
Package ‘pomp’
July 5, 2020

Type Package

Title Statistical Inference for Partially Observed Markov Processes

Version 3.1

Date 2020-07-05

URL https://kingaa.github.io/pomp/

Description Tools for data analysis with partially observed Markov process (POMP) mod-
els (also known as stochastic dynamical systems, hidden Markov models, and nonlinear, non-
Gaussian, state-space models). The package provides facilities for implementing POMP mod-
els, simulating them, and fitting them to time series data by a variety of frequen-
tist and Bayesian methods. It is also a versatile platform for implementation of inference meth-
ods for general POMP models.

Depends R(>= 4.0.0), methods

Imports stats, graphics, digest, mvtnorm, deSolve, coda, reshape2,
magrittr, plyr

Suggests ggplot2, knitr, tidyr, dplyr, subplex, nloptr

SystemRequirements For Windows users, Rtools (see
https://cran.r-project.org/bin/windows/Rtools/).

License GPL-3

LazyData true

Contact kingaa at umich dot edu

BugReports https://github.com/kingaa/pomp/issues/

Encoding UTF-8

Collate 'pomp-package.R' 'aaa.R' 'pstop.R' 'undefined.R' 'csnippet.R'
'pomp_fun.R' 'parameter_trans.R' 'covariate_table.R'
'skeleton_spec.R' 'rprocess_spec.R' 'safecall.R' 'pomp_class.R'
'load.R' 'workhorses.R' 'continue.R' 'prior_spec.R'
'dmeasure_spec.R' 'dprocess_spec.R' 'rmeasure_spec.R'
'rinit_spec.R' 'templates.R' 'builder.R' 'pomp.R' 'probe.R'
'abc.R' 'accumulators.R' 'kalman.R' 'pfilter.R' 'wpfilter.R'
'proposals.R' 'pmcmc.R' 'mif2.R' 'listie.R' 'simulate.R'
'spect.R' 'plot.R' 'bsmc2.R' 'as_data_frame.R' 'as_pomp.R'

1

https://kingaa.github.io/pomp/
https://github.com/kingaa/pomp/issues/

2 R topics documented:

'authors.R' 'bake.R' 'basic_probes.R' 'blowflies.R' 'bsflu.R'
'bsplines.R' 'coef.R' 'concat.R' 'cond_logLik.R' 'covmat.R'
'dacca.R' 'design.R' 'distributions.R' 'ebola.R'
'eff_sample_size.R' 'extract.R' 'filter_mean.R' 'filter_traj.R'
'flow.R' 'forecast.R' 'gompertz.R' 'probe_match.R'
'spect_match.R' 'summary.R' 'nlf.R' 'trajectory.R'
'traj_match.R' 'objfun.R' 'loglik.R' 'logmeanexp.R' 'lookup.R'
'measles.R' 'melt.R' 'obs.R' 'ou2.R' 'parmat.R' 'parus.R'
'pipe.R' 'pomp_examp.R' 'pred_mean.R' 'pred_var.R' 'show.R'
'print.R' 'profile_design.R' 'resample.R' 'ricker.R'
'runif_design.R' 'rw2.R' 'sannbox.R' 'saved_states.R' 'sir.R'
'slice_design.R' 'sobol.R' 'spy.R' 'states.R' 'time.R'
'timezero.R' 'traces.R' 'transformations.R' 'userdata.R'
'verhulst.R' 'window.R'

RoxygenNote 7.1.1

NeedsCompilation yes

Author Aaron A. King [aut, cre],
Edward L. Ionides [aut],
Carles Breto [aut],
Stephen P. Ellner [ctb],
Matthew J. Ferrari [ctb],
Bruce E. Kendall [ctb],
Michael Lavine [ctb],
Dao Nguyen [ctb],
Daniel C. Reuman [ctb],
Helen Wearing [ctb],
Simon N. Wood [ctb],
Sebastian Funk [ctb],
Steven G. Johnson [ctb],
Eamon O'Dea [ctb]

Maintainer Aaron A. King <kingaa@umich.edu>

Repository CRAN

Date/Publication 2020-07-05 19:00:03 UTC

R topics documented:
pomp-package . 4
abc . 6
accumulators . 9
as.data.frame . 11
bake . 13
basic_probes . 15
blowflies . 17
bsflu . 19
bsmc2 . 20
bsplines . 22

R topics documented: 3

coef . 23
cond.logLik . 24
continue . 26
covariate_table . 26
covmat . 27
Csnippet . 28
dacca . 30
design . 32
distributions . 34
dmeasure . 36
dmeasure_spec . 37
dprior . 38
dprocess . 39
dprocess_spec . 40
ebola . 41
eff.sample.size . 43
filter.mean . 44
filter.traj . 45
flow . 46
forecast . 47
gompertz . 47
hitch . 48
kalman . 50
logLik . 52
logmeanexp . 53
measles . 54
mif2 . 55
nlf . 60
obs . 64
ou2 . 65
parameter_trans . 66
parmat . 68
partrans . 69
parus . 69
pfilter . 70
plot . 74
pmcmc . 75
pomp . 78
pomp_examples . 82
pred.mean . 83
pred.var . 84
print . 85
prior_spec . 85
probe . 86
probe.match . 89
proposals . 93
ricker . 94
rinit . 95

4 pomp-package

rinit_spec . 96
rmeasure . 97
rmeasure_spec . 98
rprior . 99
rprocess . 100
rprocess_spec . 101
rw.sd . 104
rw2 . 105
sannbox . 106
saved.states . 107
simulate . 108
sir_models . 111
skeleton . 113
skeleton_spec . 114
spect . 115
spect.match . 118
spy . 122
states . 122
summary-probed_pomp . 123
time . 123
timezero . 124
traces . 124
traj.match . 126
trajectory . 129
transformations . 130
userdata . 131
verhulst . 134
window . 136
workhorses . 136
wpfilter . 137

Index 140

pomp-package Inference for partially observed Markov processes

Description

The pomp package provides facilities for inference on time series data using partially-observed
Markov process (POMP) models. These models are also known as state-space models, hidden
Markov models, or nonlinear stochastic dynamical systems. One can use pomp to fit nonlinear,
non-Gaussian dynamic models to time-series data. The package is both a set of tools for data analy-
sis and a platform upon which statistical inference methods for POMP models can be implemented.

pomp-package 5

Data analysis using pomp

pomp provides algorithms for

1. simulation of stochastic dynamical systems; see simulate

2. particle filtering (AKA sequential Monte Carlo or sequential importance sampling); see pfilter

3. the iterated filtering methods of Ionides et al. (2006, 2011, 2015); see mif2

4. the nonlinear forecasting algorithm of Kendall et al. (2005); see nlf

5. the particle MCMC approach of Andrieu et al. (2010); see pmcmc

6. the probe-matching method of Kendall et al. (1999, 2005); see probe.match

7. a spectral probe-matching method (Reuman et al. 2006, 2008); see spect.match

8. synthetic likelihood a la Wood (2010); see probe

9. approximate Bayesian computation (Toni et al. 2009); see abc

10. the approximate Bayesian sequential Monte Carlo scheme of Liu & West (2001); see bsmc2

11. ensemble and ensemble adjusted Kalman filters; see kalman

12. simple trajectory matching; see traj.match.

The package also provides various tools for plotting and extracting information on models and data.

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical Inference for Partially Observed Markov
Processes via the Package pomp. Journal of Statistical Software 69(12), 1–43, 2016. An updated
version of this paper is available on the package website.

See the package website, https://kingaa.github.io/pomp/, for more references.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, mif2(), nlf, pmcmc(),
probe.match, spect.match

Other elementary POMP methods: pfilter(), probe(), simulate(), spect(), wpfilter()

https://kingaa.github.io/pomp/docs.html
https://kingaa.github.io/pomp/

6 abc

abc Approximate Bayesian computation

Description

The approximate Bayesian computation (ABC) algorithm for estimating the parameters of a partially-
observed Markov process.

Usage

S4 method for signature 'data.frame'
abc(
data,
Nabc = 1,
proposal,
scale,
epsilon,
probes,
params,
rinit,
rprocess,
rmeasure,
dprior,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
abc(
data,
Nabc = 1,
proposal,
scale,
epsilon,
probes,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'probed_pomp'
abc(data, probes, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'abcd_pomp'
abc(
data,
Nabc,
proposal,

abc 7

scale,
epsilon,
probes,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Nabc the number of ABC iterations to perform.
proposal optional function that draws from the proposal distribution. Currently, the pro-

posal distribution must be symmetric for proper inference: it is the user’s respon-
sibility to ensure that it is. Several functions that construct appropriate proposal
function are provided: see MCMC proposals for more information.

scale named numeric vector of scales.
epsilon ABC tolerance.
probes a single probe or a list of one or more probes. A probe is simply a scalar- or

vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

dprior optional; prior distribution density evaluator, specified either as a C snippet, an R
function, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see ?prior_spec. Setting dprior=NULL
resets the prior distribution to its default, which is a flat improper prior.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

8 abc

Running ABC

abc returns an object of class ‘abcd_pomp’. One or more ‘abcd_pomp’ objects can be joined to
form an ‘abcList’ object.

Re-running ABC iterations

To re-run a sequence of ABC iterations, one can use the abc method on a ‘abcd_pomp’ object. By
default, the same parameters used for the original ABC run are re-used (except for verbose, the
default of which is shown above). If one does specify additional arguments, these will override the
defaults.

Continuing ABC iterations

One can continue a series of ABC iterations from where one left off using the continue method. A
call to abc to perform Nabc=m iterations followed by a call to continue to perform Nabc=n iterations
will produce precisely the same effect as a single call to abc to perform Nabc=m+n iterations. By
default, all the algorithmic parameters are the same as used in the original call to abc. Additional
arguments will override the defaults.

Methods

The following can be applied to the output of an abc operation:

plot produces a series of diagnostic plots

traces produces a mcmc object, to which the various coda convergence diagnostics can be applied

Author(s)

Edward L. Ionides, Aaron A. King

References

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods.
Statistics and Computing 22, 1167–1180, 2012.

T. Toni and M. P. H. Stumpf. Simulation-based model selection for dynamical systems in systems
and population biology. Bioinformatics 26, 104–110, 2010.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate Bayesian compu-
tation scheme for parameter inference and model selection in dynamical systems. Journal of the
Royal Society Interface 6, 187–202, 2009.

See Also

MCMC proposals

Other summary statistics methods: basic_probes, probe.match, probe(), spect()

Other pomp parameter estimation methods: bsmc2(), kalman, mif2(), nlf, pmcmc(), pomp-package,
probe.match, spect.match

accumulators 9

accumulators accumulators

Description

Accumulator variables

Details

In formulating models, one sometimes wishes to define a state variable that will accumulate some
quantity over the interval between successive observations. pomp provides a facility to make such
features more convenient. Specifically, variables named in the pomp’s accumvars argument will
be set to zero immediately following each observation. See sir and the tutorials on the package
website for examples.

See Also

sir

Other information on model implementation: Csnippet, covariate_table(), distributions,
dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

Examples

A simple SIR model.

ewmeas %>%
subset(time < 1952) %>%
pomp(
times="time",t0=1948,
rprocess=euler(

Csnippet("
int nrate = 6;
double rate[nrate]; // transition rates
double trans[nrate]; // transition numbers
double dW;

// gamma noise, mean=dt, variance=(sigma^2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates
rate[0] = mu*pop; // birth into susceptible class
rate[1] = (iota+Beta*I*dW/dt)/pop; // force of infection
rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery
rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

https://kingaa.github.io/pomp/
https://kingaa.github.io/pomp/

10 accumulators

trans[0] = rpois(rate[0]*dt); // births are Poisson
reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[0]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];

"),
delta.t=1/52/20

),
rinit=Csnippet("

double m = pop/(S_0+I_0+R_0);
S = nearbyint(m*S_0);
I = nearbyint(m*I_0);
R = nearbyint(m*R_0);

"),
paramnames=c("mu","pop","iota","gamma","Beta","sigma",

"S_0","I_0","R_0"),
statenames=c("S","I","R"),
params=c(mu=1/50,iota=10,pop=50e6,gamma=26,Beta=400,sigma=0.1,

S_0=0.07,I_0=0.001,R_0=0.93)
) -> ew1

ew1 %>%
simulate() %>%
plot(variables=c("S","I","R"))

A simple SIR model that tracks cumulative incidence.

ew1 %>%
pomp(

rprocess=euler(
Csnippet("

int nrate = 6;
double rate[nrate]; // transition rates
double trans[nrate]; // transition numbers
double dW;

// gamma noise, mean=dt, variance=(sigma^2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates
rate[0] = mu*pop; // birth into susceptible class
rate[1] = (iota+Beta*I*dW/dt)/pop; // force of infection
rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery
rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers
trans[0] = rpois(rate[0]*dt); // births are Poisson

as.data.frame 11

reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[0]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];
H += trans[3]; // cumulative incidence

"),
delta.t=1/52/20

),
rmeasure=Csnippet("

double mean = H*rho;
double size = 1/tau;
reports = rnbinom_mu(size,mean);

"),
rinit=Csnippet("

double m = pop/(S_0+I_0+R_0);
S = nearbyint(m*S_0);
I = nearbyint(m*I_0);
R = nearbyint(m*R_0);
H = 0;

"),
paramnames=c("mu","pop","iota","gamma","Beta","sigma","tau","rho",

"S_0","I_0","R_0"),
statenames=c("S","I","R","H"),
params=c(mu=1/50,iota=10,pop=50e6,gamma=26,

Beta=400,sigma=0.1,tau=0.001,rho=0.6,
S_0=0.07,I_0=0.001,R_0=0.93)

) -> ew2

ew2 %>%
simulate() %>%
plot()

A simple SIR model that tracks weekly incidence.

ew2 %>%
pomp(accumvars="H") -> ew3

ew3 %>%
simulate() %>%
plot()

as.data.frame Coerce to data frame

12 as.data.frame

Description

All pomp model objects can be recast as data frames. The contents of the resulting data frame
depend on the nature of the object.

Usage

S3 method for class 'pomp'
as.data.frame(x, ...)

S3 method for class 'pfilterd_pomp'
as.data.frame(x, ...)

S3 method for class 'probed_pomp'
as.data.frame(x, ...)

S3 method for class 'kalmand_pomp'
as.data.frame(x, ...)

S3 method for class 'bsmcd_pomp'
as.data.frame(x, ...)

S3 method for class 'pompList'
as.data.frame(x, ...)

S3 method for class 'pfilterList'
as.data.frame(x, ...)

S3 method for class 'abcList'
as.data.frame(x, ...)

S3 method for class 'mif2List'
as.data.frame(x, ...)

S3 method for class 'pmcmcList'
as.data.frame(x, ...)

S3 method for class 'wpfilterd_pomp'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

Details

When object is a simple ‘pomp’ object, as(object,"data.frame") or as.data.frame(object)
results in a data frame with the times, observables, states (if known), and interpolated covariates (if

bake 13

any).

When object is a ‘pfilterd_pomp’ object, coercion to a data frame results in a data frame with the
same content as for a simple ‘pomp’, but with conditional log likelihood and effective sample size
estimates included, as well as filtering means, prediction means, and prediction variances, if these
have been computed.

When object is a ‘probed_pomp’ object, coercion to a data frame results in a data frame with the
values of the probes computed on the data and on simulations.

When object is a ‘kalmand_pomp’ object, coercion to a data frame results in a data frame with
prediction means, filter means and forecasts, in addition to the data.

When object is a ‘bsmcd_pomp’ object, coercion to a data frame results in a data frame with
samples from the prior and posterior distribution. The .id variable distinguishes them.

When object is a ‘wpfilterd_pomp’ object, coercion to a data frame results in a data frame with
the same content as for a simple ‘pomp’, but with conditional log likelihood and effective sample
size estimates included.

bake Bake, stew, and freeze

Description

Tools for reproducible computations.

Usage

bake(file, expr, seed = NULL, kind = NULL, normal.kind = NULL)

stew(file, expr, seed = NULL, kind = NULL, normal.kind = NULL)

freeze(expr, seed = NULL, kind = NULL, normal.kind = NULL)

Arguments

file Name of the binary data file in which the result will be stored or retrieved, as
appropriate. For bake, this will contain a single object and hence be an RDS
file (extension ‘rds’); for stew, this will contain one or more named objects and
hence be an RDA file (extension ‘rda’).

expr Expression to be evaluated.

seed, kind, normal.kind

optional. To set the state and of the RNG. See set.seed. The default, seed
= NULL, will not change the RNG state. seed should be a single integer. See
set.seed.

14 bake

Details

On cooking shows, recipes requiring lengthy baking or stewing are prepared beforehand. The bake
and stew functions perform analogously: an computation is performed and stored in a named file.
If the function is called again and the file is present, the computation is not executed. Instead, the
results are loaded from the file in which they were previously stored. Moreover, via their optional
seed argument, bake and stew can control the pseudorandom-number generator (RNG) for greater
reproducibility. After the computation is finished, these functions restore the pre-existing RNG state
to avoid side effects.

The freeze function doesn’t save results, but does set the RNG state to the specified value and
restore it after the computation is complete.

Both bake and stew first test to see whether file exists. If it does, bake reads it using readRDS
and returns the resulting object. By contrast, stew loads the file using load and copies the objects
it contains into the user’s workspace (or the environment of the call to stew).

If file does not exist, then both bake and stew evaluate the expression expr; they differ in the
results that they save. bake saves the value of the evaluated expression to file as a single object.
The name of that object is not saved. By contrast, stew creates a local environment within which
expr is evaluated; all objects in that environment are saved (by name) in file.

Value

bake returns the value of the evaluated expression expr. Other objects created in the evaluation of
expr are discarded along with the temporary, local environment created for the evaluation.

The latter behavior differs from that of stew, which returns the names of the objects created during
the evaluation of expr. After stew completes, these objects exist in the parent environment (that
from which stew was called).

freeze returns the value of evaluated expression expr. However, freeze evaluates expr within
the parent environment, so other objects created in the evaluation of expr will therefore exist after
freeze completes.

bake and stew return information about the time used in evaluating the expression. This is recorded
in the system.time attribute of the return value. In addition, if seed is specified, information about
the seed (and the kind of random-number generator used) are stored as attributes of the return value.

Author(s)

Aaron A. King

Examples

Not run:
bake(file="example1.rds",{
x <- runif(1000)
mean(x)

})

stew(file="example2.rda",{
x <- runif(10)
y <- rnorm(n=10,mean=3*x+5,sd=2)

basic_probes 15

})

plot(x,y)

freeze(runif(3),seed=5886730)
freeze(runif(3),seed=5886730)

End(Not run)

basic_probes Useful probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided with in the package. These can be used directly
and as templates for custom probes.

Usage

probe.mean(var, trim = 0, transform = identity, na.rm = TRUE)

probe.median(var, na.rm = TRUE)

probe.var(var, transform = identity, na.rm = TRUE)

probe.sd(var, transform = identity, na.rm = TRUE)

probe.period(var, kernel.width, transform = identity)

probe.quantile(var, probs, ...)

probe.acf(
var,
lags,
type = c("covariance", "correlation"),
transform = identity

)

probe.ccf(
vars,
lags,
type = c("covariance", "correlation"),
transform = identity

)

probe.marginal(var, ref, order = 3, diff = 1, transform = identity)

probe.nlar(var, lags, powers, transform = identity)

16 basic_probes

Arguments

var, vars character; the name(s) of the observed variable(s).
trim the fraction of observations to be trimmed (see mean).
transform transformation to be applied to the data before the probe is computed.
na.rm if TRUE, remove all NA observations prior to computing the probe.
kernel.width width of modified Daniell smoothing kernel to be used in power-spectrum com-

putation: see kernel.
probs the quantile or quantiles to compute: see quantile.
... additional arguments passed to the underlying algorithms.
lags In probe.ccf, a vector of lags between time series. Positive lags correspond to

x advanced relative to y; negative lags, to the reverse.
In probe.nlar, a vector of lags present in the nonlinear autoregressive model
that will be fit to the actual and simulated data. See Details, below, for a precise
description.

type Compute autocorrelation or autocovariance?
ref empirical reference distribution. Simulated data will be regressed against the

values of ref, sorted and, optionally, differenced. The resulting regression co-
efficients capture information about the shape of the marginal distribution. A
good choice for ref is the data itself.

order order of polynomial regression.
diff order of differencing to perform.
powers the powers of each term (corresponding to lags) in the the nonlinear autoregres-

sive model that will be fit to the actual and simulated data. See Details, below,
for a precise description.

Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe_objfun.
That is, the function returned by each of these takes a data array (such as comes from a call to obs)
as input and returns a single numerical value.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102–1104, 2010.

See Also

Other summary statistics methods: abc(), probe.match, probe(), spect()

blowflies 17

blowflies Nicholson’s blowflies.

Description

blowflies is a data frame containing the data from several of Nicholson’s classic experiments with
the Australian sheep blowfly, Lucilia cuprina.

Usage

blowflies1(
P = 3.2838,
delta = 0.16073,
N0 = 679.94,
sigma.P = 1.3512,
sigma.d = 0.74677,
sigma.y = 0.026649

)

blowflies2(
P = 2.7319,
delta = 0.17377,
N0 = 800.31,
sigma.P = 1.442,
sigma.d = 0.76033,
sigma.y = 0.010846

)

Arguments

P reproduction parameter

delta death rate

N0 population scale factor

sigma.P intensity of e noise

sigma.d intensity of eps noise

sigma.y measurement error s.d.

Details

blowflies1() and blowflies2() construct ‘pomp’ objects encoding stochastic delay-difference
equation models. The data for these come from "population I", a control culture. The experiment
is described on pp. 163–4 of Nicholson (1957). Unlimited quantities of larval food were provided;
the adult food supply (ground liver) was constant at 0.4g per day. The data were taken from the
table provided by Brillinger et al. (1980).

18 blowflies

The models are discrete delay equations:

R(t+ 1) ∼ Poisson(PN(t− τ) exp (−N(t− τ)/N0)e(t+ 1)∆t)

S(t+ 1) ∼ Binomial(N(t), exp (−δε(t+ 1)∆t))

N(t) = R(t) + S(t)

where e(t) and ε(t) are Gamma-distributed i.i.d. random variables with mean 1 and variances
σ2
P /∆t, σ

2
d/∆t, respectively. blowflies1 has a timestep (∆t) of 1 day; blowflies2 has a timestep

of 2 days. The process model in blowflies1 thus corresponds exactly to that studied by Wood
(2010). The measurement model in both cases is taken to be

y(t) ∼ NegBin(N(t), 1/σ2
y)

i.e., the observations are assumed to be negative-binomially distributed with mean N(t) and vari-
ance N(t) + (σyN(t))2.
Default parameter values are the MLEs as estimated by Ionides (2011).

