1-p_i,1)' values assuming that the
test statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "chisq1")[1:5,1:5] # show only rows/columns 1-5

adjustment based on generalized method
invchisq(p, adjust = "generalized", R = mvnconv(r, target = "chisq1"))

when using mvnconv() inside invchisq() with adjust = "generalized", the
'target' argument is automatically set and doesn't need to be specified
invchisq(p, adjust = "generalized", R = mvnconv(r))

meff Estimate the Effective Number of Tests

Description

Estimate the effective number of tests.

meff 21

Usage

meff(R, eigen, method, ...)

Arguments

R a k × k symmetric matrix that reflects the correlation structure among the tests.

eigen optional vector to directly supply the eigenvalues to the function (instead of
computing them from the matrix given via R).

method character string to specify the method to be used to estimate the effective number
of tests (either "nyholt", "liji", "gao", or "galwey". See ‘Details’.

... other arguments.

Details

The function estimates the effective number of tests based on one of four different methods. All
methods work by extracting the eigenvalues from theRmatrix supplied via the R argument (or from
the eigenvalues directly passed via the eigen argument). Letting λi denote the ith eigenvalue of
this matrix (with i = 1, . . . , k), the effective number of tests (m) is estimated as follows.

Method by Nyholt (2004)

m = 1 + (k − 1)

(
1− Var(λ)

k

)
where Var(λ) is the observed sample variance of the k eigenvalues.

Method by Li & Ji (2005)

m =

k∑
i=1

f(|λi|)

where f(x) = I(x ≥ 1) + (x− bxc) and b.c is the floor function.

Method by Gao et al. (2008)

m = min(x) such that
∑x

i=1 λ(i)∑k
i=1 λ(i)

> C

where λ(1), λ(2), . . . , λ(k) are the sorted eigenvalues in decreasing order and C is a pre-defined
parameter which is set to 0.995 by default.

Method by Galwey (2009)

m =

(∑k
i=1

√
λ′i

)2
∑k

i=1 λ
′
i

where λ′i = 0 if λi < 0 and λi otherwise.

Note: For all methods that can yield a non-integer estimate (all but the method by Gao et al., 2008),
the resulting estimate m is rounded down to the nearest integer.

22 meff

Specifying the R Matrix

The R matrix should reflect the correlation structure among the tests. There is no general solution
on how such a correlation matrix should be constructed, as this depends on the type of test and
the sidedness of these tests. For example, we can use the correlations among related but changing
elements across the analyses/tests, or a function thereof, as a proxy for the correlation structure.
For example, when conducting k analyses with the same dependent variable and k different inde-
pendent variables, the correlations among the independent variables could serve as such a proxy.
Analogously, if analyses are conducted for k dependent variables with the same set of independent
variables, the correlations among the dependent variables could be used instead.

If the tests of interest have test statistics that can be assumed to follow a multivariate normal distri-
bution and a matrix is available that reflects the correlations among the test statistics (which might
be approximated by the correlations among the interchanging independent or dependent variables),
then the mvnconv function can be used to convert this correlation matrix into the correlations among
the (one- or two-sided) p-values, which in turn can then be passed to the R argument. See ‘Exam-
ples’.

Not Positive Semi-Definite R

Depending on the way R is constructed, it may happen that this matrix is not positive semi-definite,
leading to negative eigenvalues. The methods given above can all still be carried out in this case.
However, another possibility is to handle such a case by using an algorithm that finds the nearest
positive (semi-)definite matrix (e.g., Higham 2002) before passing this matrix to the function (see
nearPD from the Matrix package for a corresponding implementation).

Value

A scalar giving the estimate of the effective number of tests.

Note

For method = "gao", C = 0.995 by default, but a different value of C can be passed to the function
via ... (e.g., meff(R,method = "gao",C = 0.95)).

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic
association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4),
361-369.

Galwey, N. W. (2009). A new measure of the effective number of tests, a practical tool for compar-
ing families of non-independent significance tests. Genetic Epidemiology, 33(7), 559-568.