Value

blowflies1 and blowflies2 return ‘pomp’ objects containing the actual data and two variants of
the model.

References

A.J. Nicholson. The self-adjustment of populations to change. Cold Spring Harbor Symposia on
Quantitative Biology 22, 153–173, 1957.
Y. Xia and H. Tong. Feature Matching in Time Series Modeling. Statistical Science 26, 21–46,
2011.
E.L. Ionides. Discussion of “Feature Matching in Time Series Modeling” by Y. Xia and H. Tong.
Statistical Science 26, 49–52, 2011.
S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102–1104, 2010.
W.S.C. Gurney, S.P. Blythe, and R.M. Nisbet. Nicholson’s blowflies revisited. Nature 287, 17–21,
1980.
D.R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster. Empirical modelling of population
time series: The case of age and density dependent rates. In: G. Oster (ed.), Some Questions in
Mathematical Biology vol. 13, pp. 65–90, American Mathematical Society, Providence, 1980.

See Also

Other pomp examples: bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()
Other datasets: bsflu, dacca(), ebola, measles, parus

Examples

plot(blowflies1())
plot(blowflies2())

bsflu 19

bsflu Influenza outbreak in a boarding school

Description

An outbreak of influenza in an all-boys boarding school.

Details

Data are recorded from a 1978 flu outbreak in a closed population. The variable ‘B’ refers to boys
confined to bed on the corresponding day and ‘C’ to boys in convalescence, i.e., not yet allowed
back to class. In total, 763 boys were at risk of infection and, over the course of the outbreak, 512
boys spent between 3 and 7 days away from class (either in bed or convalescent). The index case
was a boy who arrived at school from holiday six days before the next case.

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.

See Also

sir_models

Other datasets: blowflies, dacca(), ebola, measles, parus

Other pomp examples: blowflies, dacca(), ebola, gompertz(), measles, ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Examples

library(magrittr)
library(tidyr)
library(ggplot2)

bsflu %>%
gather(variable,value,-date,-day) %>%
ggplot(aes(x=date,y=value,color=variable))+
geom_line()+
labs(y="number of boys",title="boarding school flu outbreak")+
theme_bw()

20 bsmc2

bsmc2 The Liu and West Bayesian particle filter

Description

Modified version of the Liu and West (2001) algorithm.

Usage

S4 method for signature 'data.frame'
bsmc2(
data,
Np,
smooth = 0.1,
params,
rprior,
rinit,
rprocess,
dmeasure,
partrans,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
bsmc2(data, Np, smooth = 0.1, ..., verbose = getOption("verbose", FALSE))

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

smooth Kernel density smoothing parameter. The compensating shrinkage factor will
be sqrt(1-smooth^2). Thus, smooth=0 means that no noise will be added to
parameters. The general recommendation is that the value of smooth should be
chosen close to 0 (e.g., shrink ~ 0.1).

bsmc2 21

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rprior optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see ?prior_spec. Setting rprior=NULL
removes the prior distribution sampler.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

bsmc2 uses a version of the original algorithm (Liu \& West 2001), but discards the auxiliary particle
filter. The modification appears to give superior performance for the same amount of effort.

Samples from the prior distribution are drawn using the rprior component. This is allowed to
depend on elements of params, i.e., some of the elements of params can be treated as “hyperpa-
rameters”. Np draws are made from the prior distribution.

Value

An object of class ‘bsmcd_pomp’. The following methods are avaiable:

plot produces diagnostic plots

as.data.frame puts the prior and posterior samples into a data frame

22 bsplines

Author(s)

Michael Lavine, Matthew Ferrari, Aaron A. King, Edward L. Ionides

References

Liu, J. and M. West. Combining Parameter and State Estimation in Simulation-Based Filtering. In
A. Doucet, N. de Freitas, and N. J. Gordon, editors, Sequential Monte Carlo Methods in Practice,
pages 197-224. Springer, New York, 2001.

See Also

Other particle filter methods: cond.logLik(), eff.sample.size(), filter.mean(), filter.traj(),
mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other pomp parameter estimation methods: abc(), kalman, mif2(), nlf, pmcmc(), pomp-package,
probe.match, spect.match

bsplines B-spline bases

Description

These functions generate B-spline basis functions. bspline.basis gives a basis of spline functions.
periodic.bspline.basis gives a basis of periodic spline functions.

Usage

bspline.basis(x, nbasis, degree = 3, deriv = 0, names = NULL)

periodic.bspline.basis(
x,
nbasis,
degree = 3,
period = 1,
deriv = 0,
names = NULL

)

Arguments

x Vector at which the spline functions are to be evaluated.

nbasis The number of basis functions to return.

degree Degree of requested B-splines.

deriv The order of the derivative required.

coef 23

names optional; the names to be given to the basis functions. These will be the column-
names of the matrix returned. If the names are specified as a format string
(e.g., "basis%d"), sprintf will be used to generate the names from the column
number. If a single non-format string is specified, the names will be generated
by paste-ing name to the column number. One can also specify each column
name explicitly by giving a length-nbasis string vector. By default, no column-
names are given.

period The period of the requested periodic B-splines.

Value

bspline.basis Returns a matrix with length(x) rows and nbasis columns. Each column
contains the values one of the spline basis functions.

periodic.bspline.basis

Returns a matrix with length(x) rows and nbasis columns. The basis func-
tions returned are periodic with period period.

If deriv>0, the derivative of that order of each of the corresponding spline basis functions are
returned.

C API

Access to the underlying C routines is available: see the pomp C API document. for definition and
documentation of the C API.

Author(s)

Aaron A. King

Examples

x <- seq(0,2,by=0.01)
y <- bspline.basis(x,degree=3,nbasis=9,names="basis")
matplot(x,y,type='l',ylim=c(0,1.1))
lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)
y <- periodic.bspline.basis(x,nbasis=5,names="spline%d")
matplot(x,y,type='l')

coef Extract, set, or alter coefficients

Description

Extract, set, or modify the estimated parameters from a fitted model.

https://kingaa.github.io/pomp/vignettes/C_API.html

24 cond.logLik

Usage

S4 method for signature 'listie'
coef(object, ...)

S4 method for signature 'pomp'
coef(object, pars, transform = FALSE, ...)

S4 replacement method for signature 'pomp'
coef(object, pars, transform = FALSE, ...) <- value

S4 method for signature 'objfun'
coef(object, ...)

Arguments

object an object of class ‘pomp’, or of a class extending ‘pomp’

... ignored

pars optional character; names of parameters to be retrieved or set.

transform logical; perform parameter transformation?

value numeric vector or list; values to be assigned. If value = NULL, the parameters
are unset.

Details

coef allows one to extract the parameters from a fitted model.

coef(object,transform=TRUE) returns the parameters transformed onto the estimation scale.

coef(object) <-value sets or alters the coefficients of a ‘pomp’ object.

coef(object,transform=TRUE) <-value assumes that value is on the estimation scale, and ap-
plies the “from estimation scale” parameter transformation from object before altering the coeffi-
cients.

cond.logLik Conditional log likelihood

Description

The estimated conditional log likelihood from a fitted model.

Usage

S4 method for signature 'kalmand_pomp'
cond.logLik(object, ...)

S4 method for signature 'pfilterd_pomp'
cond.logLik(object, ...)

cond.logLik 25

S4 method for signature 'wpfilterd_pomp'
cond.logLik(object, ...)

S4 method for signature 'bsmcd_pomp'
cond.logLik(object, ...)

cond.loglik(...)

Arguments

object result of a filtering computation

... ignored

Details

The conditional likelihood is defined to be the value of the density of

Y (tk)|Y (t1), . . . , Y (tk−1)

evaluated at Y (tk) = y∗k. Here, Y (tk) is the observable process, and y∗k the data, at time tk.

Thus the conditional log likelihood at time tk is

`k(θ) = log f [Y (tk) = y∗k|Y (t1) = y∗1 , . . . , Y (tk−1) = y∗k−1],

where f is the probability density above.

Value

The numerical value of the conditional log likelihood. Note that some methods compute not the log
likelihood itself but instead a related quantity. To keep the code simple, the cond.logLik function
is nevertheless used to extract this quantity.

When object is of class ‘bsmcd_pomp’ (i.e., the result of a bsmc2 computation), cond.logLik
returns the conditional log “evidence” (see bsmc2).

See Also

Other particle filter methods: bsmc2(), eff.sample.size(), filter.mean(), filter.traj(),
mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

26 covariate_table

continue Continue an iterative calculation

Description

Continue an iterative computation where it left off.

Usage

continue(object, ...)

S4 method for signature 'abcd_pomp'
continue(object, Nabc = 1, ...)

S4 method for signature 'pmcmcd_pomp'
continue(object, Nmcmc = 1, ...)

S4 method for signature 'mif2d_pomp'
continue(object, Nmif = 1, ...)

Arguments

object the result of an iterative pomp computation
... additional arguments will be passed to the underlying method. This allows one

to modify parameters used in the original computations.
Nabc positive integer; number of additional ABC iterations to perform
Nmcmc positive integer; number of additional PMCMC iterations to perform
Nmif positive integer; number of additional filtering iterations to perform

See Also

mif2 pmcmc abc

covariate_table Covariates

Description

Constructing lookup tables for time-varying covariates.

Usage

S4 method for signature 'numeric'
covariate_table(..., order = c("linear", "constant"), times)

S4 method for signature 'character'
covariate_table(..., order = c("linear", "constant"), times)

covmat 27

Arguments

... numeric vectors or data frames containing time-varying covariates. It must be
possible to bind these into a data frame.

order the order of interpolation to be used. Options are “linear” (the default) and
“constant”. Setting order="linear" treats the covariates as piecewise linear
functions of time; order="constant" treats them as right-continuous piecewise
constant functions.

times the times corresponding to the covariates. This may be given as a vector of (non-
decreasing, finite) numerical values. Alternatively, one can specify by name
which of the given variables is the time variable.

Details

If the ‘pomp’ object contains covariates (specified via the covar argument), then interpolated val-
ues of the covariates will be available to each of the model components whenever it is called. In
particular, variables with names as they appear in the covar covariate table will be available to any
C snippet. When a basic component is defined using an R function, that function will be called
with an extra argument, covars, which will be a named numeric vector containing the interpolated
values from the covariate table.

An exception to this rule is the prior (rprior and dprior): covariate-dependent priors are not
allowed. Nor are parameter transformations permitted to depend upon covariates.

See Also

lookup

Other information on model implementation: Csnippet, accumulators, distributions, dmeasure_spec,
dprocess_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec, rmeasure_spec,
rprocess_spec, skeleton_spec, transformations, userdata

covmat Estimate a covariance matrix from algorithm traces

Description

A helper function to extract a covariance matrix.

Usage

S4 method for signature 'pmcmcd_pomp'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)

S4 method for signature 'pmcmcList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)

S4 method for signature 'abcd_pomp'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)

28 Csnippet

S4 method for signature 'abcList'
covmat(object, start = 1, thin = 1, expand = 2.38, ...)

S4 method for signature 'probed_pomp'
covmat(object, ...)

Arguments

object an object extending ‘pomp’
start the first iteration number to be used in estimating the covariance matrix. Setting

thin > 1 allows for a burn-in period.
thin factor by which the chains are to be thinned
expand the expansion factor
... ignored

Value

When object is the result of a pmcmc or abc computation, covmat(object) gives the covariance
matrix of the chains. This can be useful, for example, in tuning the proposal distribution.

When object is a ‘probed_pomp’ object (i.e., the result of a probe computation), covmat(object)
returns the covariance matrix of the probes, as applied to simulated data.

See Also

MCMC proposals.

Csnippet C snippets

Description

Accelerating computations through inline snippets of C code

Usage

Csnippet(text)

Arguments

text character; text written in the C language

Details

pomp provides a facility whereby users can define their model’s components using inline C code.
C snippets are written to a C file, by default located in the R session’s temporary directory, which is
then compiled (via R CMD SHLIB) into a dynamically loadable shared object file. This is then loaded
as needed.

Csnippet 29

Note to Windows and Mac users

By default, your R installation may not support R CMD SHLIB. The package website contains instal-
lation instructions that explain how to enable this powerful feature of R.

General rules for writing C snippets

In writing a C snippet one must bear in mind both the goal of the snippet, i.e., what computation it
is intended to perform, and the context in which it will be executed. These are explained here in the
form of general rules. Additional specific rules apply according to the function of the particular C
snippet. Illustrative examples are given in the tutorials on the package website.

1. C snippets must be valid C. They will embedded verbatim in a template file which will then be
compiled by a call to R CMD SHLIB. If the resulting file does not compile, an error message will
be generated. Compiler messages will be displayed, but no attempt will be made by pomp to
interpret them. Typically, compilation errors are due to either invalid C syntax or undeclared
variables.

2. State variables, parameters, observables, and covariates must be left undeclared within the
snippet. State variables and parameters are declared via the statenames or paramnames ar-
guments to pomp, respectively. Compiler errors that complain about undeclared state variables
or parameters are usually due to failure to declare these in statenames or paramnames, as
appropriate.

3. A C snippet can declare local variables. Be careful not to use names that match those of state
variables, observables, or parameters. One must never declare state variables, observables,
covariates, or parameters within a C snippet.

4. Names of observables must match the names given given in the data. They must be referred
to in measurement model C snippets (rmeasure and dmeasure) by those names.

5. If the ‘pomp’ object contains a table of covariates (see above), then the variables in the co-
variate table will be available, by their names, in the context within which the C snippet is
executed.

6. Because the dot ‘.’ has syntactic meaning in C, R variables with names containing dots (‘.’) are
replaced in the C codes by variable names in which all dots have been replaced by underscores
(‘_’).

7. The headers ‘R.h’ and ‘Rmath.h’, provided with R, will be included in the generated C file,
making all of the R C API available for use in the C snippet. This makes a great many useful
functions available, including all of R’s statistical distribution functions.

8. The header ‘pomp.h’, provided with pomp, will also be included, making all of the pomp C
API available for use in every C snippet.

9. Snippets of C code passed to the globals argument of pomp will be included at the head of
the generated C file. This can be used to declare global variables, define useful functions, and
include arbitrary header files.

10. INCLUDE INFORMATION ABOUT LINKING TO PRECOMPILED LIBRARIES!

See Also

Other information on model implementation: accumulators, covariate_table(), distributions,
dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

https://kingaa.github.io/pomp/install.html
https://kingaa.github.io/pomp/install.html
https://kingaa.github.io/pomp/
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#The-R-API
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Distribution-functions
https://github.com/kingaa/pomp/blob/master/inst/include/pomp.h
https://kingaa.github.io/pomp/vignettes/C_API.html
https://kingaa.github.io/pomp/vignettes/C_API.html

30 dacca

dacca Model of cholera transmission for historic Bengal.

Description

dacca constructs a ‘pomp’ object containing census and cholera mortality data from the Dacca dis-
trict of the former British province of Bengal over the years 1891 to 1940 together with a stochastic
differential equation transmission model. The model is that of King et al. (2008). The parameters
are the MLE for the SIRS model with seasonal reservoir.

Usage

dacca(
gamma = 20.8,
eps = 19.1,
rho = 0,
delta = 0.02,
deltaI = 0.06,
clin = 1,
alpha = 1,
beta_trend = -0.00498,
logbeta = c(0.747, 6.38, -3.44, 4.23, 3.33, 4.55),
logomega = log(c(0.184, 0.0786, 0.0584, 0.00917, 0.000208, 0.0124)),
sd_beta = 3.13,
tau = 0.23,
S_0 = 0.621,
I_0 = 0.378,
Y_0 = 0,
R1_0 = 0.000843,
R2_0 = 0.000972,
R3_0 = 1.16e-07

)

Arguments

gamma recovery rate

eps rate of waning of immunity for severe infections

rho rate of waning of immunity for inapparent infections

delta baseline mortality rate

deltaI cholera mortality rate

clin fraction of infections that lead to severe infection

alpha transmission function exponent

beta_trend slope of secular trend in transmission

logbeta seasonal transmission rates

dacca 31

logomega seasonal environmental reservoir parameters

sd_beta environmental noise intensity

tau measurement error s.d.

S_0 initial susceptible fraction

I_0 initial fraction of population infected

Y_0 initial fraction of the population in the Y class

R1_0, R2_0, R3_0

initial fractions in the respective R classes

Details

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and
Hygiene.

Value

dacca returns a ‘pomp’ object containing the model, data, and MLE parameters, as estimated by
King et al. (2008).

References

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics.
Nature 454, 877-880, 2008

See Also

Other pomp examples: blowflies, bsflu, ebola, gompertz(), measles, ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Other datasets: blowflies, bsflu, ebola, measles, parus

Examples

po <- dacca()
plot(po)
MLE:
coef(po)
plot(simulate(po))

32 design

design Design matrices for pomp calculations

Description

These functions are useful for generating designs for the exploration of parameter space.

profileDesign generates a data-frame where each row can be used as the starting point for a profile
likelihood calculation.

runifDesign generates a design based on random samples from a multivariate uniform distribution.

sliceDesign generates points along slices through a specified point.

sobolDesign generates a Latin hypercube design based on the Sobol’ low-discrepancy sequence.

Usage

profileDesign(
...,
lower,
upper,
nprof,
type = c("sobol", "runif"),
stringsAsFactors = getOption("stringsAsFactors", FALSE)

)

runifDesign(lower = numeric(0), upper = numeric(0), nseq)

sliceDesign(center, ...)

sobolDesign(lower = numeric(0), upper = numeric(0), nseq)

Arguments

... In profileDesign, additional arguments specify the parameters over which to
profile and the values of these parameters. In sliceDesign, additional numeric
vector arguments specify the locations of points along the slices.

lower, upper named numeric vectors giving the lower and upper bounds of the ranges, respec-
tively.

nprof The number of points per profile point.

type the type of design to use. type="sobol" uses sobolDesign; type="runif"
uses runifDesign.

stringsAsFactors

should character vectors be converted to factors?

nseq Total number of points requested.

center center is a named numeric vector specifying the point through which the slice(s)
is (are) to be taken.

design 33

Details

The Sobol’ sequence generation is performed using codes from the NLopt library by S. Johnson.

Value

profileDesign returns a data frame with nprof points per profile point.

runifDesign returns a data frame with nseq rows and one column for each variable named in
lower and upper.

sliceDesign returns a data frame with one row per point. The ‘slice’ variable indicates which slice
the point belongs to.

sobolDesign returns a data frame with nseq rows and one column for each variable named in
lower and upper.

Author(s)

Aaron A. King

References

P. Bratley and B.L. Fox. Algorithm 659 Implementing Sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software 14, 88–100, 1988.

S. Joe and F.Y. Kuo. Remark on algorithm 659: Implementing Sobol’ quasirandom sequence gen-
erator. ACM Transactions on Mathematical Software 29, 49–57, 2003.

S.G. Johnson. The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt.

Examples

Sobol' low-discrepancy design
plot(sobolDesign(lower=c(a=0,b=100),upper=c(b=200,a=1),nseq=100))

Uniform random design
plot(runifDesign(lower=c(a=0,b=100),upper=c(b=200,a=1),100))

A one-parameter profile design:
x <- profileDesign(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)
dim(x)
plot(x)

A two-parameter profile design:
x <- profileDesign(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200)
dim(x)
plot(x)

A two-parameter profile design with random points:
x <- profileDesign(p=1:10,q=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200,type="runif")
dim(x)
plot(x)

A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.

http://ab-initio.mit.edu/nlopt/
http://ab-initio.mit.edu/nlopt

34 distributions

x <- sliceDesign(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))
dim(x)
plot(x)

Two slices through the same point along the A and C directions.
x <- sliceDesign(c(A=3,B=8,C=0),A=seq(0,5,by=1),C=seq(0,5,length=11))
dim(x)
plot(x)

distributions Probability distributions

Description

pomp provides a number of probability distributions that have proved useful in modeling partially
observed Markov processes. These include the Euler-multinomial family of distributions and the
the Gamma white-noise processes.

Usage

reulermultinom(n = 1, size, rate, dt)

deulermultinom(x, size, rate, dt, log = FALSE)

rgammawn(n = 1, sigma, dt)

Arguments

n integer; number of random variates to generate.

size scalar integer; number of individuals at risk.

rate numeric vector of hazard rates.

dt numeric scalar; duration of Euler step.

x matrix or vector containing number of individuals that have succumbed to each
death process.

log logical; if TRUE, return logarithm(s) of probabilities.

sigma numeric scalar; intensity of the Gamma white noise process.

Details

If N individuals face constant hazards of death in k ways at rates r1, r2, . . . , rk, then in an interval
of duration ∆t, the number of individuals remaining alive and dying in each way is multinomially
distributed:

(N −
k∑

i=1

∆ni,∆n1, . . . ,∆nk) ∼ Multinomial(N ; p0, p1, . . . , pk),

distributions 35

where ∆ni is the number of individuals dying in way i over the interval, the probability of remaining
alive is p0 = exp(−

∑
i ri∆t), and the probability of dying in way j is

pj =
rj∑
i ri

(1− exp(−
∑
i

ri∆t)).

In this case, we say that

(∆n1, . . . ,∆nk) ∼ Eulermultinom(N, r,∆t),

where r = (r1, . . . , rk). Draw m random samples from this distribution by doing

dn <- reulermultinom(n=m,size=N,rate=r,dt=dt),

where r is the vector of rates. Evaluate the probability that x = (x1, . . . , xk) are the numbers of
individuals who have died in each of the k ways over the interval ∆t =dt, by doing

deulermultinom(x=x,size=N,rate=r,dt=dt).

Breto & Ionides (2011) discuss how an infinitesimally overdispersed death process can be con-
structed by compounding a multinomial process with a Gamma white noise process. The Euler
approximation of the resulting process can be obtained as follows. Let the increments of the equidis-
persed process be given by

reulermultinom(size=N,rate=r,dt=dt).

In this expression, replace the rate r with r∆W/∆t, where ∆W ∼ Gamma(∆t/σ2, σ2) is the
increment of an integrated Gamma white noise process with intensity σ. That is, ∆W has mean ∆t
and variance σ2∆t. The resulting process is overdispersed and converges (as ∆t goes to zero) to a
well-defined process. The following lines of code accomplish this:

dW <- rgammawn(sigma=sigma,dt=dt)

dn <- reulermultinom(size=N,rate=r,dt=dW)

or

dn <- reulermultinom(size=N,rate=r*dW/dt,dt=dt).

He et al. (2010) use such overdispersed death processes in modeling measles.

For all of the functions described here, access to the underlying C routines is available: see below.

Value

reulermultinom Returns a length(rate) by n matrix. Each column is a different random draw.
Each row contains the numbers of individuals that have succumbed to the corre-
sponding process.

deulermultinom Returns a vector (of length equal to the number of columns of x) containing
the probabilities of observing each column of x given the specified parameters
(size, rate, dt).

rgammawn Returns a vector of length n containing random increments of the integrated
Gamma white noise process with intensity sigma.

36 dmeasure

C API

An interface for C codes using these functions is provided by the package. Visit the package home-
page to view the pomp C API document.

Author(s)

Aaron A. King

References

C. Bretó and E. L. Ionides. Compound Markov counting processe and their applications to modeling
infinitesimally over-dispersed systems. Stochastic Processes and their Applications 121, 2571–
2591, 2011.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7, 271–283, 2010.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

Examples

print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=0.1))
deulermultinom(x=dn,size=100,rate=c(1,2,3),dt=0.1)
an Euler-multinomial with overdispersed transitions:
dt <- 0.1
dW <- rgammawn(sigma=0.1,dt=dt)
print(dn <- reulermultinom(5,size=100,rate=c(a=1,b=2,c=3),dt=dW))

dmeasure dmeasure

Description

dmeasure evaluates the probability density of observations given states.

Usage

S4 method for signature 'pomp'
dmeasure(object, y, x, times, params, ..., log = FALSE)

https://kingaa.github.io/pomp/vignettes/C_API.html

dmeasure_spec 37

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

y a matrix containing observations. The dimensions of y are nobs x ntimes,
where nobs is the number of observables and ntimes is the length of times.

x an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

dmeasure returns a matrix of dimensions nreps x ntimes. If d is the returned matrix, d[j,k] is
the likelihood (or log likelihood if log = TRUE) of the observation y[,k] at time times[k] given
the state x[,j,k].

See Also

Specification of the measurement density evaluator: dmeasure_spec

Other pomp workhorses: dprior(), dprocess(), flow(), partrans(), rinit(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

dmeasure_spec The measurement model density

Description

Specification of dmeasure.

Details

The measurement model is the link between the data and the unobserved state process. It can be
specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to compute the probability density of an observation given the value
of the latent state variables. Then you can furnish

dmeasure = f

38 dprior

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dmeasure C snippet is to fill the variable lik
with the either the probability density or the log probability density, depending on the value of the
variable give_log.

In writing a dmeasure C snippet, observe that:

1. In addition to the states, parameters, covariates (if any), and observables, the variable t, con-
taining the time of the observation will be defined in the context in which the snippet is exe-
cuted.

2. Moreover, the Boolean variable give_log will be defined.

3. The goal of a dmeasure C snippet is to set the value of the lik variable to the likelihood of
the data given the state, if give_log == 0. If give_log == 1, lik should be set to the log
likelihood.

If dmeasure is to be provided instead as an R function, this is accomplished by supplying

dmeasure = f

to pomp, where f is a function. The arguments of f should be chosen from among the observables,
state variables, parameters, covariates, and time. It must also have the arguments ..., and log. It
can take additional arguments via the facility. f must return a single numeric value, the probability
density (or log probability density if log = TRUE) of y given x at time t.

Important note

It is a common error to fail to account for both log = TRUE and log = FALSE when writing the
dmeasure C snippet or function.

Default behavior

If dmeasure is left unspecified, calls to dmeasure will return missing values (NA).

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dprocess_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

dprior dprior

Description

Evaluates the prior probability density.

dprocess 39

Usage

S4 method for signature 'pomp'
dprior(object, params, ..., log = FALSE)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

The required density (or log density), as a numeric vector.

See Also

Specification of the prior density evaluator: prior_spec

Other pomp workhorses: dmeasure(), dprocess(), flow(), partrans(), rinit(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

dprocess dprocess

Description

Evaluates the probability density of a sequence of consecutive state transitions.

Usage

S4 method for signature 'pomp'
dprocess(object, x, times, params, ..., log = FALSE)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

x an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

40 dprocess_spec

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

dprocess returns a matrix of dimensions nrep x ntimes-1. If d is the returned matrix, d[j,k] is
the likelihood (or the log likelihood if log=TRUE) of the transition from state x[,j,k-1] at time
times[k-1] to state x[,j,k] at time times[k].

See Also

Specification of the process-model density evaluator: dprocess_spec

Other pomp workhorses: dmeasure(), dprior(), flow(), partrans(), rinit(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

dprocess_spec The latent state process density

Description

Specification of dprocess.

Details

Suppose you have a procedure that allows you to compute the probability density of an arbitrary
transition from state x1 at time t1 to state x2 at time t2 > t1 under the assumption that the state
remains unchanged between t1 and t2. Then you can furnish

dprocess = f

to pomp, where f is a C snippet or R function that implements your procedure. Specifically, f should
compute the log probability density.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dprocess C snippet is to fill the variable loglik
with the log probability density. In the context of such a C snippet, the parameters, and covariates
will be defined, as will the times t_1 and t_2. The state variables at time t_1 will have their usual
name (see statenames) with a “_1” appended. Likewise, the state variables at time t_2 will have a
“_2” appended.

If f is given as an R function, it should take as arguments any or all of the state variables, param-
eter, covariates, and time. The state-variable and time arguments will have suffices “_1” and “_2”
appended. Thus for example, if var is a state variable, when f is called, var_1 will value of state
variable var at time t_1, var_2 will have the value of var at time t_2. f should return the log like-
lihood of a transition from x1 at time t1 to x2 at time t2, assuming that no intervening transitions
have occurred.

To see examples, consult the demos and the tutorials on the package website.

https://kingaa.github.io/pomp/

ebola 41

Note

It is not typically necessary (or even feasible) to define dprocess. In fact, no current pomp in-
ference algorithm makes use of dprocess. This functionality is provided only to support future
algorithm development.

Default behavior

By default, dprocess returns missing values (NA).

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, parameter_trans(), pomp-package, prior_spec, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

ebola Ebola outbreak, West Africa, 2014-2016

Description

Data and models for the 2014–2016 outbreak of Ebola virus disease in West Africa.

Usage

ebolaModel(
country = c("GIN", "LBR", "SLE"),
data = NULL,
timestep = 1/8,
nstageE = 3L,
R0 = 1.4,
rho = 0.2,
cfr = 0.7,
k = 0,
index_case = 10,
incubation_period = 11.4,
infectious_period = 7

)

Arguments

country ISO symbol for the country (GIN=Guinea, LBR=Liberia, SLE=Sierra Leone).

data if NULL, the situation report data (see ebolaWHO) for the appropriate country or
region will be used. Providing a dataset here will override this behavior.

timestep duration (in days) of Euler time-step for the simulations.

nstageE integer; number of incubation stages.

R0 basic reproduction ratio

42 ebola

rho case reporting efficiency

cfr case fatality rate

k dispersion parameter (negative binomial size parameter)

index_case number of cases on day 0 (2014-04-01)

incubation_period, infectious_period

mean duration (in days) of the incubation and infectious periods.

Details

The data include monthly case counts and death reports derived from WHO situation reports, as
reported by the U.S. CDC. The models are described in King et al. (2015).

The data-cleaning script is included in the R source code file ‘ebola.R’.

Model structure

The default incubation period is supposed to be Gamma distributed with shape parameter nstageE
and mean 11.4 days and the case-fatality ratio (‘cfr‘) is taken to be 0.7 (cf. WHO Ebola Response
Team 2014). The discrete-time formula is used to calculate the corresponding alpha (cf. He et al.
2010).

The observation model is a hierarchical model for cases and deaths:

p(Rt, Dt|Ct) = p(Rt|Ct)p(Dt|Ct, Rt).

Here, p(Rt|Ct) is negative binomial with mean ρCt and dispersion parameter 1/k; p(Dt|Ct, Rt) is
binomial with size Rt and probability equal to the case fatality rate cfr.

References

A.A. King, M. Domenech de Cellès, F.M.G. Magpantay, and P. Rohani. Avoidable errors in the
modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the
Royal Society of London, Series B 282, 20150347, 2015.

WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic
and forward projections. New England Journal of Medicine 371, 1481–1495, 2014.

D. He, E.L. Ionides, & A.A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7, 271–283, 2010.

See Also

Other datasets: blowflies, bsflu, dacca(), measles, parus

Other pomp examples: blowflies, bsflu, dacca(), gompertz(), measles, ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

eff.sample.size 43

Examples

data(ebolaWA2014)

library(ggplot2)
library(tidyr)

ebolaWA2014 %>%
gather(variable,count,cases,deaths) %>%
ggplot(aes(x=date,y=count,group=country,color=country))+
geom_line()+
facet_grid(variable~.,scales="free_y")+
theme_bw()+
theme(axis.text=element_text(angle=-90))

ebolaWA2014 %>%
gather(variable,count,cases,deaths) %>%
ggplot(aes(x=date,y=count,group=variable,color=variable))+
geom_line()+
facet_grid(country~.,scales="free_y")+
theme_bw()+
theme(axis.text=element_text(angle=-90))

plot(ebolaModel(country="SLE"))
plot(ebolaModel(country="LBR"))
plot(ebolaModel(country="GIN"))

eff.sample.size Effective sample size

Description

Estimate the effective sample size of a Monte Carlo computation.

Usage

S4 method for signature 'bsmcd_pomp'
eff.sample.size(object, ...)

S4 method for signature 'pfilterd_pomp'
eff.sample.size(object, ...)

S4 method for signature 'wpfilterd_pomp'
eff.sample.size(object, ...)

Arguments

object result of a filtering computation

... ignored

44 filter.mean

Details

Effective sample size is computed as (∑
i

w2
it

)−1

,

where wit is the normalized weight of particle i at time t.

See Also

Other particle filter methods: bsmc2(), cond.logLik(), filter.mean(), filter.traj(), mif2(),
pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

filter.mean Filtering mean

Description

The mean of the filtering distribution

Usage

S4 method for signature 'kalmand_pomp'
filter.mean(object, vars, ...)

S4 method for signature 'pfilterd_pomp'
filter.mean(object, vars, ...)

Arguments

object result of a filtering computation
vars optional character; names of variables
... ignored

Details

The filtering distribution is that of

X(tk)|Y (t1) = y∗1 , . . . , Y (tk) = y∗k,

where X(tk), Y (tk) are the latent state and observable processes, respectively, and y∗t is the data,
at time tk.

The filtering mean is therefore the expectation of this distribution

E[X(tk)|Y (t1) = y∗1 , . . . , Y (tk) = y∗k].

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.traj(),
mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

filter.traj 45

filter.traj Filtering trajectories

Description

Drawing from the smoothing distribution

Usage

S4 method for signature 'pfilterd_pomp'
filter.traj(object, vars, ...)

S4 method for signature 'pfilterList'
filter.traj(object, vars, ...)

S4 method for signature 'pmcmcd_pomp'
filter.traj(object, vars, ...)

S4 method for signature 'pmcmcList'
filter.traj(object, vars, ...)

Arguments

object result of a filtering computation
vars optional character; names of variables
... ignored

Details

The smoothing distribution is the distribution of

X(tk)|Y (t1) = y∗1 , . . . , Y (tn) = y∗n,

where X(tk) is the latent state process and Y (tk) is the observable process at time tk, and n is the
number of observations.

To draw samples from this distribution, one can run a number of independent particle filter (pfilter)
operations, sampling the full trajectory of one randomly-drawn particle from each one. One should
view these as weighted samples from the smoothing distribution, where the weights are the likeli-
hoods returned by each of the pfilter computations.

One accomplishes this by setting filter.traj = TRUE in each pfilter computation and extracting
the trajectory using the filter.traj command.

In particle MCMC (pmcmc), the tracking of an individual trajectory is performed automatically.

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

46 flow

flow Flow of a deterministic model

Description

Compute the flow induced by a deterministic vectorfield or map.

Usage

S4 method for signature 'pomp'
flow(object, x0, t0, times, params, ..., verbose = getOption("verbose", FALSE))

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

x0 an array with dimensions nvar x nrep giving the initial conditions of the trajec-
tories to be computed.

t0 the time at which the initial conditions are assumed to hold.

times a numeric vector (length ntimes) containing times at which the itineraries are
desired. These must be in non-decreasing order with times[1]>t0.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... Additional arguments are passed to the ODE integrator (if the skeleton is a vec-
torfield) and are ignored if it is a map. See ode for a description of the additional
arguments accepted by the ODE integrator.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In the case of a discrete-time system (map), flow iterates the map to yield trajectories of the system.
In the case of a continuous-time system (vectorfield), flow uses the numerical solvers in deSolve
to integrate the vectorfield starting from given initial conditions.

Value

flow returns an array of dimensions nvar x nrep x ntimes. If x is the returned matrix, x[i,j,k]
is the i-th component of the state vector at time times[k] given parameters params[,j].

See Also

skeleton, trajectory, rprocess

Other pomp workhorses: dmeasure(), dprior(), dprocess(), partrans(), rinit(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

forecast 47

forecast Forecast mean

Description

Mean of the one-step-ahead forecasting distribution.

Usage

forecast(object, ...)

S4 method for signature 'kalmand_pomp'
forecast(object, vars, ...)

Arguments

object result of a filtering computation

... ignored

vars optional character; names of variables

gompertz Gompertz model with log-normal observations.

Description

gompertz() constructs a ‘pomp’ object encoding a stochastic Gompertz population model with
log-normal measurement error.

Usage

gompertz(
K = 1,
r = 0.1,
sigma = 0.1,
tau = 0.1,
X_0 = 1,
times = 1:100,
t0 = 0

)

48 hitch

Arguments

K carrying capacity

r growth rate

sigma process noise intensity

tau measurement error s.d.

X_0 value of the latent state variable X at the zero time

times observation times

t0 zero time

Details

The state process is Xt+1 = K1−SXS
t εt, where S = e−r and the εt are i.i.d. lognormal random

deviates with variance σ2. The observed variables Yt are distributed as lognormal(logXt, τ). Pa-
rameters include the per-capita growth rate r, the carrying capacity K, the process noise s.d. σ,
the measurement error s.d. τ , and the initial condition X0. The ‘pomp’ object includes parameter
transformations that log-transform the parameters for estimation purposes.

Value

A ‘pomp’ object with simulated data.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, measles, ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Examples

plot(gompertz())
plot(gompertz(K=2,r=0.01))

hitch Hitching C snippets and R functions to pomp_fun objects

Description

The algorithms in pomp are formulated in terms of elementary functions that access the basic model
components (rprocess, dprocess, rmeasure, dmeasure, etc.). For short, we refer to these elemen-
tary functions as “workhorses”. In implementing a model, the user specifies basic model compo-
nents using functions, procedures in dynamically-linked libraries, or C snippets. Each component
is then packaged into a ‘pomp_fun’ objects, which gives a uniform interface. The construction of
‘pomp_fun’ objects is handled by the hitch function, which conceptually “hitches” the workhorses
to the user-defined procedures.

hitch 49

Usage

hitch(
...,
templates,
obsnames,
statenames,
paramnames,
covarnames,
PACKAGE,
globals,
cfile,
cdir = getOption("pomp_cdir", NULL),
shlib.args,
compile = TRUE,
verbose = getOption("verbose", FALSE)

)

Arguments

... named arguments representing the user procedures to be hitched. These can be
functions, character strings naming routines in external, dynamically-linked li-
braries, C snippets, or NULL. The first three are converted by hitch to ‘pomp_fun’
objects which perform the indicated computations. NULL arguments are trans-
lated to default ‘pomp_fun’ objects. If any of these procedures are already
‘pomp_fun’ objects, they are returned unchanged.

templates named list of templates. Each workhorse must have a corresponding template.
See pomp:::workhorse_templates for a list.

obsnames, statenames, paramnames, covarnames

character vectors specifying the names of observable variables, latent state vari-
ables, parameters, and covariates, respectively. These are only needed if one or
more of the horses are furnished as C snippets.

PACKAGE optional character; the name (without extension) of the external, dynamically
loaded library in which any native routines are to be found. This is only useful
if one or more of the model components has been specified using a precompiled
dynamically loaded library; it is not used for any component specified using C
snippets. PACKAGE can name at most one library.

globals optional character; arbitrary C code that will be hard-coded into the shared-
object library created when C snippets are provided. If no C snippets are used,
globals has no effect.

cfile optional character variable. cfile gives the name of the file (in directory cdir)
into which C snippet codes will be written. By default, a random filename is
used. If the chosen filename would result in over-writing an existing file, an
error is generated.

cdir optional character variable. cdir specifies the name of the directory within
which C snippet code will be compiled. By default, this is in a temporary
directory specific to the R session. One can also set this directory using the
pomp_cdir option.

50 kalman

shlib.args optional character variables. Command-line arguments to the R CMD SHLIB call
that compiles the C snippets.

compile logical; if FALSE, compilation of the C snippets will be postponed until they are
needed.

verbose logical. Setting verbose=TRUE will cause additional information to be dis-
played.

Value

hitch returns a named list of length two. The element named “funs” is itself a named list of
‘pomp_fun’ objects, each of which corresponds to one of the horses passed in. The element named
“lib” contains information on the shared-object library created using the C snippets (if any were
passed to hitch). If no C snippets were passed to hitch, lib is NULL. Otherwise, it is a length-3
named list with the following elements:

name The name of the library created.

dir The directory in which the library was created. If this is NULL, the library was created in the
session’s temporary directory.

src A character string with the full contents of the C snippet file.

Author(s)

Aaron A. King

See Also

pomp, spy

kalman Ensemble Kalman filters

Description

The ensemble Kalman filter and ensemble adjustment Kalman filter.

Usage

S4 method for signature 'data.frame'
enkf(
data,
Np,
h,
R,
params,
rinit,
rprocess,
...,

kalman 51

verbose = getOption("verbose", FALSE)
)

S4 method for signature 'pomp'
enkf(data, Np, h, R, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'data.frame'
eakf(
data,
Np,
C,
R,
params,
rinit,
rprocess,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
eakf(data, Np, C, R, ..., verbose = getOption("verbose", FALSE))

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Np the number of particles to use.
h function returning the expected value of the observation given the state.
R matrix; variance of the measurement noise.
params optional; named numeric vector of parameters. This will be coerced internally

to storage mode double.
rinit simulator of the initial-state distribution. This can be furnished either as a C

snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.
C matrix converting state vector into expected value of the observation.

52 logLik

Value

An object of class ‘kalmand_pomp’.

Author(s)

Aaron A. King

References

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte
Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans 99, 10143–
10162, 1994.

J.L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation. Monthly Weather
Review 129, 2884–2903, 2001.

G. Evensen. Data assimilation: the ensemble Kalman filter. Springer-Verlag, 2009.

See Also

Other pomp parameter estimation methods: abc(), bsmc2(), mif2(), nlf, pmcmc(), pomp-package,
probe.match, spect.match

logLik Log likelihood

Description

Extract the estimated log likelihood (or related quantity) from a fitted model.

Usage

logLik(object, ...)

S4 method for signature 'listie'
logLik(object, ...)

S4 method for signature 'pfilterd_pomp'
logLik(object)

S4 method for signature 'wpfilterd_pomp'
logLik(object)

S4 method for signature 'probed_pomp'
logLik(object)

S4 method for signature 'kalmand_pomp'
logLik(object)

logmeanexp 53

S4 method for signature 'pmcmcd_pomp'
logLik(object)

S4 method for signature 'bsmcd_pomp'
logLik(object)

S4 method for signature 'objfun'
logLik(object)

S4 method for signature 'spect_match_objfun'
logLik(object)

S4 method for signature 'nlf_objfun'
logLik(object, ...)

Arguments

object fitted model object

... ignored

Value

numerical value of the log likelihood. Note that some methods compute not the log likelihood itself
but instead a related quantity. To keep the code simple, the logLik function is nevertheless used to
extract this quantity.

When object is of ‘probed_pomp’ class (i.e., the result of a probe computation), logLik retrieves
the “synthetic likelihood” (see probe).

When object is of ‘bsmcd_pomp’ class (i.e., the result of a bsmc2 computation), logLik retrieves
the “log evidence” (see bsmc2).

When object is an NLF objective function, i.e., the result of a call to nlf_objfun, logLik retrieves
the “quasi log likelihood” (see nlf).

logmeanexp The log-mean-exp trick

Description

logmeanexp computes

log
1

N

N∑
n=1

exi ,

avoiding over- and under-flow in doing so. It can optionally return an estimate of the standard error
in this quantity.

54 measles

Usage

logmeanexp(x, se = FALSE)

Arguments

x numeric

se logical; give approximate standard error?

Details

When se = TRUE, logmeanexp uses a jackknife estimate of the variance in log(x).

Value

log(mean(exp(x))) computed so as to avoid over- or underflow. If se = FALSE, the approximate
standard error is returned as well.

Author(s)

Aaron A. King

Examples

an estimate of the log likelihood:
po <- ricker()
ll <- replicate(n=5,logLik(pfilter(po,Np=1000)))
logmeanexp(ll)
with standard error:
logmeanexp(ll,se=TRUE)

measles Historical childhood disease incidence data

Description

LondonYorke is a data frame containing the monthly number of reported cases of chickenpox,
measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century
(1928–1972).

ewmeas and ewcitmeas are data frames containing weekly reported cases of measles in England and
Wales. ewmeas records the total measles reports for the whole country, 1948–1966. One question-
able data point has been replaced with an NA. ewcitmeas records the incidence in seven English
cities 1948–1987. These data were kindly provided by Ben Bolker, who writes: “Most of these data
have been manually entered from published records by various people, and are prone to errors at
several levels. All data are provided as is; use at your own risk.”

mif2 55

References

W. P. London and J. A. Yorke, Recurrent Outbreaks of Measles, Chickenpox and Mumps: I. Sea-
sonal Variation in Contact Rates, American Journal of Epidemiology 98, 453–468, 1973.