Higham, N. J. (2002). Computing the nearest correlation matrix: A problem from finance. IMA
Journal of Numerical Analysis, 22(3), 329-343.

mvnconv 23

Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a
correlation matrix. Heredity, 95(3), 221-227.

Nyholt, D. R. (2004). A simple correction for multiple testing for single-nucleotide polymorphisms
in linkage disequilibrium with each other. American Journal of Human Genetics, 74(4), 765-769.

Examples

copy LD correlation matrix into r (see help(grid2ip) for details on these data)
r <- grid2ip.ld

estimate the effective number of tests based on the LD correlation matrix
meff(r, method = "nyholt")
meff(r, method = "liji")
meff(r, method = "gao")
meff(r, method = "galwey")

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

use this matrix instead for estimating the effective number of tests
meff(mvnconv(r, target = "p", cov2cor = TRUE), method = "nyholt")
meff(mvnconv(r, target = "p", cov2cor = TRUE), method = "liji")
meff(mvnconv(r, target = "p", cov2cor = TRUE), method = "gao")
meff(mvnconv(r, target = "p", cov2cor = TRUE), method = "galwey")

mvnconv Convert Correlations Among Multivariate Normal Test Statistics to
Covariances for Various Target Statistics

Description

Function to convert a matrix with the correlations among multivariate normal test statistics to a
matrix with the covariances among various target statistics.

Usage

mvnconv(R, side = 2, target, cov2cor = FALSE)

Arguments

R a k×k symmetric matrix that contains the correlations among the test statistics.
side scalar to specify the sidedness of the p-values that are obtained from the test

statistics (2, by default, for two-sided tests; 1 for one-sided tests).
target the target statistic for which the covariances are calculated (either "p", "m2lp",

"chisq1", or "z"). See ‘Details’.
cov2cor logical to indicate whether to convert the covariance matrix to a correlation ma-

trix (default is FALSE).

24 mvnconv

Details

The function converts a matrix with the correlations among multivariate normal test statistics to a
matrix with the covariances among various target statistics. In particular, assume

is the joint distribution for test statistics ti and tj . For side = 1, let pi = 1−Φ(ti) and pj = 1−Φ(tj)
where Φ(·) denotes the cumulative distribution function of a standard normal distribution. For side
= 2, let pi = 2(1 − Φ(|ti|)) and pj = 2(1 − Φ(|tj |)). These are simply the one- and two-sided
p-values corresponding to ti and tj .

If target="p", the function computes Cov[pi, pj].

If target="m2lp", the function computes Cov[−2 ln(pi),−2 ln(pj)].

If target="chisq1", the function computes Cov[F−1(1−pi, 1), F−1(1−pj , 1)], where F−1(·, 1)
denotes the inverse of the cumulative distribution function of a chi-square distribution with one
degree of freedom.

If target="z", the function computes Cov[Φ−1(1− pi),Φ−1(1− pj)], where Φ−1(·) denotes the
inverse of the cumulative distribution function of a standard normal distribution.

Value

The function returns the covariance matrix (or the correlation matrix if cov2cor=TRUE).

Note

Since computation of the covariances requires numerical integration, the function doesn’t actually
compute these covariances on the fly. Instead, it uses the mvnlookup lookup table, which contains
the covariances.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

Examples

illustrative correlation matrix
R <- matrix(c(1, 0.8, 0.5, -0.3,

0.8, 1, 0.2, 0.4,
0.5, 0.2, 1, -0.7,
-0.3, 0.4, -0.7, 1), nrow = 4, ncol = 4)

convert R into covariance matrices for the chosen targets
mvnconv(R, target = "p")
mvnconv(R, target = "m2lp")
mvnconv(R, target = "chisq1")
mvnconv(R, target = "z")

mvnlookup 25

convert R into correlation matrices for the chosen targets
mvnconv(R, target = "p", cov2cor = TRUE)
mvnconv(R, target = "m2lp", cov2cor = TRUE)
mvnconv(R, target = "chisq1", cov2cor = TRUE)
mvnconv(R, target = "z", cov2cor = TRUE)

mvnlookup Lookup Table for mvnconv() Function

Description

Lookup table for the mvnconv function.