See Also

Other datasets: blowflies, bsflu, dacca(), ebola, parus

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), ou2(), parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Examples

plot(cases~time,data=LondonYorke,subset=disease=="measles",type='n',main="measles",bty='l')
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="Baltimore",col="red")
lines(cases~time,data=LondonYorke,subset=disease=="measles"&town=="New York",col="blue")
legend("topright",legend=c("Baltimore","New York"),lty=1,col=c("red","blue"),bty='n')

plot(
cases~time,
data=LondonYorke,
subset=disease=="chickenpox"&town=="New York",
type='l',col="blue",main="chickenpox, New York",
bty='l'
)

plot(
cases~time,
data=LondonYorke,
subset=disease=="mumps"&town=="New York",
type='l',col="blue",main="mumps, New York",
bty='l'
)

plot(reports~time,data=ewmeas,type='l')

plot(reports~date,data=ewcitmeas,subset=city=="Liverpool",type='l')

mif2 Iterated filtering: maximum likelihood by iterated, perturbed Bayes
maps

Description

An iterated filtering algorithm for estimating the parameters of a partially-observed Markov process.
Running mif2 causes the algorithm to perform a specified number of particle-filter iterations. At
each iteration, the particle filter is performed on a perturbed version of the model, in which the

56 mif2

parameters to be estimated are subjected to random perturbations at each observation. This extra
variability effectively smooths the likelihood surface and combats particle depletion by introducing
diversity into particle population. As the iterations progress, the magnitude of the perturbations is
diminished according to a user-specified cooling schedule. The algorithm is presented and justified
in Ionides et al. (2015).

Usage

S4 method for signature 'data.frame'
mif2(
data,
Nmif = 1,
rw.sd,
cooling.type = c("geometric", "hyperbolic"),
cooling.fraction.50,
Np,
params,
rinit,
rprocess,
dmeasure,
partrans,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
mif2(
data,
Nmif = 1,
rw.sd,
cooling.type = c("geometric", "hyperbolic"),
cooling.fraction.50,
Np,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pfilterd_pomp'
mif2(data, Nmif = 1, Np, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'mif2d_pomp'
mif2(
data,
Nmif,
rw.sd,
cooling.type,
cooling.fraction.50,
...,
verbose = getOption("verbose", FALSE)

mif2 57

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Nmif The number of filtering iterations to perform.
rw.sd specification of the magnitude of the random-walk perturbations that will be

applied to some or all model parameters. Parameters that are to be estimated
should have positive perturbations specified here. The specification is given
using the rw.sd function, which creates a list of unevaluated expressions. The
latter are evaluated in a context where the model time variable is defined (as
time). The expression ivp(s) can be used in this context as shorthand for

ifelse(time==time[1],s,0).

Likewise, ivp(s,lag) is equivalent to

ifelse(time==time[lag],s,0).

See below for some examples.
The perturbations that are applied are normally distributed with the specified
s.d. If parameter transformations have been supplied, then the perturbations are
applied on the transformed (estimation) scale.

cooling.type, cooling.fraction.50

specifications for the cooling schedule, i.e., the manner and rate with which the
intensity of the parameter perturbations is reduced with successive filtering iter-
ations. cooling.type specifies the nature of the cooling schedule. See below
(under “Specifying the perturbations”) for more detail.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

58 mif2

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

Upon successful completion, mif2 returns an object of class ‘mif2d_pomp’.

Number of particles

If Np is anything other than a constant, the user must take care that the number of particles re-
quested at the end of the time series matches that requested at the beginning. In particular, if
T=length(time(object)), then one should have Np[1]==Np[T+1] when Np is furnished as an
integer vector and Np(0)==Np(T) when Np is furnished as a function.

Methods

The following methods are available for such an object:

continue picks up where mif2 leaves off and performs more filtering iterations.

logLik returns the so-called mif log likelihood which is the log likelihood of the perturbed model,
not of the focal model itself. To obtain the latter, it is advisable to run several pfilter opera-
tions on the result of a mif2 computatation.

coef extracts the point estimate

eff.sample.size extracts the effective sample size of the final filtering iteration

Various other methods can be applied, including all the methods applicable to a pfilterd_pomp
object and all other pomp estimation algorithms and diagnostic methods.

mif2 59

Specifying the perturbations

The rw.sd function simply returns a list containing its arguments as unevaluated expressions. These
are then evaluated in a context containing the model time variable. This allows for easy specifica-
tion of the structure of the perturbations that are to be applied. For example,

rw.sd(a=0.05, b=ifelse(0.2,time==time[1],0),
c=ivp(0.2), d=ifelse(time==time[13],0.2,0),
e=ivp(0.2,lag=13), f=ifelse(time<23,0.02,0))

results in perturbations of parameter a with s.d. 0.05 at every time step, while parameters b and c
both get perturbations of s.d. 0.2 only before the first observation. Parameters d and e, by contrast,
get perturbations of s.d. 0.2 only before the thirteenth observation. Finally, parameter f gets a
random perturbation of size 0.02 before every observation falling before t = 23.

On the m-th IF2 iteration, prior to time-point n, the d-th parameter is given a random increment
normally distributed with mean 0 and standard deviation cm,nσd,n, where c is the cooling schedule
and σ is specified using rw.sd, as described above. Let N be the length of the time series and
α =cooling.fraction.50. Then, when cooling.type="geometric", we have

cm,n = α
n−1+(m−1)N

50N .

When cooling.type="hyperbolic", we have

cm,n =
s+ 1

s+ n+ (m− 1)N
,

where s satisfies
s+ 1

s+ 50N
= α.

Thus, in either case, the perturbations at the end of 50 IF2 iterations are a fraction α smaller than
they are at first.

Re-running IF2 iterations

To re-run a sequence of IF2 iterations, one can use the mif2 method on a ‘mif2d_pomp’ object.
By default, the same parameters used for the original IF2 run are re-used (except for verbose, the
default of which is shown above). If one does specify additional arguments, these will override the
defaults.

Author(s)

Aaron A. King, Edward L. Ionides, Dao Nguyen

References

E.L. Ionides, D. Nguyen, Y. Atchadé, S. Stoev, and A.A. King. Inference for dynamic and la-
tent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of
Sciences 112, 719–724, 2015.

60 nlf

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, nlf, pmcmc(), pomp-package,
probe.match, spect.match

nlf Nonlinear forecasting

Description

Parameter estimation by maximum simulated quasi-likelihood.

Usage

S4 method for signature 'data.frame'
nlf_objfun(
data,
est = character(0),
lags,
nrbf = 4,
ti,
tf,
seed = NULL,
transform.data = identity,
period = NA,
tensor = TRUE,
fail.value = NA_real_,
params,
rinit,
rprocess,
rmeasure,
...,
verbose = getOption("verbose")

)

S4 method for signature 'pomp'
nlf_objfun(
data,
est = character(0),
lags,
nrbf = 4,
ti,
tf,
seed = NULL,
transform.data = identity,

nlf 61

period = NA,
tensor = TRUE,
fail.value = NA,
...,
verbose = getOption("verbose")

)

S4 method for signature 'nlf_objfun'
nlf_objfun(
data,
est,
lags,
nrbf,
ti,
tf,
seed = NULL,
period,
tensor,
transform.data,
fail.value,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

est character vector; the names of parameters to be estimated.

lags A vector specifying the lags to use when constructing the nonlinear autoregres-
sive prediction model. The first lag is the prediction interval.

nrbf integer scalar; the number of radial basis functions to be used at each lag.

ti, tf required numeric values. NLF works by generating simulating long time se-
ries from the model. The simulated time series will be from ti to tf, with the
same sampling frequency as the data. ti should be chosen large enough so that
transient dynamics have died away. tf should be chosen large enough so that
sufficiently many data points are available to estimate the nonlinear forecast-
ing model well. An error will be generated unless the data-to-parameter ratio
exceeds 10 and a warning will be given if the ratio is smaller than 30.

seed integer. When fitting, it is often best to fix the seed of the random-number
generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

transform.data optional function. If specified, forecasting is performed using data and model
simulations transformed by this function. By default, transform.data is the
identity function, i.e., no transformation is performed. The main purpose of
transform.data is to achieve approximately multivariate normal forecasting
errors. If the data are univariate, transform.data should take a scalar and

62 nlf

return a scalar. If the data are multivariate, transform.data should assume a
vector input and return a vector of the same length.

period numeric; period=NA means the model is nonseasonal. period > 0 is the period
of seasonal forcing. period <= 0 is equivalent to period = NA.

tensor logical; if FALSE, the fitted model is a generalized additive model with time
mod period as one of the predictors, i.e., a gam with time-varying intercept. If
TRUE, the fitted model is a gam with lagged state variables as predictors and
time-periodic coefficients, constructed using tensor products of basis functions
of state variables with basis functions of time.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

Nonlinear forecasting (NLF) is an ‘indirect inference’ method. The NLF approximation to the
log likelihood of the data series is computed by simulating data from a model, fitting a nonlinear
autoregressive model to the simulated time series, and quantifying the ability of the resulting fitted
model to predict the data time series. The nonlinear autoregressive model is implemented as a
generalized additive model (GAM), conditional on lagged values, for each observation variable.
The errors are assumed multivariate normal.

The NLF objective function constructed by nlf_objfun simulates long time series (nasymp is the
number of observations in the simulated times series), perhaps after allowing for a transient period
(ntransient steps). It then fits the GAM for the chosen lags to the simulated time series. Finally,
it computes the quasi-likelihood of the data under the fitted GAM.

nlf 63

NLF assumes that the observation frequency (equivalently the time between successive observa-
tions) is uniform.

Value

nlf_objfun constructs a stateful objective function for NLF estimation. Specfically, nlf_objfun
returns an object of class ‘nlf_objfun’, which is a function suitable for use in an optim-like opti-
mizer. In particular, this function takes a single numeric-vector argument that is assumed to contain
the parameters named in est, in that order. When called, it will return the negative log quasilikeli-
hood. It is a stateful function: Each time it is called, it will remember the values of the parameters
and its estimate of the log quasilikelihood.

Periodically-forced systems (seasonality)

Unlike other pomp estimation methods, NLF cannot accommodate general time-dependence in
the model via explicit time-dependence or dependence on time-varying covariates. However, NLF
can accommodate periodic forcing. It does this by including forcing phase as a predictor in the
nonlinear autoregressive model. To accomplish this, one sets period to the period of the forcing (a
positive numerical value). In this case, if tensor = FALSE, the effect is to add a periodic intercept
in the autoregressive model. If tensor = TRUE, by contrast, the fitted model includes time-periodic
coefficients, constructed using tensor products of basis functions of observables with basis functions
of time.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

Author(s)

Stephen P. Ellner, Bruce E. Kendall, Aaron A. King

References

S.P. Ellner, B.A. Bailey, G.V. Bobashev, A.R. Gallant, B.T. Grenfell, and D.W. Nychka. Noise and
nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population
modeling. American Naturalist 151, 425–440, 1998.

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789–1805, 1999.

B.E. Kendall, S.P. Ellner, E. McCauley, S.N. Wood, C.J. Briggs, W.W. Murdoch, and P. Turchin.
Population cycles in the pine looper moth (Bupalus piniarius): dynamical tests of mechanistic
hypotheses. Ecological Monographs 75 259–276, 2005.

See Also

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, mif2(), pmcmc(), pomp-package,
probe.match, spect.match

64 obs

Examples

library(magrittr)

ricker() %>%
nlf_objfun(est=c("r","sigma","N_0"),lags=c(4,6),

partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","N_0"),
ti=100,tf=2000,seed=426094906L) -> m1

library(subplex)
subplex(par=log(c(20,0.5,5)),fn=m1,control=list(reltol=1e-4)) -> out

m1(out$par)
coef(m1)
plot(simulate(m1))

obs obs

Description

Extract the data array from a ‘pomp’ object.

Usage

S4 method for signature 'pomp'
obs(object, vars, ...)

Arguments

object an object of class ‘pomp’, or of a class extending ‘pomp’

vars names of variables to retrieve

... ignored

ou2 65

ou2 Two-dimensional discrete-time Ornstein-Uhlenbeck process

Description

ou2() constructs a ‘pomp’ object encoding a bivariate discrete-time Ornstein-Uhlenbeck process
with noisy observations.

Usage

ou2(
alpha_1 = 0.8,
alpha_2 = -0.5,
alpha_3 = 0.3,
alpha_4 = 0.9,
sigma_1 = 3,
sigma_2 = -0.5,
sigma_3 = 2,
tau = 1,
x1_0 = -3,
x2_0 = 4,
times = 1:100,
t0 = 0

)

Arguments

alpha_1, alpha_2, alpha_3, alpha_4

entries of the alpha matrix, in column-major order. That is, alpha_2 is in the
lower-left position.

sigma_1, sigma_2, sigma_3

entries of the lower-triangular sigma matrix. sigma_2 is the entry in the lower-
left position.

tau measurement error s.d.

x1_0, x2_0 latent variable values at time t0

times vector of observation times

t0 the zero time

Details

If the state process is X(t) = (x1(t), x2(t)), then

X(t+ 1) = αX(t) + σε(t),

where α and σ are 2x2 matrices, σ is lower-triangular, and ε(t) is standard bivariate normal. The
observation process is Y (t) = (y1(t), y2(t)), where yi(t) ∼ normal(xi(t), τ).

66 parameter_trans

Value

A ‘pomp’ object with simulated data.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, parus, pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Examples

po <- ou2()
plot(po)
coef(po)
x <- simulate(po)
plot(x)
pf <- pfilter(po,Np=1000)
logLik(pf)

parameter_trans Parameter transformations

Description

Equipping models with parameter transformations.

Usage

S4 method for signature 'Csnippet,Csnippet'
parameter_trans(toEst, fromEst, ..., log, logit, barycentric)

S4 method for signature 'missing,missing'
parameter_trans(..., log, logit, barycentric)

S4 method for signature 'character,character'
parameter_trans(toEst, fromEst, ...)

S4 method for signature 'function,function'
parameter_trans(toEst, fromEst, ...)

Arguments

toEst, fromEst procedures that perform transformation of model parameters to and from the
estimation scale, respectively. These can be furnished using C snippets, R func-
tions, or via procedures in an external, dynamically loaded library.

... ignored.

log names of parameters to be log transformed.

logit names of parameters to be logit transformed.

parameter_trans 67

barycentric names of parameters to be collectively transformed according to the log barycen-
tric transformation. Important note: variables to be log-barycentrically trans-
formed must be adjacent in the parameter vector.

Details

When parameter transformations are desired, they can be integrated into the ‘pomp’ object via the
partrans arguments using the parameter_trans function. As with the basic model components,
these should ordinarily be specified using C snippets. When doing so, note that:

1. The parameter transformation mapping a parameter vector from the scale used by the model
codes to another scale, and the inverse transformation, are specified via a call to

parameter_trans(toEst,fromEst)

.
2. The goal of these snippets is the transformation of the parameters from the natural scale to the

estimation scale, and vice-versa. If p is the name of a variable on the natural scale, its value on
the estimation scale is T_p. Thus the toEst snippet computes T_p given p whilst the fromEst
snippet computes p given T_p.

3. Time-, state-, and covariate-dependent transformations are not allowed. Therefore, neither the
time, nor any state variables, nor any of the covariates will be available in the context within
which a parameter transformation snippet is executed.

These transformations can also be specified using R functions with arguments chosen from among
the parameters. Such an R function must also have the argument ‘...’. In this case, toEst should
transform parameters from the scale that the basic components use internally to the scale used in
estimation. fromEst should be the inverse of toEst.

Note that it is the user’s responsibility to make sure that the transformations are mutually inverse. If
obj is the constructed ‘pomp’ object, and coef(obj) is non-empty, a simple check of this property
is

x <- coef(obj, transform = TRUE)
obj1 <- obj
coef(obj1, transform = TRUE) <- x
identical(coef(obj), coef(obj1))
identical(coef(obj1, transform=TRUE), x)

One can use the log and logit arguments of parameter_trans to name variables that should be
log-transformed or logit-transformed, respectively. The barycentric argument can name sets of
parameters that should be log-barycentric transformed.

Note that using the log, logit, or barycentric arguments causes C snippets to be generated.
Therefore, you must make sure that variables named in any of these arguments are also mentioned
in paramnames at the same time.

The logit transform is defined by

logit(θ) = log
θ

1− θ
.

The log barycentric transformation of variables θ1, . . . , θn is given by

logbarycentric(θ1, . . . , θn) =

(
log

θ1∑
i θi

, . . . , log
θn∑
i θi

)
.

68 parmat

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, pomp-package, prior_spec, rinit_spec, rmeasure_spec,
rprocess_spec, skeleton_spec, transformations, userdata

parmat Create a matrix of parameters

Description

parmat is a utility that makes a vector of parameters suitable for use in pomp functions.

Usage

parmat(params, nrep = 1)

Arguments

params named numeric vector or matrix of parameters.

nrep number of replicates (columns) desired.

Value

parmat returns a matrix consisting of nrep copies of params.

Author(s)

Aaron A. King

Examples

generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
x <- trajectory(ricker(),times=seq(from=1000,to=2000,by=1),params=p)
matplot(p["r",],x["N",,],pch='.',col='black',xlab="log(r)",ylab="N",log='x')

partrans 69

partrans partrans

Description

Performs parameter transformations.

Usage

S4 method for signature 'pomp'
partrans(object, params, dir = c("fromEst", "toEst"), ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

dir the direction of the transformation to perform.

... additional arguments are ignored.

Value

If dir=fromEst, the parameters in params are assumed to be on the estimation scale and are trans-
formed onto the natural scale. If dir=toEst, they are transformed onto the estimation scale. In
both cases, the parameters are returned as a named numeric vector or an array with rownames, as
appropriate.

See Also

Specification of parameter transformations: parameter_trans

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), rinit(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

parus Parus major population dynamics

Description

Size of a population of great tits (Parus major) from Wytham Wood, near Oxford.

Details

Provenance: Global Population Dynamics Database dataset #10163. (NERC Centre for Population
Biology, Imperial College (2010) The Global Population Dynamics Database Version 2. https:
//www.imperial.ac.uk/cpb/gpdd2/). Original source: McCleer and Perrins (1991).

https://www.imperial.ac.uk/cpb/gpdd2/
https://www.imperial.ac.uk/cpb/gpdd2/

70 pfilter

References

R. McCleery and C. Perrins. Effects of predation on the numbers of Great Tits, Parus major. In:
C.M. Perrins, J.-D. Lebreton, and G.J.M. Hirons (eds.), Bird Population Studies, pp. 129–147,
Oxford. Univ. Press, 1991.

See Also

Other datasets: blowflies, bsflu, dacca(), ebola, measles

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), pomp_examples,
ricker(), rw2(), sir_models, verhulst()

Examples

parus %>%
pfilter(Np=1000,times="year",t0=1960,
params=c(K=190,r=2.7,sigma=0.2,theta=0.05,N.0=148),
rprocess=discrete_time(

function (r, K, sigma, N, ...) {
e <- rnorm(n=1,mean=0,sd=sigma)
c(N = exp(log(N)+r*(1-N/K)+e))

},
delta.t=1

),
rmeasure=function (N, theta, ...) {

c(pop=rnbinom(n=1,size=1/theta,mu=N+1e-10))
},
dmeasure=function (pop, N, theta, ..., log) {

dnbinom(x=pop,mu=N+1e-10,size=1/theta,log=log)
},
partrans=parameter_trans(log=c("sigma","theta","N_0","r","K")),
paramnames=c("sigma","theta","N_0","r","K")

) -> pf

pf %>% logLik()

pf %>% simulate() %>% plot()

pfilter Particle filter

Description

A plain vanilla sequential Monte Carlo (particle filter) algorithm. Resampling is performed at each
observation.

pfilter 71

Usage

S4 method for signature 'data.frame'
pfilter(
data,
Np,
params,
rinit,
rprocess,
dmeasure,
pred.mean = FALSE,
pred.var = FALSE,
filter.mean = FALSE,
filter.traj = FALSE,
save.states = FALSE,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
pfilter(
data,
Np,
pred.mean = FALSE,
pred.var = FALSE,
filter.mean = FALSE,
filter.traj = FALSE,
save.states = FALSE,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pfilterd_pomp'
pfilter(data, Np, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'objfun'
pfilter(data, ...)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)

72 pfilter

must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

pred.mean logical; if TRUE, the prediction means are calculated for the state variables and
parameters.

pred.var logical; if TRUE, the prediction variances are calculated for the state variables
and parameters.

filter.mean logical; if TRUE, the filtering means are calculated for the state variables and
parameters.

filter.traj logical; if TRUE, a filtered trajectory is returned for the state variables and pa-
rameters. See filter.traj for more information.

save.states logical. If save.states=TRUE, the state-vector for each particle at each time is
saved.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class ‘pfilterd_pomp’, which extends class ‘pomp’. Information can be extracted from
this object using the methods documented below.

Methods

logLik the estimated log likelihood

pfilter 73

cond.logLik the estimated conditional log likelihood

eff.sample.size the (time-dependent) estimated effective sample size

pred.mean, pred.var the mean and variance of the approximate prediction distribution

filter.mean the mean of the filtering distribution

filter.traj retrieve one particle trajectory. Useful for building up the smoothing distribution.

saved.states retrieve list of saved states.

as.data.frame coerce to a data frame

plot diagnostic plots

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A Tutorial on Particle Filters for Online
Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–
188, 2002.

See Also

Other elementary POMP methods: pomp-package, probe(), simulate(), spect(), wpfilter()

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()

Examples

pf <- pfilter(gompertz(),Np=1000) ## use 1000 particles

plot(pf)
logLik(pf)
cond.logLik(pf) ## conditional log-likelihoods
eff.sample.size(pf) ## effective sample size
logLik(pfilter(pf)) ## run it again with 1000 particles

run it again with 2000 particles
pf <- pfilter(pf,Np=2000,filter.mean=TRUE,filter.traj=TRUE,save.states=TRUE)
fm <- filter.mean(pf) ## extract the filtering means
ft <- filter.traj(pf) ## one draw from the smoothing distribution
ss <- saved.states(pf) ## the latent-state portion of each particle

74 plot

plot Plotting

Description

Diagnostic plots.

Usage

S4 method for signature 'pomp_plottable'
plot(
x,
variables,
panel = lines,
nc = NULL,
yax.flip = FALSE,
mar = c(0, 5.1, 0, if (yax.flip) 5.1 else 2.1),
oma = c(6, 0, 5, 0),
axes = TRUE,
...

)

S4 method for signature 'Pmcmc'
plot(x, ..., pars)

S4 method for signature 'Abc'
plot(x, ..., pars, scatter = FALSE)

S4 method for signature 'Mif2'
plot(x, y, ...)