Usage

mvnlookup

Format

The data frame contains the following columns:

rhos numeric correlations among the test statistics
m2lp_1 numeric Cov[−2 ln(pi),−2 ln(pj)] (for one-sided tests)
m2lp_2 numeric Cov[−2 ln(pi),−2 ln(pj)] (for two-sided tests)
z_1 numeric Cov[Φ−1(1− pi),Φ−1(1− pj)] (for one-sided tests)
z_2 numeric Cov[Φ−1(1− pi),Φ−1(1− pj)] (for two-sided tests)
chisq1_1 numeric Cov[F−1(1− pi, 1), F−1(1− pj , 1)] (for one-sided tests)
chisq1_2 numeric Cov[F−1(1− pi, 1), F−1(1− pj , 1)] (for two-sided tests)
p_1 numeric Cov[pi, pj] (for one-sided tests)
p_2 numeric Cov[pi, pj] (for two-sided tests)

Details

Assume

is the joint distribution for test statistics ti and tj . For one-sided tests, let pi = 1 − Φ(ti) and
pj = 1 − Φ(tj) where Φ(·) denotes the cumulative distribution function of a standard normal
distribution. For two-sided tests, let pi = 2(1−Φ(|ti|)) and pj = 2(1−Φ(|tj |)). These are simply
the one- and two-sided p-values corresponding to ti and tj .
Columns p_1 and p_2 contain the values for Cov[pi, pj].
Columns m2lp_1 and m2lp_2 contain the values for Cov[−2 ln(pi),−2 ln(pj)].
Columns chisq1_1 and chisq1_2 contain the values for Cov[F−1(1−pi, 1), F−1(1−pj , 1)], where
F−1(·, 1) denotes the inverse of the cumulative distribution function of a chi-square distribution
with one degree of freedom.

26 print.poolr

Columns z_1 and z_2 contain the values for Cov[Φ−1(1−pi),Φ−1(1−pj)], where Φ−1(·) denotes
the inverse of the cumulative distribution function of a standard normal distribution.

Computation of these covariances required numerical integration. The values in this table were
precomputed.

print.poolr Print Method for ’poolr’ Objects

Description

Print method for objects of class "poolr".

Usage

S3 method for class 'poolr'
print(x, digits=3, ...)

Arguments

x an object of class "poolr".

digits integer specifying the number of (significant) digits for rounding/presenting the
results.

... other arguments.

Details

The output shows the combined p-value (with the specified number of significant digits), the test
statistic (and its assumed null distribution), and the adjustment method that was applied.

Value

The function does not return an object.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

stouffer 27

stouffer Stouffer’s Method

Description

Function to carry out Stouffer’s method.

Usage

stouffer(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. Finally, method
"generalized" uses a generalization of Stouffer’s method based on multivari-
ate theory. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

Details

Stouffer’s Method
By default (i.e., when adjust = "none"), the function applies Stouffer’s method to the p-values
(Stouffer et al., 1949). Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of
the k hypothesis tests to be combined, the test statistic is then computed with

z =

k∑
i=1

zi/
√
k

28 stouffer

where zi = Φ−1(1− pi) and Φ−1(·) denotes the inverse of the cumulative distribution function of
a standard normal distribution. Under the joint null hypothesis, the test statistic follows a standard
normal distibution which is used to compute the combined p-value.

Stouffer’s method assumes that the p-values to be combined are independent. If this is not the
case, the method can either be conservative (not reject often enough) or liberal (reject too often),
depending on the correlation structure among the tests. In this case, one can adjust the method
to account for such dependence (to bring the Type I error rate closer to some desired nominal
significance level).

When adjust is set to "nyholt", "liji", "gao" or "galwey", Stouffer’s method is adjusted based
on an estimate of the effective number of tests (see meff for details on these methods for estimating
the effective number of tests). In this case, argument R needs to be set to a correlation matrix that
reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the test statistic of Stouffer’s method can be modified with

z̃ =

√
m

k
× z

which is then assumed to follow a standard normal distibution.