S4 method for signature 'probed_pomp'
plot(x, y, ...)

S4 method for signature 'spectd_pomp'
plot(
x,
...,
max.plots.per.page = 4,
plot.data = TRUE,
quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),
quantile.styles = list(lwd = 1, lty = 1, col = "gray70"),
data.styles = list(lwd = 2, lty = 2, col = "black")

)

S4 method for signature 'bsmcd_pomp'
plot(x, pars, thin, ...)

pmcmc 75

S4 method for signature 'probe_match_objfun'
plot(x, y, ...)

S4 method for signature 'spect_match_objfun'
plot(x, y, ...)

Arguments

x the object to plot

variables optional character; names of variables to be displayed

panel function of prototype panel(x,col,bg,pch,type,...) which gives the action
to be carried out in each panel of the display.

nc the number of columns to use. Defaults to 1 for up to 4 series, otherwise to 2.

yax.flip logical; if TRUE, the y-axis (ticks and numbering) should flip from side 2 (left)
to 4 (right) from series to series.

mar, oma the par mar and oma settings. Modify with care!

axes logical; indicates if x- and y- axes should be drawn

... ignored or passed to low-level plotting functions

pars names of parameters.

scatter logical; if FALSE, traces of the parameters named in pars will be plotted against
ABC iteration number. If TRUE, the traces will be displayed or as a scatterplot.

y ignored
max.plots.per.page

positive integer; maximum number of plots on a page

plot.data logical; should the data spectrum be included?

quantiles numeric; quantiles to display
quantile.styles

list; plot styles to use for quantiles

data.styles list; plot styles to use for data

thin integer; when the number of samples is very large, it can be helpful to plot a
random subsample: thin specifies the size of this subsample.

pmcmc The particle Markov chain Metropolis-Hastings algorithm

Description

The Particle MCMC algorithm for estimating the parameters of a partially-observed Markov pro-
cess. Running pmcmc causes a particle random-walk Metropolis-Hastings Markov chain algorithm
to run for the specified number of proposals.

76 pmcmc

Usage

S4 method for signature 'data.frame'
pmcmc(
data,
Nmcmc = 1,
proposal,
Np,
params,
rinit,
rprocess,
dmeasure,
dprior,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
pmcmc(
data,
Nmcmc = 1,
proposal,
Np,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pfilterd_pomp'
pmcmc(
data,
Nmcmc = 1,
proposal,
Np,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pmcmcd_pomp'
pmcmc(data, Nmcmc, proposal, ..., verbose = getOption("verbose", FALSE))

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

Nmcmc The number of PMCMC iterations to perform.

proposal optional function that draws from the proposal distribution. Currently, the pro-
posal distribution must be symmetric for proper inference: it is the user’s respon-
sibility to ensure that it is. Several functions that construct appropriate proposal
function are provided: see MCMC proposals for more information.

pmcmc 77

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

dprior optional; prior distribution density evaluator, specified either as a C snippet, an R
function, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see ?prior_spec. Setting dprior=NULL
resets the prior distribution to its default, which is a flat improper prior.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Value

An object of class ‘pmcmcd_pomp’.

Re-running PMCMC Iterations

To re-run a sequence of PMCMC iterations, one can use the pmcmc method on a ‘pmcmc’ object.
By default, the same parameters used for the original PMCMC run are re-used (except for verbose,
the default of which is shown above). If one does specify additional arguments, these will override
the defaults.

78 pomp

Author(s)

Edward L. Ionides, Aaron A. King, Sebastian Funk

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal
of the Royal Statistical Society, Series B 72, 269–342, 2010.

See Also

MCMC proposals

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pfilter(), pred.mean(), pred.var(), saved.states(), wpfilter()

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, mif2(), nlf, pomp-package,
probe.match, spect.match

pomp Constructor of the basic pomp object

Description

This function constructs a ‘pomp’ object, encoding a partially-observed Markov process (POMP)
model together with a uni- or multi-variate time series. As such, it is central to all the package’s
functionality. One implements the POMP model by specifying some or all of its basic components.
These comprise:

rinit, which samples from the distribution of the state process at the zero-time;

rprocess, the simulator of the unobserved Markov state process;

dprocess, the evaluator of the probability density function for transitions of the unobserved Markov
state process;

rmeasure, the simulator of the observed process, conditional on the unobserved state;

dmeasure, the evaluator of the measurement model probability density function;

rprior, which samples from a prior probability distribution on the parameters;

dprior, which evaluates the prior probability density function;

skeleton, which computes the deterministic skeleton of the unobserved state process;

partrans, which performs parameter transformations.

The basic structure and its rationale are described in the Journal of Statistical Software paper, an
updated version of which is to be found on the package website.

https://kingaa.github.io/pomp/

pomp 79

Usage

pomp(
data,
times,
t0,
...,
rinit,
rprocess,
dprocess,
rmeasure,
dmeasure,
skeleton,
rprior,
dprior,
partrans,
covar,
params,
accumvars,
obsnames,
statenames,
paramnames,
covarnames,
PACKAGE,
globals,
cdir = getOption("pomp_cdir", NULL),
cfile,
shlib.args,
compile = TRUE,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

times the times at which observations are made. times must indicate the column of
observation times by name or index. The time vector must be numeric and non-
decreasing. Internally, data will be internally coerced to an array with storage-
mode double.

t0 The zero-time, i.e., the time of the initial state. This must be no later than the
time of the first observation, i.e., t0 <= times[1].

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual

80 pomp

routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

dprocess optional; specification of the probability density evaluation function of the un-
observed state process. Setting dprocess=NULL removes the latent-state density
evaluator. For more information, see ?dprocess_spec.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

skeleton optional; the deterministic skeleton of the unobserved state process. Depending
on whether the model operates in continuous or discrete time, this is either a vec-
torfield or a map. Accordingly, this is supplied using either the vectorfield or
map fnctions. For more information, see ?skeleton_spec. Setting skeleton=NULL
removes the deterministic skeleton.

rprior optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see ?prior_spec. Setting rprior=NULL
removes the prior distribution sampler.

dprior optional; prior distribution density evaluator, specified either as a C snippet, an R
function, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see ?prior_spec. Setting dprior=NULL
resets the prior distribution to its default, which is a flat improper prior.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

covar optional covariate table, constructed using covariate_table.
If a covariate table is supplied, then the value of each of the covariates is inter-
polated as needed. The resulting interpolated values are made available to the
appropriate basic components. See the documentation for covariate_table
for details.

pomp 81

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

accumvars optional character vector; contains the names of accumulator variables. See
?accumulators for a definition and discussion of accumulator variables.

obsnames optional character vector; names of the observables. It is not usually necessary
to specify obsnames since, by default, these are read from the names of the data
variables.

statenames optional character vector; names of the latent state variables. It is typically only
necessary to supply statenames when C snippets are in use.

paramnames optional character vector; names of model parameters. It is typically only nec-
essary to supply paramnames when C snippets are in use.

covarnames optional character vector; names of the covariates. It is not usually necessary
to specify covarnames since, by default, these are read from the names of the
covariates.

PACKAGE optional character; the name (without extension) of the external, dynamically
loaded library in which any native routines are to be found. This is only useful
if one or more of the model components has been specified using a precompiled
dynamically loaded library; it is not used for any component specified using C
snippets. PACKAGE can name at most one library.

globals optional character; arbitrary C code that will be hard-coded into the shared-
object library created when C snippets are provided. If no C snippets are used,
globals has no effect.

cdir optional character variable. cdir specifies the name of the directory within
which C snippet code will be compiled. By default, this is in a temporary
directory specific to the R session. One can also set this directory using the
pomp_cdir option.

cfile optional character variable. cfile gives the name of the file (in directory cdir)
into which C snippet codes will be written. By default, a random filename is
used. If the chosen filename would result in over-writing an existing file, an
error is generated.

shlib.args optional character variables. Command-line arguments to the R CMD SHLIB call
that compiles the C snippets.

compile logical; if FALSE, compilation of the C snippets will be postponed until they are
needed.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

Each basic component is supplied via an argument of the same name. These can be given in the call
to pomp, or to many of the package’s other functions. In any case, the effect is the same: to add,
remove, or modify the basic component.

Each basic component can be furnished using C snippets, R functions, or pre-compiled native rou-
tine available in user-provided dynamically loaded libraries.

82 pomp_examples

Value

The pomp constructor function returns an object, call it P, of class ‘pomp’. P contains, in addition to
the data, any elements of the model that have been specified as arguments to the pomp constructor
function. One can add or modify elements of P by means of further calls to pomp, using P as the
first argument in such calls. One can pass P to most of the pomp package methods via their data
argument.

Note

It is not typically necessary (or indeed often feasible) to define all of the basic components for
any given purpose. Each pomp algorithm makes use of only a subset of these components.
Any algorithm requiring a component that is not present will generate an error letting you
know that you have not provided a needed component. FIXME

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical Inference for Partially Observed Markov
Processes via the Package pomp. Journal of Statistical Software 69(12), 1–43, 2016. An updated
version of this paper is available on the package website.

pomp_examples pomp examples

Description

Pre-built POMP examples

Details

pomp includes a number of pre-built examples of pomp objects and data that can be analyzed using
pomp methods. These include:

blowflies Data from Nicholson’s experiments with sheep blowfly populations

blowflies1() A pomp object with some of the blowfly data together with a discrete delay equation
model.

blowflies2() A variant of blowflies1.

bsflu Data from an outbreak of influenza in a boarding school.

dacca() Fifty years of census and cholera mortality data, together with a stochastic differential
equation transmission model (King et al. 2008).

ebolaModel() Data from the 2014 West Africa outbreak of Ebola virus disease, together with
simple transmission models (King et al. 2015).

gompertz() The Gompertz population dynamics model, with simulated data.

https://kingaa.github.io/pomp/docs.html

pred.mean 83

LondonYorke Data on incidence of several childhood diseases (London and Yorke 1973)

ewmeas Measles incidence data from England and Wales

ewcitmeas Measles incidence data from 7 English cities

ou2() A 2-D Ornstein-Uhlenbeck process with simulated data

parus Population censuses of a Parus major population in Wytham Wood, England.

ricker The Ricker population dynamics model, with simulated data

rw2 A 2-D Brownian motion model, with simulated data.

sir() A simple continuous-time Markov chain SIR model, coded using Euler-multinomial steps,
with simulated data.

sir2() A simple continuous-time Markov chain SIR model, coded using Gillespie’s algorithm,
with simulated data.

verhulst() The Verhulst-Pearl (logistic) model, a continuous-time model of population dynamics,
with simulated data

See also the tutorials on the package website for more examples.

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics.
Nature 454, 877-880, 2008

A.A. King, M. Domenech de Cellès, F.M.G. Magpantay, and P. Rohani. Avoidable errors in the
modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the
Royal Society of London, Series B 282, 20150347, 2015.

W. P. London and J. A. Yorke, Recurrent Outbreaks of Measles, Chickenpox and Mumps: I. Sea-
sonal Variation in Contact Rates, American Journal of Epidemiology 98, 453–468, 1973.

A.J. Nicholson. The self-adjustment of populations to change. Cold Spring Harbor Symposia on
Quantitative Biology 22, 153–173, 1957.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus,
ricker(), rw2(), sir_models, verhulst()

pred.mean Prediction mean

Description

The mean of the prediction distribution

https://kingaa.github.io/pomp/

84 pred.var

Usage

S4 method for signature 'kalmand_pomp'
pred.mean(object, vars, ...)

S4 method for signature 'pfilterd_pomp'
pred.mean(object, vars, ...)

Arguments

object result of a filtering computation

vars optional character; names of variables

... ignored

Details

The prediction distribution is that of

X(tk)|Y (t1) = y∗1 , . . . , Y (tk−1) = y∗k−1,

where X(tk), Y (tk) are the latent state and observable processes, respectively, and y∗k is the data,
at time tk.

The prediction mean is therefore the expectation of this distribution

E[X(tk)|Y (t1) = y∗1 , . . . , Y (tk−1) = y∗k−1].

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pfilter(), pmcmc(), pred.var(), saved.states(), wpfilter()

pred.var Prediction variance

Description

The variance of the prediction distribution

Usage

S4 method for signature 'pfilterd_pomp'
pred.var(object, vars, ...)

Arguments

object result of a filtering computation

vars optional character; names of variables

... ignored

print 85

Details

The prediction distribution is that of

X(tk)|Y (t1) = y∗1 , . . . , Y (tk−1) = y∗k−1,

where X(tk), Y (tk) are the latent state and observable processes, respectively, and y∗k is the data,
at time tk.

The prediction variance is therefore the variance of this distribution

Var[X(tk)|Y (t1) = y∗1 , . . . , Y (tk−1) = y∗k−1].

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pfilter(), pmcmc(), pred.mean(), saved.states(), wpfilter()

print Print methods

Description

These methods print their argument and return it *invisibly*.

prior_spec prior specification

Description

Specify the prior distribution

Details

A prior distribution on parameters is specified by means of the rprior and/or dprior arguments to
pomp. As with the other basic model components, it is preferable to specify these using C snippets.
In writing a C snippet for the prior sampler (rprior), keep in mind that:

1. Within the context in which the snippet will be evaluated, only the parameters will be defined.

2. The goal of such a snippet is the replacement of parameters with values drawn from the prior
distribution.

3. Hyperparameters can be included in the ordinary parameter list. Obviously, hyperparameters
should not be replaced with random draws.

In writing a C snippet for the prior density function (dprior), observe that:

1. Within the context in which the snippet will be evaluated, only the parameters and give_log
will be defined.

86 probe

2. The goal of such a snippet is computation of the prior probability density, or the log of same,
at a given point in parameter space. This scalar value should be returned in the variable lik.
When give_log == 1, lik should contain the log of the prior probability density.

3. Hyperparameters can be included in the ordinary parameter list.

General rules for writing C snippets can be found here.

Alternatively, one can furnish R functions for one or both of these arguments. In this case, rprior
must be a function of prototype

f(params, ...)

that makes a draw from the prior distribution given params and returns a named vector of the same
length and with the same set of names, as params. The dprior function must be of prototype

f(params, log = FALSE, ...).

Its role is to evaluate the prior probability density (or log density if log == TRUE) and return that
single scalar value.

Default behavior

By default, the prior is assumed flat and improper. In particular, dprior returns 1 (0 if log = TRUE)
for every parameter set. Since it is impossible to simulate from a flat improper prior, rprocess
returns missing values (NAs).

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, rinit_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

probe Probes (AKA summary statistics)

Description

Probe a partially-observed Markov process by computing summary statistics and the synthetic like-
lihood.

Usage

S4 method for signature 'data.frame'
probe(
data,
probes,
nsim,
seed = NULL,

probe 87

params,
rinit,
rprocess,
rmeasure,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
probe(
data,
probes,
nsim,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'probed_pomp'
probe(
data,
probes,
nsim,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'probe_match_objfun'
probe(data, seed, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'objfun'
probe(data, seed = NULL, ...)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

probes a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

nsim the number of model simulations to be computed.

seed optional integer; if non-NULL, the random number generator will be initialized
with this seed for simulations. See simulate.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

88 probe

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

probe applies one or more “probes” to time series data and model simulations and compares the
results. It can be used to diagnose goodness of fit and/or as the basis for “probe-matching”, a
generalized method-of-moments approach to parameter estimation.

A call to probe results in the evaluation of the probe(s) in probes on the data. Additionally, nsim
simulated data sets are generated (via a call to simulate) and the probe(s) are applied to each of
these. The results of the probe computations on real and simulated data are stored in an object of
class ‘probed_pomp’.

When probe operates on a probe-matching objective function (a ‘probe_match_objfun’ object), by
default, the random-number generator seed is fixed at the value given when the objective function
was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

probe returns an object of class ‘probed_pomp’, which contains the data and the model, together
with the results of the probe calculation.

Methods

The following methods are available.

plot displays diagnostic plots.

summary displays summary information. The summary includes quantiles (fractions of simula-
tions with probe values less than those realized on the data) and the corresponding two-sided
p-values. In addition, the “synthetic likelihood” (Wood 2010) is computed, under the assump-
tion that the probe values are multivariate-normally distributed.

probe.match 89

logLik returns the synthetic likelihood for the probes. NB: in general, this is not the same as the
likelihood.

as.data.frame coerces a ‘probed_pomp’ to a ‘data.frame’. The latter contains the realized values
of the probes on the data and on the simulations. The variable .id indicates whether the
probes are from the data or simulations.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789–1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102–1104, 2010.

See Also

Other elementary POMP methods: pfilter(), pomp-package, simulate(), spect(), wpfilter()

Other summary statistics methods: abc(), basic_probes, probe.match, spect()

probe.match Probe matching

Description

Estimation of parameters by maximum synthetic likelihood

Usage

S4 method for signature 'data.frame'
probe_objfun(
data,
est = character(0),
fail.value = NA,
probes,
nsim,
seed = NULL,
params,
rinit,
rprocess,
rmeasure,
partrans,
...,
verbose = getOption("verbose", FALSE)

90 probe.match

)

S4 method for signature 'pomp'
probe_objfun(
data,
est = character(0),
fail.value = NA,
probes,
nsim,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'probed_pomp'
probe_objfun(
data,
est = character(0),
fail.value = NA,
probes,
nsim,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'probe_match_objfun'
probe_objfun(
data,
est,
fail.value,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

est character vector; the names of parameters to be estimated.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

probes a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

probe.match 91

nsim the number of model simulations to be computed.

seed integer. When fitting, it is often best to fix the seed of the random-number
generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In probe-matching, one attempts to minimize the discrepancy between simulated and actual data,
as measured by a set of summary statistics called probes. In pomp, this discrepancy is measured
using the “synthetic likelihood” as defined by Wood (2010).

Value

probe_objfun constructs a stateful objective function for probe matching. Specifically, probe_objfun
returns an object of class ‘probe_match_objfun’, which is a function suitable for use in an optim-
like optimizer. In particular, this function takes a single numeric-vector argument that is assumed
to contain the parameters named in est, in that order. When called, it will return the negative syn-
thetic log likelihood for the probes specified. It is a stateful function: Each time it is called, it will
remember the values of the parameters and its estimate of the synthetic likelihood.

92 probe.match

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

Author(s)

Aaron A. King

See Also

optim subplex nloptr

Other summary statistics methods: abc(), basic_probes, probe(), spect()

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, mif2(), nlf, pmcmc(),
pomp-package, spect.match

Examples

library(magrittr)

gompertz() -> po

A list of probes:
plist <- list(

mean=probe.mean("Y",trim=0.1,transform=sqrt),
sd=probe.sd("Y",transform=sqrt),
probe.marginal("Y",ref=obs(po)),
probe.acf("Y",lags=c(1,3,5),type="correlation",transform=sqrt),
probe.quantile("Y",prob=c(0.25,0.75),na.rm=TRUE)

)

Construct the probe-matching objective function.
Here, we just want to estimate 'K'.
po %>%

probe_objfun(probes=plist,nsim=100,seed=5069977,
est="K") -> f

Any numerical optimizer can be used to minimize 'f'.
library(subplex)

subplex(fn=f,par=0.4,control=list(reltol=1e-5)) -> out

Call the objective one last time on the optimal parameters:
f(out$par)

There are 'plot' and 'summary' methods:
f %>% as("probed_pomp") %>% plot()
f %>% summary()

proposals 93

f %>% probe() %>% plot()

One can modify the objective function with another call
to 'probe_objfun':

f %>% probe_objfun(est=c("r","K")) -> f1

proposals MCMC proposal distributions

Description

Functions to construct proposal distributions for use with MCMC methods.

Usage

mvn.diag.rw(rw.sd)

mvn.rw(rw.var)

mvn.rw.adaptive(
rw.sd,
rw.var,
scale.start = NA,
scale.cooling = 0.999,
shape.start = NA,
target = 0.234,
max.scaling = 50

)

Arguments

rw.sd named numeric vector; random-walk SDs for a multivariate normal random-
walk proposal with diagonal variance-covariance matrix.

rw.var square numeric matrix with row- and column-names. Specifies the variance-
covariance matrix for a multivariate normal random-walk proposal distribution.

scale.start, scale.cooling, shape.start, target, max.scaling

parameters to control the proposal adaptation algorithm. Beginning with MCMC
iteration scale.start, the scale of the proposal covariance matrix will be ad-
justed in an effort to match the target acceptance ratio. This initial scale adjust-
ment is “cooled”, i.e., the adjustment diminishes as the chain moves along. The
parameter scale.cooling specifies the cooling schedule: at n iterations after
scale.start, the current scaling factor is multiplied with scale.cooling^n.
The maximum scaling factor allowed at any one iteration is max.scaling. After
shape.start accepted proposals have accumulated, a scaled empirical covari-
ance matrix will be used for the proposals, following Roberts and Rosenthal
(2009).

94 ricker

Value

Each of these calls constructs a function suitable for use as the proposal argument of pmcmc or
abc. Given a parameter vector, each such function returns a single draw from the corresponding
proposal distribution.

Author(s)

Aaron A. King, Sebastian Funk

References

G.O. Roberts and J.S. Rosenthal. Examples of Adaptive MCMC. Journal of Computational and
Graphical Statistics 18, 349–367, 2009.

See Also

pmcmc, abc

ricker Ricker model with Poisson observations.

Description

ricker is a ‘pomp’ object encoding a stochastic Ricker model with Poisson measurement error.

Usage

ricker(r = exp(3.8), sigma = 0.3, phi = 10, c = 1, N_0 = 7)

Arguments

r intrinsic growth rate

sigma environmental process noise s.d.

phi sampling rate

c density dependence parameter

N_0 initial condition

Details

The state process is Nt+1 = rNt exp(−cNt + et), where the et are i.i.d. normal random deviates
with zero mean and variance σ2. The observed variables yt are distributed as Poisson(φNt).

Value

A ‘pomp’ object containing the Ricker model and simulated data.

rinit 95

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus,
pomp_examples, rw2(), sir_models, verhulst()

Examples

po <- ricker()
plot(po)
coef(po)
simulate(po) %>% plot()

rinit rinit

Description

Samples from the initial-state distribution.

Usage

S4 method for signature 'pomp'
rinit(object, params, t0, nsim = 1, ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

t0 the initial time, i.e., the time corresponding to the initial-state distribution.

nsim optional integer; the number of initial states to simulate per column of params.

... additional arguments are ignored.