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution
When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated the
p-values to be combined can be assumed to follow a multivariate normal distribution and a ma-
trix is available that reflects the correlations among the test statistics (which is specified via the R
argument). In this case, test statistics are repeatedly simulated from a multivariate normal distribu-
tion under the joint null hypothesis, converted into one- or two-sided p-values (depending on the
side argument), and Stouffer’s method is applied. Repeating this process size times yields a null
distribution based on which the combined p-value can be computed, or more precisely, estimated,
since repeated applications of this method will yield (slightly) different results. To obtain a stable
estimate of the combined p-value, size should be set to a large value (the default is 10000, but this
can be increased for a more precise estimate). If we consider the combined p-value an estimate of
the ‘true’ combined p-value that would be obtained for a null distribution of infinite size, we can
also construct a 95% (pseudo) confidence interval based on a binomial distribution.

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

stouffer 29

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate
estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).
Adjustment Based on Multivariate Theory
When adjust = "generalized", Stouffer’s method is computed based on a multivariate normal
distribution that accounts for the dependence among the tests, assuming that the test statistics that
generated the p-values follow a multivariate normal distribution. In that case, R needs to be set equal
to a matrix that contains the covariances among the zi values. If a matrix is available that reflects
the correlations among the test statistics, this can be converted into the required covariance matrix
using the mvnconv function. See ‘Examples’.
This generalization of Stouffer’s method is sometimes called Strube’s method, based on Strube
(1986), although the paper only describes the method for combining one-sided p-values. Both
one- and two-sided versions of Strube’s method are implemented in poolr, but caution must be
exercised when applying it to two-sided p-values (even if the test statistics follow a multivariate
normal distribution, z1, z2, . . . , zk is then not multivariate normal, but this is implicitly assumed by
the method).

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.
ci confidence interval for the combined p-value (only when adjust = "empirical";

otherwise NULL).
k number of p-values that were combined.
m estimate of the effective number of tests (only when adjust is one of "nyholt",

"liji", "gao" or "galwey"; otherwise NULL).
adjust chosen adjustment method.
statistic value of the (adjusted) test statistic.
fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

30 stouffer

References

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., & Williams, R. M., Jr. (1949). The
American Soldier: Adjustment During Army Life (Vol. 1). Princeton, NJ: Princeton University
Press.

Strube, M. J. (1985). Combining and comparing significance levels from nonindependent hypothe-
sis tests. Psychological Bulletin, 97(2), 334-341.

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply Stouffer's method
stouffer(p)

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
stouffer(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
stouffer(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
stouffer(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
stouffer(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
stouffer(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
stouffer(p, adjust = "empirical", R = r)

generate the empirical distribution in batches of size 100
stouffer(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm
stouffer(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

use mvnconv() to convert the LD correlation matrix into a matrix with the
covariances among the (two-sided) 'z_i' values assuming that the
test statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "z")[1:5,1:5] # show only rows/columns 1-5

adjustment based on generalized method
stouffer(p, adjust = "generalized", R = mvnconv(r, target = "z"))

tippett 31

when using mvnconv() inside stouffer() with adjust = "generalized", the
'target' argument is automatically set and doesn't need to be specified
stouffer(p, adjust = "generalized", R = mvnconv(r))

tippett Tippett’s Method

Description

Function to carry out Tippett’s method.

Usage

tippett(p, adjust = "none", R, m, size = 10000, threshold, side = 2, batchsize, ...)

Arguments

p vector of length k with the (one- or two-sided) p-values to be combined.

adjust character string to specify an adjustment method to account for dependence. The
default is "none", in which case no adjustment is applied. Methods "nyholt",
"liji", "gao", or "galwey" are adjustments based on an estimate of the ef-
fective number of tests (see meff). Adjustment method "empirical" uses an
empirically-derived null distribution using pseudo replicates. See ‘Details’.

R a k×k symmetric matrix that reflects the dependence structure among the tests.
Must be specified if adjust is set to something other than "none". See ‘Details’.

m optional scalar (between 1 and k) to manually specify the effective number of
tests (instead of estimating it via one of the methods described above).

size size of the empirically-derived null distribution. Can also be a numeric vector
of sizes, in which case a stepwise algorithm is used. This (and the following
arguments) are only relevant when adjust = "empirical".

threshold numeric vector to specify the significance thresholds for the stepwise algorithm
(only relevant when size is a vector).

side scalar to specify the sidedness of the p-values that are used to simulate the null
distribution (2, by default, for two-sided tests; 1 for one-sided tests).

batchsize optional scalar to specify the batch size for generating the null distribution.
When unspecified (the default), this is done in a single batch.

... other arguments.

32 tippett

Details

Tippett’s Method

By default (i.e., when adjust = "none"), the function applies the Tippett’s method to the p-values
(Tippett, 1931). Letting p1, p2, . . . , pk denote the individual (one- or two-sided) p-values of the k
hypothesis tests to be combined, the combined p-value is then computed with

pc = 1− (1−min(p1, p2, . . . , pk))k.

Tippett’s method asumes that the p-values to be combined are independent. If this is not the case, the
method can either be conservative (not reject often enough) or liberal (reject too often), depending
on the correlation structure among the tests. In this case, one can adjust the method to account for
such dependence (to bring the Type I error rate closer to some desired nominal significance level).

Adjustment Based on the Effective Number of Tests

When adjust is set to "nyholt", "liji", "gao" or "galwey", Tippett’s method is adjusted based
on an estimate of the effective number of tests (see meff for details on these methods for estimating
the effective number of tests). In this case, argument R needs to be set to a correlation matrix that
reflects the dependence structure among the tests.

There is no general solution for constructing such a correlation matrix, as this depends on the type
of test that generated the p-values and the sidedness of these tests. If the p-values are obtained from
tests whose test statistics can be assumed to follow a multivariate normal distribution and a matrix
is available that reflects the correlations among the test statistics, then the mvnconv function can be
used to convert this correlation matrix into the correlations among the (one- or two-sided) p-values,
which can then be passed to the R argument. See ‘Examples’.

Once the effective number of tests, m, is estimated based on R using one of the four methods
described above, the combined p-value is then computed with

pc = 1− (1−min(p1, p2, . . . , pk))m.

Alternatively, one can also directly specify the effective number of tests via the m argument (e.g., if
some other method not implemented in the poolr package is used to estimate the effective number
of tests). Argument R is then irrelevant and doesn’t need to be specified.

Adjustment Based on an Empirically-Derived Null Distribution

When adjust = "empirical", the combined p-value is computed based on an empirically-derived
null distribution using pseudo replicates. This is appropriate if the test statistics that generated
the p-values to be combined can be assumed to follow a multivariate normal distribution and a
matrix is available that reflects the correlations among the test statistics (which is specified via
the R argument). In this case, test statistics are repeatedly simulated from a multivariate normal
distribution under the joint null hypothesis, converted into one- or two-sided p-values (depending on
the side argument), and Tippett’s method is applied. Repeating this process size times yields a null
distribution based on which the combined p-value can be computed, or more precisely, estimated,
since repeated applications of this method will yield (slightly) different results. To obtain a stable
estimate of the combined p-value, size should be set to a large value (the default is 10000, but this
can be increased for a more precise estimate). If we consider the combined p-value an estimate of
the ‘true’ combined p-value that would be obtained for a null distribution of infinite size, we can
also construct a 95% (pseudo) confidence interval based on a binomial distribution.

tippett 33

If batchsize is unspecified, the null distribution is simulated in a single batch, which requires
temporarily storing a matrix with dimensions [size,k]. When size and/or k is large, allocating
the memory for this matrix might not be possible. Instead, one can specify a batchsize value, in
which case a matrix with dimensions [batchsize,k] is repeatedly simulated until the desired size
of the null distribution has been obtained.