Value

rinit returns an nvar x nsim*ncol(params) matrix of state-process initial conditions when given
an npar x nsim matrix of parameters, params, and an initial time t0. By default, t0 is the initial
time defined when the ‘pomp’ object ws constructed.

See Also

Specification of the initial-state distribution: rinit_spec

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rmeasure(),
rprior(), rprocess(), skeleton(), workhorses

96 rinit_spec

rinit_spec The initial-state distribution

Description

Specification of rinit

Details

To fully specify the unobserved Markov state process, one must give its distribution at the zero-time
(t0). One does this by furnishing a value for the rinit argument. As usual, this can be provided
either as a C snippet or as an R function. In the former case, bear in mind that:

1. The goal of a this snippet is the construction of a state vector, i.e., the setting of the dynamical
states at time t0.

2. In addition to the parameters and covariates (if any), the variable t, containing the zero-time,
will be defined in the context in which the snippet is executed.

3. NB: The statenames argument plays a particularly important role when the rinit is specified
using a C snippet. In particular, every state variable must be named in statenames. Failure
to follow this rule will result in undefined behavior.

General rules for writing C snippets can be found here.

If an R function is to be used, pass

rinit = f

to pomp, where f is a function with arguments that can include the initial time t0, any of the model
parameters, and any covariates. As usual, f may take additional arguments, provided these are
passed along with it in the call to pomp. f must return a named numeric vector of initial states.
It is of course important that the names of the states match the expectations of the other basic
components.

Note that the state-process rinit can be either deterministic (as in the default) or stochastic. In the
latter case, it samples from the distribution of the state process at the zero-time, t0.

Default behavior

By default, pomp assumes that the initial distribution is concentrated on a single point. In particular,
any parameters in params, the names of which end in “_0” or “.0”, are assumed to be initial values
of states. When the state process is initialized, these are simply copied over as initial conditions.
The names of the resulting state variables are obtained by dropping the suffix.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rmeasure_spec, rprocess_spec, skeleton_spec, transformations, userdata

rmeasure 97

Examples

We set up a trivial process model:

trivial <- function (X, Y, ...) {
c(X = X+1, Y = Y-1)

}

We specify \code{rinit} with a function that
sets state variables X and Y to the values in
parameters X0, Y0:

f <- function (X0, Y0, ...) {
c(X = X0, Y = Y0)

}

plot(simulate(times=1:5,t0=0,params=c(X0=3,Y0=-7),
rinit=f,rprocess=onestep(trivial)))

A function that depends on covariate P and
time t0, as well as parameter X0:

g <- function (t0, X0, P, ...) {
c(X = X0, Y = P + sin(2*pi*t0))

}

plot(simulate(times=1:5,t0=0,params=c(X0=3,Y0=-7),
covar=covariate_table(t=0:10,P=3:13,times="t"),
rinit=g,rprocess=onestep(trivial)))

rmeasure rmeasure

Description

Sample from the measurement model distribution, given values of the latent states and the parame-
ters.

Usage

S4 method for signature 'pomp'
rmeasure(object, x, times, params, ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

x an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

98 rmeasure_spec

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

Value

rmeasure returns a rank-3 array of dimensions nobs x nrep x ntimes, where nobs is the number
of observed variables.

See Also

Specification of the measurement-model simulator: rmeasure_spec

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rinit(),
rprior(), rprocess(), skeleton(), workhorses

rmeasure_spec The measurement-model simulator

Description

Specification of rmeasure

Details

The measurement model is the link between the data and the unobserved state process. It can be
specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to simulate observations given the value of the latent state variables.
Then you can furnish

rmeasure = f

to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets.

In writing an rmeasure C snippet, bear in mind that:

1. The goal of such a snippet is to fill the observables with random values drawn from the mea-
surement model distribution. Accordingly, each observable should be assigned a new value.

2. In addition to the states, parameters, covariates (if any), and observables, the variable t, con-
taining the time of the observation, will be defined in the context in which the snippet is
executed.

The demos and the tutorials on the package website give examples as well.

It is also possible, though far less efficient, to specify rmeasure using an R function. In this case,
specify the measurement model simulator by furnishing

https://kingaa.github.io/pomp/

rprior 99

rmeasure = f

to pomp, where f is an R function. The arguments of f should be chosen from among the state
variables, parameters, covariates, and time. It must also have the argument f must return a
named numeric vector of length equal to the number of observable variables.

Default behavior

The default rmeasure is undefined. It will yield missing values (NA).

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rinit_spec, rprocess_spec, skeleton_spec, transformations, userdata

rprior rprior

Description

Sample from the prior probability distribution.

Usage

S4 method for signature 'pomp'
rprior(object, params, ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

Value

A numeric matrix containing the required samples.

See Also

Specification of the prior distribution simulator: prior_spec

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rinit(),
rmeasure(), rprocess(), skeleton(), workhorses

100 rprocess

rprocess rprocess

Description

rprocess simulates the process-model portion of partially-observed Markov process.

Usage

S4 method for signature 'pomp'
rprocess(object, x0, t0, times, params, ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

x0 an nvar x nrep matrix containing the starting state of the system. Columns of x0
correspond to states; rows to components of the state vector. One independent
simulation will be performed for each column. Note that in this case, params
must also have nrep columns.

t0 the initial time, i.e., the time corresponding to the state in x0.
times a numeric vector (length ntimes) containing times. These must be in non-

decreasing order.
params a npar x nrep matrix of parameters. Each column is treated as an independent

parameter set, in correspondence with the corresponding column of x0.
... additional arguments are ignored.

Details

When rprocess is called, t0 is taken to be the initial time (i.e., that corresponding to x0). The
values in times are the times at which the state of the simulated processes are required.

Value

rprocess returns a rank-3 array with rownames. Suppose x is the array returned. Then

dim(x)=c(nvars,nrep,ntimes),

where nvars is the number of state variables (=nrow(x0)), nrep is the number of independent
realizations simulated (=ncol(x0)), and ntimes is the length of the vector times. x[,j,k] is
the value of the state process in the j-th realization at time times[k]. The rownames of x will
correspond to those of x0.

See Also

Specification of the process-model simulator: rprocess_spec

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rinit(),
rmeasure(), rprior(), skeleton(), workhorses

rprocess_spec 101

rprocess_spec The latent state process simulator

Description

Specification of rprocess using “plugins”.

Usage

onestep(step.fun)

discrete_time(step.fun, delta.t = 1)

euler(step.fun, delta.t)

gillespie(rate.fun, v, hmax = Inf)

gillespie_hl(..., .pre = "", .post = "", hmax = Inf)

Arguments

step.fun a C snippet, an R function, or the name of a native routine in a shared-object
library. This gives a procedure by which one simulates a single step of the latent
state process.

delta.t positive numerical value; for euler and discrete_time, the size of the step to
take

rate.fun a C snippet, an R function, or the name of a native routine in a shared-object
library. This gives a procedure by which one computes the event-rate of the
elementary events in the continuous-time latent Markov chain.

v integer matrix; giving the stoichiometry of the continuous-time latent Markov
process. It should have dimensions nvar x nevent, where nvar is the number
of state variables and nevent is the number of elementary events. v describes the
changes that occur in each elementary event: it will usually comprise the values
1, -1, and 0 according to whether a state variable is incremented, decremented,
or unchanged in an elementary event. The rows of v may be unnamed or named.
If the rows are unnamed, they are assumed to be in the same order as the vector
of state variables returned by rinit. If the rows are named, the names of the
state variables returned by rinit will be matched to the rows of v to ensure a
correct mapping. If any of the row names of v cannot be found among the state
variables or if any row names of v are duplicated, an error will occur.

hmax maximum time step allowed (see below)

... individual C snippets corresponding to elementary events

.pre, .post C snippets (see Details)

102 rprocess_spec

Discrete-time processes

If the state process evolves in discrete time, specify rprocess using the discrete_time plug-in.
Specifically, provide

rprocess = discrete_time(step.fun = f, delta.t),

where f is a C snippet or R function that simulates one step of the state process. The former is the
preferred option, due to its much greater computational efficiency. The goal of such a C snippet is to
replace the state variables with their new random values at the end of the time interval. Accordingly,
each state variable should be over-written with its new value. In addition to the states, parameters,
covariates (if any), and observables, the variables t and dt, containing respectively the time at the
beginning of the step and the step’s duration, will be defined in the context in which the C snippet
is executed. See Csnippet for general rules on writing C snippets. Examples are to be found in the
tutorials on the package website.

If f is given as an R function, its arguments should come from the state variables, parameters,
covariates, and time. It may also take the argument ‘delta.t’; when called, the latter will be the
time-step. It must also have the argument ‘...’. It should return a named vector of length equal to
the number of state variables, representing a draw from the distribution of the state process at time
t+delta.t conditional on its value at time t.

Continuous-time processes

If the state process evolves in continuous time, but you can use an Euler approximation, implement
rprocess using the euler plug-in. Specify

rprocess = euler(step.fun = f, delta.t)

in this case. As before, f can be provided either as a C snippet or as an R function, the former
resulting in much quicker computations. The form of f will be the same as above (in the discrete-
time case).

If you have a procedure that allows you, given the value of the state process at any time, to simulate
it at an arbitrary time in the future, use the onestep plug-in. To do so, specify

rprocess = onestep(step.fun = f).

Again, f can be provided either as a C snippet or as an R function, the former resulting in much
quicker computations. The form of f should be as above (in the discrete-time or Euler cases).

Size of time step

The simulator plug-ins discrete_time, euler, and onestep all work by taking discrete time steps.
They differ as to how this is done. Specifically,

1. onestep takes a single step to go from any given time t1 to any later time t2 (t1 < t2). Thus,
this plug-in is designed for use in situations where a closed-form solution to the process exists.

2. To go from t1 to t2, euler takes n steps of equal size, where

n = ceiling((t2-t1)/delta.t).

https://kingaa.github.io/pomp/

rprocess_spec 103

3. discrete_time assumes that the process evolves in discrete time, where the interval between
successive times is delta.t. Thus, to go from t1 to t2, discrete_time takes n steps of size
exactly delta.t, where

n = floor((t2-t1)/delta.t).

Exact (event-driven) simulations

If you desire exact simulation of certain continuous-time Markov chains, an implementation of
Gillespie’s algorithm (Gillespie 1977) is available, via the gillespie and gillespie_hl plug-ins.
The former allows for the rate function to be provided as an R function or a single C snippet, while
the latter provides a means of specifying the elementary events via a list of C snippets.

A high-level interface to the simulator is provided by gillespie_hl. To use it, supply

rprocess = gillespie_hl(..., .pre = "", .post = "", hmax = Inf)

to pomp. Each argument in ... corresponds to a single elementary event and should be a list
containing two elements. The first should be a string or C snippet; the second should be a named
integer vector. The variable rate will exist in the context of the C snippet, as will the parameter,
state variables, covariates, and the time t. The C snippet should assign to the variable rate the
corresponding elementary event rate.

The named integer vector specifies the changes to the state variables corresponding to the elemen-
tary event. There should be named value for each of the state variables returned by rinit. The
arguments .pre and .post can be used to provide C code that will run respectively before and af-
ter the elementary-event snippets. These hooks can be useful for avoiding duplication of code that
performs calculations needed to obtain several of the different event rates.

Here’s how a simple birth-death model might be specified:

gillespie_hl(
birth=list("rate = b*N;",c(N=1)),
death=list("rate = m*N;",c(N=-1))

)

In the above, the state variable N represents the population size and parameters b, m are the birth and
death rates, respectively.

To use the lower-level gillespie interface, furnish

rprocess = gillespie(rate.fun = f, v, hmax = Inf)

to pomp, where f gives the rates of the elementary events. Here, f may be an R function with
prototype

f(j, x, t, params, ...)

When f is called, the integer j will be the number of the elementary event (corresponding to the
column the matrix v, see below), x will be a named numeric vector containing the value of the state
process at time t and params is a named numeric vector containing parameters. f should return a
single numerical value, representing the rate of that elementary event at that point in state space and
time.

104 rw.sd

Here, the stoichiometric matrix v specifies the continuous-time Markov process in terms of its
elementary events. It should have dimensions nvar x nevent, where nvar is the number of state
variables and nevent is the number of elementary events. v describes the changes that occur in
each elementary event: it will usually comprise the values 1, -1, and 0 according to whether a state
variable is incremented, decremented, or unchanged in an elementary event. The rows of v should
have names corresponding to the state variables. If any of the row names of v cannot be found
among the state variables or if any row names of v are duplicated, an error will occur.

It is also possible to provide a C snippet via the rate.fun argument to gillespie. Such a snippet
should assign the correct value to a rate variable depending on the value of j. The same variables
will be available as for the C code provided to gillespie_hl. This lower-level interface may be
preferable if it is easier to write code that calculates the correct rate based on j rather than to write
a snippet for each possible value of j. For example, if the number of possible values of j is large
and the rates vary according to a few simple rules, the lower-level interface may provide the easier
way of specifying the model.

When the process is non-autonomous (i.e., the event rates depend explicitly on time), it can be
useful to set hmax to the maximum step that will be taken. By default, the elementary event rates
will be recomputed at least once per observation interval.

Default behavior

The default rprocess is undefined. It will yield missing values (NA) for all state variables.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rinit_spec, rmeasure_spec, skeleton_spec, transformations, userdata

rw.sd rw.sd

Description

Specifying random-walk intensities.

Usage

rw.sd(...)

Arguments

... Specification of the random-walk intensities (as standard deviations).

Details

See mif2 for details.

rw2 105

See Also

mif2

rw2 Two-dimensional random-walk process

Description

rw2 constructs a ‘pomp’ object encoding a 2-D Gaussian random walk.

Usage

rw2(x1_0 = 0, x2_0 = 0, s1 = 1, s2 = 3, tau = 1, times = 1:100, t0 = 0)

Arguments

x1_0, x2_0 initial conditions (i.e., latent state variable values at the zero time t0)
s1, s2 random walk intensities
tau observation error s.d.
times observation times
t0 zero time

Details

The random-walk process is fully but noisily observed.

Value

A ‘pomp’ object containing simulated data.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus,
pomp_examples, ricker(), sir_models, verhulst()

Examples

library(ggplot2)

rw2() %>% plot()

rw2(s1=1,s2=1,tau=0.1) %>%
simulate(nsim=10,format="d") %>%
ggplot(aes(x=y1,y=y2,group=.id,color=.id))+
geom_path()+
guides(color=FALSE)+
theme_bw()

106 sannbox

sannbox Simulated annealing with box constraints.

Description

A straightforward implementation of simulated annealing with box constraints.

Usage

sannbox(par, fn, control = list(), ...)

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized, with first argument the vector of parameters over
which minimization is to take place. It should return a scalar result.

control A named list of control parameters. See ‘Details’.

... ignored.

Details

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization is
produced. Higher values may produce more tracing information.

fnscale An overall scaling to be applied to the value of fn during optimization. If negative, turns
the problem into a maximization problem. Optimization is performed on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on par/parscale
and these should be comparable in the sense that a unit change in any element produces about
a unit change in the scaled value.

maxit The total number of function evaluations: there is no other stopping criterion. Defaults to
10000.

temp starting temperature for the cooling schedule. Defaults to 1.

tmax number of function evaluations at each temperature. Defaults to 10.

candidate.dist function to randomly select a new candidate parameter vector. This should be a
function with three arguments, the first being the current parameter vector, the second the
temperature, and the third the parameter scaling. By default, candidate.dist is

function(par,temp,scale)
rnorm(n=length(par),mean=par,sd=scale*temp).

sched cooling schedule. A function of a three arguments giving the temperature as a function of
iteration number and the control parameters temp and tmax. By default, sched is

function(k,temp,tmax) temp/log(((k-1)%/%tmax)*tmax+exp(1)).

saved.states 107

Alternatively, one can supply a numeric vector of temperatures. This must be of length at least
maxit.

lower,upper optional numeric vectors. These describe the lower and upper box constraints, re-
spectively. Each can be specified either as a single scalar (common to all parameters) or as a
vector of the same length as par. By default, lower=-Inf and upper=Inf, i.e., there are no
constraints.

Value

sannbox returns a list with components:

counts two-element integer vector. The first number gives the number of calls made to fn. The
second number is provided for compatibility with optim and will always be NA.

convergence provided for compatibility with optim; will always be 0.

final.params last tried value of par.

final.value value of fn corresponding to final.params.

par best tried value of par.

value value of fn corresponding to par.

Author(s)

Daniel Reuman, Aaron A. King

See Also

traj.match, probe.match.

saved.states Saved states

Description

Retrieve latent state trajectories from a particle filter calculation.

Usage

S4 method for signature 'pfilterd_pomp'
saved.states(object, ...)

S4 method for signature 'pfilterList'
saved.states(object, ...)

Arguments

object result of a filtering computation

... ignored

108 simulate

Details

When one calls pfilter with save.states=TRUE, the latent state vector associated with each par-
ticle is saved. This can be extracted by calling saved.states on the ‘pfilterd.pomp’ object.

Value

The saved states are returned in the form of a list, with one element per time-point. Each element
consists of a matrix, with one row for each state variable and one column for each particle.

See Also

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), wpfilter()

simulate Simulations of a partially-observed Markov process

Description

simulate generates simulations of the state and measurement processes.

Usage

S4 method for signature 'missing'
simulate(
nsim = 1,
seed = NULL,
times,
t0,
params,
rinit,
rprocess,
rmeasure,
format = c("pomps", "arrays", "data.frame"),
include.data = FALSE,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'data.frame'
simulate(
object,
nsim = 1,
seed = NULL,
times,
t0,
params,

simulate 109

rinit,
rprocess,
rmeasure,
format = c("pomps", "arrays", "data.frame"),
include.data = FALSE,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
simulate(
object,
nsim = 1,
seed = NULL,
format = c("pomps", "arrays", "data.frame"),
include.data = FALSE,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'objfun'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

nsim The number of simulations to perform. Note that the number of replicates will
be nsim times ncol(params).

seed optional; if set, the pseudorandom number generator (RNG) will be initialized
with seed. the random seed to use. The RNG will be restored to its original
state afterward.

times the times at which observations are made. times must indicate the column of
observation times by name or index. The time vector must be numeric and non-
decreasing. Internally, data will be internally coerced to an array with storage-
mode double.

t0 The zero-time, i.e., the time of the initial state. This must be no later than the
time of the first observation, i.e., t0 <= times[1].

params a named numeric vector or a matrix with rownames containing the parameters
at which the simulations are to be performed.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically

110 simulate

loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

format the format in which to return the results.
format = "pomps" causes the results to be returned as a single “pomp” object,
identical to object except for the latent states and observations, which have
been replaced by the simulated values.
format = "arrays" causes the results to be returned as a list of two arrays. The
“states” element will contain the simulated state trajectories in a rank-3 array
with dimensions nvar x (ncol(params)*nsim) x ntimes. Here, nvar is the
number of state variables and ntimes the length of the argument times. The
“obs” element will contain the simulated data, returned as a rank-3 array with
dimensions nobs x (ncol(params)*nsim) x ntimes. Here, nobs is the number
of observables.
format = "data.frame" causes the results to be returned as a single data frame
containing the time, states, and observations. An ordered factor variable, ‘.id’,
distinguishes one simulation from another.

include.data if TRUE, the original data are included (with .id = "rep"). This option is ignored
unless format = "data.frame".

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

object optional; if present, it should be the output of one of pomp’s methods

Value

A single “pomp” object, a “pompList” object, a named list of two arrays, or a data frame, according
to the format option.

If params is a matrix, each column is treated as a distinct parameter set. In this case, if nsim=1,
then simulate will return one simulation for each parameter set. If nsim>1, then simulate
will yield nsim simulations for each parameter set. These will be ordered such that the first
ncol(params) simulations represent one simulation from each of the distinct parameter sets, the
second ncol(params) simulations represent a second simulation from each, and so on.

Adding column names to params can be helpful.

Author(s)

Aaron A. King

See Also

Other elementary POMP methods: pfilter(), pomp-package, probe(), spect(), wpfilter()

sir_models 111

sir_models Compartmental epidemiological models

Description

Simple SIR-type models implemented in various ways.

Usage

sir(
gamma = 26,
mu = 0.02,
iota = 0.01,
beta1 = 400,
beta2 = 480,
beta3 = 320,
beta_sd = 0.001,
rho = 0.6,
pop = 2100000,
S_0 = 26/400,
I_0 = 0.001,
R_0 = 1 - S_0 - I_0,
t0 = 0,
times = seq(from = t0 + 1/52, to = t0 + 4, by = 1/52),
seed = 329343545,
delta.t = 1/52/20

)

sir2(
gamma = 24,
mu = 1/70,
iota = 0.1,
beta1 = 330,
beta2 = 410,
beta3 = 490,
rho = 0.1,
pop = 1e+06,
S_0 = 0.05,
I_0 = 1e-04,
R_0 = 1 - S_0 - I_0,
t0 = 0,
times = seq(from = t0 + 1/12, to = t0 + 10, by = 1/12),
seed = 1772464524

)

Arguments

gamma recovery rate

112 sir_models

mu death rate (assumed equal to the birth rate)

iota infection import rate

beta1, beta2, beta3

seasonal contact rates

beta_sd environmental noise intensity

rho reporting efficiency

pop overall host population size

S_0, I_0, R_0 the fractions of the host population that are susceptible, infectious, and recov-
ered, respectively, at time zero.

t0 zero time

times observation times

seed seed of the random number generator

delta.t Euler step size

Details

sir() producees a ‘pomp’ object encoding a simple seasonal SIR model with simulated data. Sim-
ulation is performed using an Euler multinomial approximation.

sir2() has the same model implemented using Gillespie’s algorithm.

This and similar examples are discussed and constructed in tutorials available on the package web-
site.

Value

These functions return ‘pomp’ objects containing simulated data.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus,
pomp_examples, ricker(), rw2(), verhulst()

Examples

po <- sir()
plot(po)
coef(po)

po <- sir2()
plot(po)
plot(simulate(window(po,end=3)))
coef(po)

https://kingaa.github.io/pomp/
https://kingaa.github.io/pomp/

skeleton 113

skeleton skeleton

Description

Evaluates the deterministic skeleton at a point or points in state space, given parameters. In the
case of a discrete-time system, the skeleton is a map. In the case of a continuous-time system, the
skeleton is a vectorfield. NB: skeleton just evaluates the deterministic skeleton; it does not iterate
or integrate (see trajectory for this).

Usage

S4 method for signature 'pomp'
skeleton(object, x, times, params, ...)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

x an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

... additional arguments are ignored.

Value

skeleton returns an array of dimensions nvar x nrep x ntimes. If f is the returned matrix,
f[i,j,k] is the i-th component of the deterministic skeleton at time times[k] given the state
x[,j,k] and parameters params[,j].

See Also

Specification of the deterministic skeleton: skeleton_spec

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rinit(),
rmeasure(), rprior(), rprocess(), workhorses

114 skeleton_spec

skeleton_spec The deterministic skeleton of a model

Description

Specification of skeleton.

Usage

vectorfield(f)

map(f, delta.t = 1)

Arguments

f procedure for evaluating the deterministic skeleton This can be a C snippet, an
R function, or the name of a native routine in a dynamically linked library.

delta.t positive numerical value; the size of the discrete time step corresponding to an
application of the map

Details

The skeleton is a dynamical system that expresses the central tendency of the unobserved Markov
state process. As such, it is not uniquely defined, but can be both interesting in itself and useful in
practice. In pomp, the skeleton is used by trajectory and traj.match.

If the state process is a discrete-time stochastic process, then the skeleton is a discrete-time map. To
specify it, provide

skeleton = map(f, delta.t)

to pomp, where f implements the map and delta.t is the size of the timestep covered at one map
iteration.

If the state process is a continuous-time stochastic process, then the skeleton is a vectorfield (i.e., a
system of ordinary differential equations). To specify it, supply

skeleton = vectorfield(f)

to pomp, where f implements the vectorfield, i.e., the right-hand-size of the differential equations.

In either case, f can be furnished either as a C snippet (the preferred choice), or an R function.
General rules for writing C snippets can be found here. In writing a skeleton C snippet, be aware
that:

1. For each state variable, there is a corresponding component of the deterministic skeleton. The
goal of such a snippet is to compute all the components.

2. When the skeleton is a map, the component corresponding to state variable x is named Dx and
is the new value of x after one iteration of the map.

spect 115

3. When the skeleton is a vectorfield, the component corresponding to state variable x is named
Dx and is the value of dx/dt.

4. As with the other C snippets, all states, parameters and covariates, as well as the current time,
t, will be defined in the context within which the snippet is executed.

The tutorials on the package website give some examples.

If f is an R function, its arguments should be taken from among the state variables, parameters,
covariates, and time. It must also take the argument ‘...’. As with the other basic components,
f may take additional arguments, provided these are passed along with it in the call to pomp. The
function f must return a numeric vector of the same length as the number of state variables, which
contains the value of the map or vectorfield at the required point and time.

Default behavior

The default skeleton is undefined. It will yield missing values (NA) for all state variables.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rinit_spec, rmeasure_spec, rprocess_spec, transformations, userdata

spect Power spectrum

Description

Power spectrum computation and spectrum-matching for partially-observed Markov processes.

Usage

S4 method for signature 'data.frame'
spect(
data,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend = c("none", "mean", "linear", "quadratic"),
params,
rinit,
rprocess,
rmeasure,
...,
verbose = getOption("verbose", FALSE)

)

https://kingaa.github.io/pomp/

116 spect

S4 method for signature 'pomp'
spect(
data,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend = c("none", "mean", "linear", "quadratic"),
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'spectd_pomp'
spect(
data,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data,
detrend,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'spect_match_objfun'
spect(data, seed, ..., verbose = getOption("verbose", FALSE))

S4 method for signature 'objfun'
spect(data, seed = NULL, ...)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

vars optional; names of observed variables for which the power spectrum will be
computed. By default, the spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of
the spectrum.

nsim number of model simulations to be computed.

seed optional; if non-NULL, the random number generator will be initialized with this
seed for simulations. See simulate.

transform.data function; this transformation will be applied to the observables prior to estima-
tion of the spectrum, and prior to any detrending.

spect 117

detrend de-trending operation to perform. Options include no detrending, and subtrac-
tion of constant, linear, and quadratic trends from the data. Detrending is applied
to each data series and to each model simulation independently.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

spect estimates the power spectrum of time series data and model simulations and compares the re-
sults. It can be used to diagnose goodness of fit and/or as the basis for frequency-domain parameter
estimation (spect.match).

A call to spect results in the estimation of the power spectrum for the (transformed, detrended)
data and nsim model simulations. The results of these computations are stored in an object of class
‘spectd_pomp’.

When spect operates on a spectrum-matching objective function (a ‘spect_match_objfun’ object),
by default, the random-number generator seed is fixed at the value given when the objective function
was constructed. Specifying NULL or an integer for seed overrides this behavior.

Value

An object of class ‘spectd_pomp’, which contains the model, the data, and the results of the spect
computation. The following methods are available:

plot produces some diagnostic plots

summary displays a summary

logLik gives a measure of the agreement of the power spectra

118 spect.match

Author(s)

Daniel C. Reuman, Cai GoGwilt, Aaron A. King

References

D.C. Reuman, R.A. Desharnais, R.F. Costantino, O. Ahmad, J.E. Cohen. Power spectra reveal the
influence of stochasticity on nonlinear population dynamics. Proceedings of the National Academy
of Sciences 103, 18860-18865, 2006

D.C. Reuman, R.F. Costantino, R.A. Desharnais, J.E. Cohen. Color of environmental noise affects
the nonlinear dynamics of cycling, stage-structured populations. Ecology Letters 11, 820-830, 2008.

See Also

Other summary statistics methods: abc(), basic_probes, probe.match, probe()

Other elementary POMP methods: pfilter(), pomp-package, probe(), simulate(), wpfilter()

spect.match Spectrum matching

Description

Estimation of parameters by matching power spectra

Usage

S4 method for signature 'data.frame'
spect_objfun(
data,
est = character(0),
weights = 1,
fail.value = NA,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend = c("none", "mean", "linear", "quadratic"),
params,
rinit,
rprocess,
rmeasure,
partrans,
...,
verbose = getOption("verbose", FALSE)

)

spect.match 119

S4 method for signature 'pomp'
spect_objfun(
data,
est = character(0),
weights = 1,
fail.value = NA,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend = c("none", "mean", "linear", "quadratic"),
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'spectd_pomp'
spect_objfun(
data,
est = character(0),
weights = 1,
fail.value = NA,
vars,
kernel.width,
nsim,
seed = NULL,
transform.data = identity,
detrend,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'spect_match_objfun'
spect_objfun(
data,
est,
weights,
fail.value,
seed = NULL,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

est character vector; the names of parameters to be estimated.

120 spect.match

weights optional numeric or function. The mismatch between model and data is mea-
sured by a weighted average of mismatch at each frequency. By default, all
frequencies are weighted equally. weights can be specified either as a vector
(which must have length equal to the number of frequencies) or as a function of
frequency. If the latter, weights(freq) must return a nonnegative weight for
each frequency.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

vars optional; names of observed variables for which the power spectrum will be
computed. By default, the spectrum will be computed for all observables.

kernel.width width parameter for the smoothing kernel used for calculating the estimate of
the spectrum.

nsim the number of model simulations to be computed.

seed integer. When fitting, it is often best to fix the seed of the random-number
generator (RNG). This is accomplished by setting seed to an integer. By default,
seed = NULL, which does not alter the RNG state.

transform.data function; this transformation will be applied to the observables prior to estima-
tion of the spectrum, and prior to any detrending.

detrend de-trending operation to perform. Options include no detrending, and subtrac-
tion of constant, linear, and quadratic trends from the data. Detrending is applied
to each data series and to each model simulation independently.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see ?rmeasure_spec.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.

spect.match 121

When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In spectrum matching, one attempts to minimize the discrepancy between a POMP model’s predic-
tions and data, as measured in the frequency domain by the power spectrum.

spect_objfun constructs an objective function that measures the discrepancy. It can be passed
to any one of a variety of numerical optimization routines, which will adjust model parameters to
minimize the discrepancies between the power spectrum of model simulations and that of the data.

Value

spect_objfun constructs a stateful objective function for spectrum matching. Specifically, spect_objfun
returns an object of class ‘spect_match_objfun’, which is a function suitable for use in an optim-
like optimizer. This function takes a single numeric-vector argument that is assumed to contain the
parameters named in est, in that order. When called, it will return the (optionally weighted) L2

distance between the data spectrum and simulated spectra. It is a stateful function: Each time it is
called, it will remember the values of the parameters and the discrepancy measure.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

See Also

spect optim subplex nloptr

Other pomp parameter estimation methods: abc(), bsmc2(), kalman, mif2(), nlf, pmcmc(),
pomp-package, probe.match

Examples

library(magrittr)

ricker() %>%
spect_objfun(

est=c("r","sigma","N_0"),
partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","N_0"),
kernel.width=3,
nsim=100,

122 states

seed=5069977
) -> f

f(log(c(20,0.3,10)))
f %>% spect() %>% plot()

library(subplex)
subplex(fn=f,par=log(c(20,0.3,10)),control=list(reltol=1e-5)) -> out
f(out$par)

f %>% summary()

f %>% spect() %>% plot()

spy Spy

Description

Peek into the inside of one of pomp’s objects.

Usage

S4 method for signature 'pomp'
spy(object)

Arguments

object the object whose structure we wish to examine

states Latent states

Description

Extract the latent states from a ‘pomp’ object.

Usage

S4 method for signature 'pomp'
states(object, vars, ...)

Arguments

object an object of class ‘pomp’, or of a class extending ‘pomp’
vars names of variables to retrieve
... ignored

summary-probed_pomp 123

summary-probed_pomp Summary methods

Description

Display a summary of a fitted model object.

Usage

S4 method for signature 'probed_pomp'
summary(object, ...)

S4 method for signature 'spectd_pomp'
summary(object, ...)

S4 method for signature 'objfun'
summary(object, ...)

Arguments

object a fitted model object

... ignored

time Methods to manipulate the obseration times

Description

Get and set the vector of observation times.

Usage

S4 method for signature 'pomp'
time(x, t0 = FALSE, ...)

S4 replacement method for signature 'pomp'
time(object, t0 = FALSE, ...) <- value

Arguments

x a ‘pomp’ object

t0 logical; should the zero time be included?

... ignored

object a ‘pomp’ object

value numeric vector; the new vector of times

124 traces

Details

time(object) returns the vector of observation times. time(object,t0=TRUE) returns the vector
of observation times with the zero-time t0 prepended.

time(object) <-value replaces the observation times slot (times) of object with value. time(object,t0=TRUE)
<-value has the same effect, but the first element in value is taken to be the initial time. The sec-
ond and subsequent elements of value are taken to be the observation times. Those data and states
(if they exist) corresponding to the new times are retained.

timezero The zero time

Description

Get and set the zero-time.

Usage

S4 method for signature 'pomp'
timezero(object, ...)

S4 replacement method for signature 'pomp'
timezero(object, ...) <- value

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’

... ignored

value numeric; the new zero-time value

Value

the value of the zero time

traces Traces

Description

Retrieve the history of an iterative calculation.

traces 125

Usage

S4 method for signature 'mif2d_pomp'
traces(object, pars, transform = FALSE, ...)

S4 method for signature 'mif2List'
traces(object, pars, ...)

S4 method for signature 'abcd_pomp'
traces(object, pars, ...)

S4 method for signature 'abcList'
traces(object, pars, ...)

S4 method for signature 'pmcmcd_pomp'
traces(object, pars, ...)

S4 method for signature 'pmcmcList'
traces(object, pars, ...)

Arguments

object an object of class extending ‘pomp’, the result of the application of a parameter
estimation algorithm

pars names of parameters

transform logical; should the traces be transformed back onto the natural scale?

... ignored or (in the case of the listie, passed to the more primitive function)

Details

Note that pmcmc does not currently support parameter transformations.

Value

When object is the result of a mif2 calculation, traces(object,pars,transform = FALSE) re-
turns the traces of the parameters named in pars. By default, the traces of all parameters are
returned. Note that, if the computation was performed with transformed parameters, the traces are
on the estimation scale. If transform=TRUE, the parameters are transformed from the estimation
scale onto the natural scale.

When object is a ‘abcd_pomp’, traces(object) extracts the traces as a coda::mcmc.

When object is a ‘abcList’, traces(object) extracts the traces as a coda::mcmc.list.

When object is a ‘pmcmcd_pomp’, traces(object) extracts the traces as a coda::mcmc.

When object is a ‘pmcmcList’, traces(object) extracts the traces as a coda::mcmc.list.

126 traj.match

traj.match Trajectory matching

Description

Estimation of parameters for deterministic POMP models

Usage

S4 method for signature 'data.frame'
traj_objfun(
data,
est = character(0),
fail.value = NA,
ode_control = list(),
params,
rinit,
skeleton,
dmeasure,
partrans,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
traj_objfun(
data,
est = character(0),
fail.value = NA,
ode_control = list(),
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'traj_match_objfun'
traj_objfun(
data,
est,
fail.value,
ode_control,
...,
verbose = getOption("verbose", FALSE)

)

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

traj.match 127

est character vector; the names of parameters to be estimated.

fail.value optional numeric scalar; if non-NA, this value is substituted for non-finite values
of the objective function. It should be a large number (i.e., bigger than any
legitimate values the objective function is likely to take).

ode_control optional list; the elements of this list will be passed to ode.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

skeleton optional; the deterministic skeleton of the unobserved state process. Depending
on whether the model operates in continuous or discrete time, this is either a vec-
torfield or a map. Accordingly, this is supplied using either the vectorfield or
map fnctions. For more information, see ?skeleton_spec. Setting skeleton=NULL
removes the deterministic skeleton.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more infor-
mation, see ?parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

... additional arguments will modify the model structure

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

In trajectory matching, one attempts to minimize the discrepancy between a POMP model’s predic-
tions and data under the assumption that the latent state process is deterministic and all discrep-
ancies between model and data are due to measurement error. The measurement model likelihood
(dmeasure), or rather its negative, is the natural measure of the discrepancy.

Trajectory matching is a generalization of the traditional nonlinear least squares approach. In par-
ticular, if, on some scale, measurement errors are normal with constant variance, then trajectory
matching is equivalent to least squares on that particular scale.

traj_objfun constructs an objective function that evaluates the likelihood function. It can be
passed to any one of a variety of numerical optimization routines, which will adjust model param-
eters to minimize the discrepancies between the power spectrum of model simulations and that of
the data.

128 traj.match

Value

traj_objfun constructs a stateful objective function for spectrum matching. Specifically, traj_objfun
returns an object of class ‘traj_match_objfun’, which is a function suitable for use in an optim-like
optimizer. In particular, this function takes a single numeric-vector argument that is assumed to
contain the parameters named in est, in that order. When called, it will return the negative log like-
lihood. It is a stateful function: Each time it is called, it will remember the values of the parameters
and its estimate of the log likelihood.

Important Note

Since pomp cannot guarantee that the final call an optimizer makes to the function is a call at
the optimum, it cannot guarantee that the parameters stored in the function are the optimal ones.
Therefore, it is a good idea to evaluate the function on the parameters returned by the optimization
routine, which will ensure that these parameters are stored.

See Also

trajectory, optim, subplex, nloptr

Examples

library(magrittr)

ricker() %>%
traj_objfun(

est=c("r","sigma","N_0"),
partrans=parameter_trans(log=c("r","sigma","N_0")),
paramnames=c("r","sigma","N_0"),

) -> f

f(log(c(20,0.3,10)))

library(subplex)
subplex(fn=f,par=log(c(20,0.3,10)),control=list(reltol=1e-5)) -> out
f(out$par)

library(ggplot2)

f %>%
trajectory(format="data.frame") %>%
ggplot(aes(x=time,y=N))+geom_line()+theme_bw()

trajectory 129

trajectory Trajectory of a deterministic model

Description

Compute trajectories of the deterministic skeleton of a Markov process.

Usage

S4 method for signature 'pomp'
trajectory(
object,
params,
times,
t0,
format = c("array", "data.frame"),
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'traj_match_objfun'
trajectory(object, ..., verbose = getOption("verbose", FALSE))

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

times a numeric vector (length ntimes) containing times at which the itineraries are
desired. These must be in non-decreasing order with times[1]>t0.

t0 the time at which the initial conditions are assumed to hold.

format the format in which to return the results.
format = "array" causes the trajectories to be returned in a rank-3 array with
dimensions nvar x ncol(params) x ntimes. Here, nvar is the number of state
variables and ntimes the length of the argument times.
format = "data.frame" causes the results to be returned as a single data frame
containing the time and states. An ordered factor variable, ‘.id’, distinguishes
the trajectories from one another.

... Additional arguments are passed to the ODE integrator (if the skeleton is a vec-
torfield) and are ignored if it is a map. See ode for a description of the additional
arguments accepted by the ODE integrator.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

130 transformations

Details

In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained
by iterating the map. In the case of a continuous-time system, the deterministic skeleton is a vector-
field; trajectory uses the numerical solvers in deSolve to integrate the vectorfield.

Note that the handling of ... in trajectory differs from that of most other functions in pomp. In
particular, it is not possible to modify the model structure in a call to trajectory.

Value

trajectory returns an array of dimensions nvar x nrep x ntimes. If x is the returned matrix,
x[i,j,k] is the i-th component of the state vector at time times[k] given parameters params[,j].

See Also

skeleton, flow

transformations Transformations

Description

Some useful parameter transformations.

Usage

logit(p)

expit(x)

log_barycentric(X)

inv_log_barycentric(Y)

Arguments

p numeric; a quantity in [0,1].

x numeric; the log odds ratio.

X numeric; a vector containing the quantities to be transformed according to the
log-barycentric transformation.

Y numeric; a vector containing the log fractions.

userdata 131

Details

Parameter transformations can be used in many cases to recast constrained optimization problems
as unconstrained problems. Although there are no limits to the transformations one can implement
using the parameter_trans facilty, pomp provides a few ready-built functions to implement some
very commonly useful ones.

The logit transformation takes a probability p to its log odds, log p
1−p . It maps the unit interval [0, 1]

into the extended real line [−∞,∞].

The inverse of the logit transformation is the expit transformation.

The log-barycentric transformation takes a vector Xi, i = 1, . . . , n, to a vector Yi, where

Yi = log
Xi∑
j Xj

.

If X is an n-vector, it takes every simplex defined by
∑

iXi = c, c constant, to n-dimensional
Euclidean space Rn.

The inverse of the log-barycentric transformation is implemented as inv_log_barycentric. Note
that it is not a true inverse, in the sense that it takes Rn to the unit simplex,

∑
iXi = 1. Thus,

log_barycentric(inv_log_barycentric(Y)) == Y,

but

inv_log_barycentric(log_barycentric(X)) == X

only if sum(X) == 1.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rinit_spec, rmeasure_spec, rprocess_spec, skeleton_spec, userdata

userdata Facilities for making additional information to basic components

Description

When POMP basic components need information they can’t get from parameters or covariates.

132 userdata

Details

It can happen that one desires to pass information to one of the POMP model basic components
(see here for a definition of this term) outside of the standard routes (i.e., via model parameters or
covariates). pomp provides facilities for this purpose. We refer to the objects one wishes to pass in
this way as user data.

The following will apply to every basic model component. For the sake of definiteness, however,
we’ll use the rmeasure component as an example. To be even more specific, the measurement
model we wish to implement is

y1 ~ Poisson(x1+theta), y2 ~ Poisson(x2+theta),

where theta is a parameter. Although it would be very easy (and indeed far preferable) to include
theta among the ordinary parameters (by including it in params), we will assume here that we
have some reason for not wanting to do so.

Now, we have the choice of providing rmeasure in one of three ways:

1. as an R function,
2. as a C snippet, or
3. as a procedure in an external, dynamically loaded library.

We’ll deal with these three cases in turn.

When the basic component is specified as an R function

We can implement a simulator for the aforementioned measurement model so:

f <- function (t, x, params, theta, ...) {
y <- rpois(n=2,x[c("x1","x2")]+theta)
setNames(y,c("y1","y2"))

}

So far, so good, but how do we get theta to this function? We simply provide an additional
argument to whichever pomp algorithm we are employing (e.g., simulate, pfilter, mif2, abc,
etc.). For example:

simulate(..., rmeasure = f, theta = 42, ...)

where the ... represent the other simulate arguments we might want to supply. When we do
so, a message will be generated, informing us that theta is available for use by the POMP basic
components. This warning helps forestall accidental triggering of this facility due to typographical
error.

When the basic component is specified via a C snippet

A C snippet implementation of the aforementioned measurement model is:

f <- Csnippet("
double theta = *(get_userdata_double(\"theta\"));
y1 = rpois(x1+theta); y2 = rpois(x2+theta);
")

userdata 133

Here, the call to get_userdata_double retrieves a pointer to the stored value of theta. Note the
need to escape the quotes in the C snippet text.

It is possible to store and retrieve integer objects also, using get_userdata_int.

One must take care that one stores the user data with the appropriate storage type. For example, it
is wise to wrap floating point scalars and vectors with as.double and integers with as.integer.
In the present example, our call to simulate might look like

simulate(..., rmeasure = f, theta = as.double(42), ...)

Since the two functions get_userdata_double and get_userdata_int return pointers, it is trivial
to pass vectors of double-precision and integers.

A simpler and more elegant approach is afforded by the globals argument (see below).

When the basic component is specified via an external library

The rules are essentially the same as for C snippets. typedef declarations for the get_userdata_double
and get_userdata_int are given in the ‘pomp.h’ header file and these two routines are registered
so that they can be retrieved via a call to R_GetCCallable. See the Writing R extensions manual
for more information.

Setting globals

The use of the userdata facilities incurs a run-time cost. It is faster and more elegant, when using C
snippets, to put the needed objects directly into the C snippet library. The globals argument does
this. See the example below.

See Also

Other information on model implementation: Csnippet, accumulators, covariate_table(),
distributions, dmeasure_spec, dprocess_spec, parameter_trans(), pomp-package, prior_spec,
rinit_spec, rmeasure_spec, rprocess_spec, skeleton_spec, transformations

Examples

The familiar Ricker example
For some bizarre reason, we wish to pass 'phi' via the userdata facility.