One can also specify a vector for the size argument, in which case one must also specify a cor-
responding vector for the threshold argument. In that case, a stepwise algorithm is used that
proceeds as follows. For j = 1,...,length(size),

1. estimate the combined p-value based on size[j]

2. if the combined p-value is ≥ than threshold[j], stop (and report the combined p-value),
otherwise go back to 1.

By setting size to increasing values (e.g., size = c(1000,10000,100000)) and threshold to de-
creasing values (e.g., threshold = c(.10,.01,0)), one can quickly obtain a fairly accurate esti-
mate of the combined p-value if it is far from significant (e.g.,≥ .10), but hone in on a more accurate
estimate for a combined p-value that is closer to 0. Note that the last value of threshold should be
0 (and is forced to be inside of the function), so that the algorithm is guaranteed to terminate (hence,
one can also leave out the last value of threshold, so threshold = c(.10,.01) would also work
in the example above). One can also specify a single threshold (which is replicated as often as
necessary depending on the length of size).

Value

An object of class "poolr". The object is a list containing the following components:

p combined p-value.

ci confidence interval for the combined p-value (only when adjust = "empirical";
otherwise NULL).

k number of p-values that were combined.

m estimate of the effective number of tests (only when adjust is one of "nyholt",
"liji", "gao" or "galwey"; otherwise NULL).

adjust chosen adjustment method.

statistic value of the (adjusted) test statistic.

fun name of calling function.

Author(s)

Ozan Cinar <ozancinar86@gmail.com>
Wolfgang Viechtbauer <wvb@wvbauer.com>

References

Tippett, L. H. C. (1931). Methods of Statistics. London: Williams Norgate.

34 tippett

Examples

copy p-values and LD correlation matrix into p and r
(see help(grid2ip) for details on these data)
p <- grid2ip.p
r <- grid2ip.ld

apply Tippett's method
tippett(p)

use mvnconv() to convert the LD correlation matrix into a matrix with the
correlations among the (two-sided) p-values assuming that the test
statistics follow a multivariate normal distribution with correlation
matrix r (note: 'side = 2' by default in mvnconv())
mvnconv(r, target = "p", cov2cor = TRUE)[1:5,1:5] # show only rows/columns 1-5

adjustment based on estimates of the effective number of tests
tippett(p, adjust = "nyholt", R = mvnconv(r, target = "p", cov2cor = TRUE))
tippett(p, adjust = "liji", R = mvnconv(r, target = "p", cov2cor = TRUE))
tippett(p, adjust = "gao", R = mvnconv(r, target = "p", cov2cor = TRUE))
tippett(p, adjust = "galwey", R = mvnconv(r, target = "p", cov2cor = TRUE))

setting argument 'm' manually
tippett(p, m = 12)

adjustment based on an empirically-derived null distribution (setting the
seed for reproducibility)
set.seed(1234)
tippett(p, adjust = "empirical", R = r)

generate the empirical distribution in batches of size 100
tippett(p, adjust = "empirical", R = r, batchsize = 100)

using the stepwise algorithm
tippett(p, adjust = "empirical", R = r, size = c(1000, 10000, 100000), threshold = c(.10, .01))

Index

∗Topic datasets
grid2ip, 16
mvnlookup, 25

∗Topic htest
binotest, 3
bonferroni, 6
empirical, 10
fisher, 12
invchisq, 16
meff, 20
mvnconv, 23
stouffer, 27
tippett, 31

∗Topic package
poolr-package, 2

∗Topic print
print.poolr, 26

binotest, 3
bonferroni, 6

empirical, 10

fisher, 12

grid2ip, 16

invchisq, 16

meff, 3, 4, 7, 12, 13, 17, 20, 27, 28, 31, 32
mvnconv, 4, 7, 13, 14, 18, 19, 22, 23, 25, 28,

29, 32
mvnlookup, 24, 25

nearPD, 11, 22

poolr (poolr-package), 2
poolr-package, 2
print.poolr, 26

stouffer, 27

tippett, 31

35

	poolr-package
	binotest
	bonferroni
	empirical
	fisher
	grid2ip
	invchisq
	meff
	mvnconv
	mvnlookup
	print.poolr
	stouffer
	tippett
	Index