C snippet approach:

simulate(times=1:100,t0=0,
phi=as.double(100),
params=c(r=3.8,sigma=0.3,N.0=7),
rprocess=discrete_time(
step.fun=Csnippet("

double e = (sigma > 0.0) ? rnorm(0,sigma) : 0.0;
N = r*N*exp(-N+e);"

),
delta.t=1

),
rmeasure=Csnippet("

https://cran.r-project.org/doc/manuals/R-exts.html

134 verhulst

double phi = *(get_userdata_double(\"phi\"));
y = rpois(phi*N);"

),
paramnames=c("r","sigma"),
statenames="N",
obsnames="y"

) -> rick1

The same problem solved using 'globals':
simulate(times=1:100,t0=0,

globals=Csnippet("static double phi = 100;"),
params=c(r=3.8,sigma=0.3,N.0=7),
rprocess=discrete_time(
step.fun=Csnippet("

double e = (sigma > 0.0) ? rnorm(0,sigma) : 0.0;
N = r*N*exp(-N+e);"

),
delta.t=1

),
rmeasure=Csnippet("

y = rpois(phi*N);"
),
paramnames=c("r","sigma"),
statenames="N",
obsnames="y"

) -> rick2

Finally, the R function approach:

simulate(times=1:100,t0=0,
phi=100,
params=c(r=3.8,sigma=0.3,N_0=7),
rprocess=discrete_time(

step.fun=function (r, N, sigma, ...) {
e <- rnorm(n=1,mean=0,sd=sigma)
c(N=r*N*exp(-N+e))

},
delta.t=1

),
rmeasure=function(phi, N, ...) {

c(y=rpois(n=1,lambda=phi*N))
}

) -> rick3

verhulst Verhulst-Pearl model

Description

The Verhulst-Pearl (logistic) model of population growth.

verhulst 135

Usage

verhulst(n_0 = 10000, K = 10000, r = 0.9, sigma = 0.4, tau = 0.1, dt = 0.01)

Arguments

n_0 initial condition

K carrying capacity

r intrinsic growth rate

sigma environmental process noise s.d.

tau measurement error s.d.

dt Euler time-step

Details

A stochastic version of the Verhulst-Pearl logistic model. This evolves in continuous time, accord-
ing to the stochastic differential equation

dn = r n
(

1− n

K

)
dt+ σ n dW.

Numerically, we simulate the stochastic dynamics using an Euler approximation.

The measurements are assumed to be log-normally distributed.

Value

A ‘pomp’ object containing the model and simulated data. The following basic components are
included in the ‘pomp’ object: ‘rinit’, ‘rprocess’, ‘rmeasure’, ‘dmeasure’, and ‘skeleton’.

See Also

Other pomp examples: blowflies, bsflu, dacca(), ebola, gompertz(), measles, ou2(), parus,
pomp_examples, ricker(), rw2(), sir_models

Examples

verhulst() -> po
plot(po)
plot(simulate(po))
pfilter(po,Np=1000) -> pf
logLik(pf)
spy(po)

136 workhorses

window Window

Description

Restrict to a portion of a time series.

Usage

S4 method for signature 'pomp'
window(x, start, end, ...)

Arguments

x a ‘pomp’ object or object of class extending ‘pomp’

start, end the left and right ends of the window, in units of time

... ignored

workhorses Workhorse functions for the pomp algorithms.

Description

These functions mediate the interface between the user’s model and the package algorithms. They
are low-level functions that do the work needed by the package’s inference methods.

Details

They include

dmeasure which evaluates the measurement model density,

rmeasure which samples from the measurement model distribution,

dprocess which evaluates the process model density,

rprocess which samples from the process model distribution,

dprior which evaluates the prior probability density,

rprior which samples from the prior distribution,

skeleton which evaluates the model’s deterministic skeleton,

flow which iterates or integrates the deterministic skeleton to yield trajectories,

partrans which performs parameter transformations associated with the model.

Author(s)

Aaron A. King

wpfilter 137

See Also

simulate, trajectory, pfilter, probe

Other pomp workhorses: dmeasure(), dprior(), dprocess(), flow(), partrans(), rinit(),
rmeasure(), rprior(), rprocess(), skeleton()

wpfilter Weighted particle filter

Description

A sequential importance sampling (particle filter) algorithm. Unlike in pfilter, resampling is
performed only when triggered by deficiency in the effective sample size.

Usage

S4 method for signature 'data.frame'
wpfilter(
data,
Np,
params,
rinit,
rprocess,
dmeasure,
trigger = 1,
target = 0.5,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'pomp'
wpfilter(
data,
Np,
trigger = 1,
target = 0.5,
...,
verbose = getOption("verbose", FALSE)

)

S4 method for signature 'wpfilterd_pomp'
wpfilter(data, Np, trigger, target, ..., verbose = getOption("verbose", FALSE))

Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation.

138 wpfilter

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object,t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np(k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(0) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see ?rinit_spec.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see ?rprocess_spec for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see ?dmeasure_spec.

trigger numeric; if the effective sample size becomes smaller than trigger * Np, re-
sampling is triggered.

target numeric; target power.

... additional arguments supply new or modify existing model characteristics or
components. See pomp for a full list of recognized arguments.
When named arguments not recognized by pomp are provided, these are made
available to all basic components via the so-called userdata facility. This al-
lows the user to pass information to the basic components outside of the usual
routes of covariates (covar) and model parameters (params). See ?userdata for
information on how to use this facility.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Details

This function is experimental and should be considered in alpha stage. Both interface and
underlying algorithms may change without warning at any time. Please explore the function
and give feedback via the pomp Issues page.

Value

An object of class ‘wpfilterd_pomp’, which extends class ‘pomp’. Information can be extracted
from this object using the methods documented below.

wpfilter 139

Methods

logLik the estimated log likelihood

cond.logLik the estimated conditional log likelihood

eff.sample.size the (time-dependent) estimated effective sample size

as.data.frame coerce to a data frame

plot diagnostic plots

Author(s)

Aaron A. King

References

M.S. Arulampalam, S. Maskell, N. Gordon, & T. Clapp. A Tutorial on Particle Filters for Online
Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–
188, 2002.

See Also

Other elementary POMP methods: pfilter(), pomp-package, probe(), simulate(), spect()

Other particle filter methods: bsmc2(), cond.logLik(), eff.sample.size(), filter.mean(),
filter.traj(), mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states()

Index

∗ datasets
blowflies, 17
bsflu, 19
dacca, 30
ebola, 41
gompertz, 47
measles, 54
ou2, 65
parus, 69
pomp_examples, 82
ricker, 94
rw2, 105
sir_models, 111

∗ design
design, 32

∗ diagnostics
basic_probes, 15

∗ distribution
distributions, 34

∗ elementary POMP methods
pfilter, 70
pomp-package, 4
probe, 86
simulate, 108
spect, 115
wpfilter, 137

∗ extending the pomp package
hitch, 48
workhorses, 136

∗ information on model implementation
accumulators, 9
covariate_table, 26
Csnippet, 28
distributions, 34
dmeasure_spec, 37
dprocess_spec, 40
parameter_trans, 66
pomp-package, 4
prior_spec, 85

rinit_spec, 96
rmeasure_spec, 98
rprocess_spec, 101
skeleton_spec, 114
transformations, 130
userdata, 131

∗ low-level interface
hitch, 48
workhorses, 136

∗ models
blowflies, 17
dacca, 30
gompertz, 47
ou2, 65
pomp-package, 4
pomp_examples, 82
ricker, 94
rw2, 105
sir_models, 111

∗ multivariate
pomp-package, 4

∗ optimize
sannbox, 106

∗ parameter transformations
transformations, 130

∗ particle filter methods
bsmc2, 20
cond.logLik, 24
eff.sample.size, 43
filter.mean, 44
filter.traj, 45
mif2, 55
pfilter, 70
pmcmc, 75
pred.mean, 83
pred.var, 84
saved.states, 107
wpfilter, 137

∗ particle filtering methods

140

INDEX 141

kalman, 50
∗ pomp examples

blowflies, 17
bsflu, 19
dacca, 30
ebola, 41
gompertz, 47
measles, 54
ou2, 65
parus, 69
pomp_examples, 82
ricker, 94
rw2, 105
sir_models, 111
verhulst, 134

∗ pomp parameter estimation methods
abc, 6
bsmc2, 20
kalman, 50
mif2, 55
nlf, 60
pmcmc, 75
pomp-package, 4
probe.match, 89
spect.match, 118

∗ pomp workhorses
dmeasure, 36
dprior, 38
dprocess, 39
flow, 46
partrans, 69
rinit, 95
rmeasure, 97
rprior, 99
rprocess, 100
skeleton, 113
workhorses, 136

∗ probability distributions
distributions, 34

∗ smooth
bsplines, 22

∗ summary statistics methods
abc, 6
basic_probes, 15
probe, 86
probe.match, 89
spect, 115

∗ ts

pomp-package, 4
?accumulators, 81
?dmeasure_spec, 21, 58, 72, 77, 80, 127, 138
?dprocess_spec, 80
?parameter_trans, 21, 58, 80, 91, 120, 127
?prior_spec, 7, 21, 77, 80
?rinit_spec, 7, 21, 51, 57, 62, 72, 77, 80, 88,

91, 109, 117, 120, 127, 138
?rmeasure_spec, 7, 62, 80, 88, 91, 110, 117,

120
?skeleton_spec, 80, 127
?userdata, 7, 21, 51, 58, 62, 72, 77, 80, 88,

91, 110, 117, 121, 138

abc, 5, 6, 16, 22, 26, 52, 60, 63, 78, 89, 92, 94,
118, 121, 132

abc,abcd_pomp-method (abc), 6
abc,ANY-method (abc), 6
abc,data.frame-method (abc), 6
abc,missing-method (abc), 6
abc,pomp-method (abc), 6
abc,probed_pomp-method (abc), 6
abc-data.frame (abc), 6
abc-pomp (abc), 6
accumulators, 5, 9, 27, 29, 36, 38, 41, 68, 86,

96, 99, 104, 115, 131, 133
accumvars (accumulators), 9
as,bsmcd_pomp-method (as.data.frame), 11
as,Csnippet-method (Csnippet), 28
as,kalmand_pomp-method (as.data.frame),

11
as,listie-method (as.data.frame), 11
as,pfilterd_pomp-method

(as.data.frame), 11
as,probed_pomp-method (as.data.frame),

11
as,wpfilterd_pomp-method

(as.data.frame), 11
as-csnippet (Csnippet), 28
as.data.frame, 11, 21, 73, 139

bake, 13
basic model component, 132
basic probes, 7, 87, 90
basic_probes, 8, 15, 89, 92, 118
blowflies, 17, 19, 31, 42, 48, 55, 66, 70, 82,

83, 95, 105, 112, 135
blowflies1, 82
blowflies1 (blowflies), 17

142 INDEX

blowflies2, 82
blowflies2 (blowflies), 17
bsflu, 18, 19, 31, 42, 48, 55, 66, 70, 82, 83,

95, 105, 112, 135
bsmc2, 5, 8, 20, 25, 44, 45, 52, 53, 60, 63, 73,

78, 84, 85, 92, 108, 121, 139
bsmc2,ANY-method (bsmc2), 20
bsmc2,data.frame-method (bsmc2), 20
bsmc2,missing-method (bsmc2), 20
bsmc2,pomp-method (bsmc2), 20
bsmc2-data.frame (bsmc2), 20
bsmc2-pomp (bsmc2), 20
bspline.basis (bsplines), 22
bsplines, 22

coef, 23, 58
coef,listie-method (coef), 23
coef,missing-method (coef), 23
coef,objfun-method (coef), 23
coef,pomp-method (coef), 23
coef-listie (coef), 23
coef-objfun (coef), 23
coef-pomp (coef), 23
coef<- (coef), 23
coef<-,missing-method (coef), 23
coef<-,pomp-method (coef), 23
coef<--pomp (coef), 23
coerce,bsmcd_pomp,data.frame-method

(as.data.frame), 11
coerce,Csnippet,character-method

(Csnippet), 28
coerce,kalmand_pomp,data.frame-method

(as.data.frame), 11
coerce,listie,data.frame-method

(as.data.frame), 11
coerce,objfun,data.frame-method

(as.data.frame), 11
coerce,pfilterd_pomp,data.frame-method

(as.data.frame), 11
coerce,pomp,data.frame-method

(as.data.frame), 11
coerce,probe_match_objfun,probed_pomp-method

(probe), 86
coerce,probed_pomp,data.frame-method

(as.data.frame), 11
coerce,spect_match_objfun,spectd_pomp-method

(spect), 115
coerce,wpfilterd_pomp,data.frame-method

(as.data.frame), 11

coerce-objfun-data.frame
(as.data.frame), 11

coerce-pomp-data.frame (as.data.frame),
11

coerce-probe_match_objfun-probed_pomp
(probe), 86

coerce-spect_match_objfun-spectd_pomp
(spect), 115

cond.logLik, 22, 24, 44, 45, 60, 73, 78, 84,
85, 108, 139

cond.loglik (cond.logLik), 24
cond.logLik,ANY-method (cond.logLik), 24
cond.logLik,bsmcd_pomp-method

(cond.logLik), 24
cond.logLik,kalmand_pomp-method

(cond.logLik), 24
cond.logLik,missing-method

(cond.logLik), 24
cond.logLik,pfilterd_pomp-method

(cond.logLik), 24
cond.logLik,wpfilterd_pomp-method

(cond.logLik), 24
cond.logLik-bsmcd_pomp (cond.logLik), 24
cond.logLik-kalmand_pomp (cond.logLik),

24
cond.logLik-pfilterd_pomp

(cond.logLik), 24
cond.logLik-wpfilterd_pomp

(cond.logLik), 24
continue, 26, 58
continue,abcd_pomp-method (continue), 26
continue,ANY-method (continue), 26
continue,mif2d_pomp-method (continue),

26
continue,missing-method (continue), 26
continue,pmcmcd_pomp-method (continue),

26
continue-abcd_pomp (continue), 26
continue-mif2d_pomp (continue), 26
continue-pmcmcd_pomp (continue), 26
covariate_table, 5, 9, 26, 29, 36, 38, 41, 68,

80, 86, 96, 99, 104, 115, 131, 133
covariate_table,ANY-method

(covariate_table), 26
covariate_table,character-method

(covariate_table), 26
covariate_table,missing-method

(covariate_table), 26

INDEX 143

covariate_table,numeric-method
(covariate_table), 26

covariate_table-character,covariate_table,character-method
(covariate_table), 26

covariate_table-numeric,covariate_table,numeric-method
(covariate_table), 26

covmat, 27
covmat,abcd_pomp-method (covmat), 27
covmat,abcList-method (covmat), 27
covmat,ANY-method (covmat), 27
covmat,missing-method (covmat), 27
covmat,pmcmcd_pomp-method (covmat), 27
covmat,pmcmcList-method (covmat), 27
covmat,probed_pomp-method (covmat), 27
covmat-abcd_pomp (covmat), 27
covmat-abcList (covmat), 27
covmat-pmcmcd_pomp (covmat), 27
covmat-pmcmcList (covmat), 27
covmat-probed_pomp (covmat), 27
Csnippet, 5, 9, 27, 28, 36, 38, 40, 41, 68, 86,

96, 98, 99, 102, 104, 115, 131, 133
Csnippet-class (Csnippet), 28

dacca, 18, 19, 30, 42, 48, 55, 66, 70, 82, 83,
95, 105, 112, 135

design, 32
deSolve, 46, 130
deulermultinom (distributions), 34
discrete_time (rprocess_spec), 101
distributions, 5, 9, 27, 29, 34, 38, 41, 68,

86, 96, 99, 104, 115, 131, 133
dmeasure, 36, 38–40, 46, 69, 95, 98–100, 113,

136, 137
dmeasure,ANY-method (dmeasure), 36
dmeasure,missing-method (dmeasure), 36
dmeasure,pomp-method (dmeasure), 36
dmeasure-pomp (dmeasure), 36
dmeasure_spec, 5, 9, 27, 29, 36, 37, 37, 41,

68, 86, 96, 99, 104, 115, 131, 133
dprior, 37, 38, 40, 46, 69, 95, 98–100, 113,

136, 137
dprior,ANY-method (dprior), 38
dprior,missing-method (dprior), 38
dprior,pomp-method (dprior), 38
dprior-pomp (dprior), 38
dprocess, 37, 39, 39, 46, 69, 95, 98–100, 113,

136, 137
dprocess,ANY-method (dprocess), 39
dprocess,missing-method (dprocess), 39

dprocess,pomp-method (dprocess), 39
dprocess-pomp (dprocess), 39
dprocess_spec, 5, 9, 27, 29, 36, 38, 40, 40,

68, 86, 96, 99, 104, 115, 131, 133

eakf (kalman), 50
eakf,ANY-method (kalman), 50
eakf,data.frame-method (kalman), 50
eakf,missing-method (kalman), 50
eakf,pomp-method (kalman), 50
eakf-data.frame (kalman), 50
eakf-pomp (kalman), 50
ebola, 18, 19, 31, 41, 48, 55, 66, 70, 83, 95,

105, 112, 135
ebolaModel, 82
ebolaModel (ebola), 41
ebolaWA2014 (ebola), 41
eff.sample.size, 22, 25, 43, 44, 45, 58, 60,

73, 78, 84, 85, 108, 139
eff.sample.size,ANY-method

(eff.sample.size), 43
eff.sample.size,bsmcd_pomp-method

(eff.sample.size), 43
eff.sample.size,missing-method

(eff.sample.size), 43
eff.sample.size,pfilterd_pomp-method

(eff.sample.size), 43
eff.sample.size,wpfilterd_pomp-method

(eff.sample.size), 43
eff.sample.size-bsmcd_pomp

(eff.sample.size), 43
eff.sample.size-pfilterd_pomp

(eff.sample.size), 43
eff.sample.size-wpfilterd_pomp

(eff.sample.size), 43
enkf (kalman), 50
enkf,ANY-method (kalman), 50
enkf,data.frame-method (kalman), 50
enkf,missing-method (kalman), 50
enkf,pomp-method (kalman), 50
enkf-data.frame (kalman), 50
enkf-pomp (kalman), 50
euler (rprocess_spec), 101
ewcitmeas, 83
ewcitmeas (measles), 54
ewmeas, 83
ewmeas (measles), 54
expit (transformations), 130

144 INDEX

facility, 38
filter.mean, 22, 25, 44, 44, 45, 60, 73, 78,

84, 85, 108, 139
filter.mean,ANY-method (filter.mean), 44
filter.mean,kalmand_pomp-method

(filter.mean), 44
filter.mean,missing-method

(filter.mean), 44
filter.mean,pfilterd_pomp-method

(filter.mean), 44
filter.mean-kalmand_pomp (filter.mean),

44
filter.mean-pfilterd_pomp

(filter.mean), 44
filter.traj, 22, 25, 44, 45, 60, 72, 73, 78,

84, 85, 108, 139
filter.traj,ANY-method (filter.traj), 45
filter.traj,missing-method

(filter.traj), 45
filter.traj,pfilterd_pomp-method

(filter.traj), 45
filter.traj,pfilterList-method

(filter.traj), 45
filter.traj,pmcmcd_pomp-method

(filter.traj), 45
filter.traj,pmcmcList-method

(filter.traj), 45
filter.traj-pfilterd_pomp

(filter.traj), 45
filter.traj-pfilterList (filter.traj),

45
filter.traj-pmcmcd_pomp (filter.traj),

45
filter.traj-pmcmcList (filter.traj), 45
flow, 37, 39, 40, 46, 69, 95, 98–100, 113, 130,

136, 137
flow,ANY-method (flow), 46
flow,missing-method (flow), 46
flow,pomp-method (flow), 46
flow-pomp (flow), 46
forecast, 47
forecast,ANY-method (forecast), 47
forecast,kalmand_pomp-method

(forecast), 47
forecast,missing-method (forecast), 47
forecast-kalmand_pomp (forecast), 47
freeze (bake), 13

General rules for writing C snippets

can be found here, 86, 96, 114
gillespie (rprocess_spec), 101
gillespie_hl (rprocess_spec), 101
gompertz, 18, 19, 31, 42, 47, 55, 66, 70, 82,

83, 95, 105, 112, 135

here for a definition of this term, 132
hitch, 48

inv_log_barycentric (transformations),
130

kalman, 5, 8, 22, 50, 60, 63, 78, 92, 121
kernel, 16

load, 14
log_barycentric (transformations), 130
logit (transformations), 130
logLik, 52, 58, 72, 139
logLik,ANY-method (logLik), 52
logLik,bsmcd_pomp-method (logLik), 52
logLik,kalmand_pomp-method (logLik), 52
logLik,listie-method (logLik), 52
logLik,missing-method (logLik), 52
logLik,nlf_objfun-method (logLik), 52
logLik,objfun-method (logLik), 52
logLik,pfilterd_pomp-method (logLik), 52
logLik,pmcmcd_pomp-method (logLik), 52
logLik,probed_pomp-method (logLik), 52
logLik,spect_match_objfun-method

(logLik), 52
logLik,wpfilterd_pomp-method (logLik),

52
logLik-bsmcd_pomp (logLik), 52
logLik-kalmand_pomp (logLik), 52
logLik-nlf_objfun (logLik), 52
logLik-objfun (logLik), 52
logLik-pfilterd_pomp (logLik), 52
logLik-pmcmcd_pomp (logLik), 52
logLik-probed_pomp (logLik), 52
logLik-spect_match_objfun (logLik), 52
logLik-wpfilterd_pomp (logLik), 52
logmeanexp, 53
LondonYorke, 83
LondonYorke (measles), 54

map, 80, 127
map (skeleton_spec), 114
mcmc, 8

INDEX 145

MCMC proposals, 7, 8, 28, 76, 78
mean, 16
measles, 18, 19, 31, 42, 48, 54, 66, 70, 83, 95,

105, 112, 135
mif2, 5, 8, 22, 25, 26, 44, 45, 52, 55, 63, 73,

78, 84, 85, 92, 104, 105, 108, 121,
125, 132, 139

mif2,ANY-method (mif2), 55
mif2,data.frame-method (mif2), 55
mif2,mif2d_pomp-method (mif2), 55
mif2,missing-method (mif2), 55
mif2,pfilterd_pomp-method (mif2), 55
mif2,pomp-method (mif2), 55
mif2-data.frame (mif2), 55
mif2-mif2d_pomp (mif2), 55
mif2-pfilterd_pomp (mif2), 55
mif2-pomp (mif2), 55
mvn.diag.rw (proposals), 93
mvn.rw (proposals), 93

nlf, 5, 8, 22, 52, 53, 60, 60, 78, 92, 121
nlf_objfun (nlf), 60
nlf_objfun,ANY-method (nlf), 60
nlf_objfun,data.frame-method (nlf), 60
nlf_objfun,missing-method (nlf), 60
nlf_objfun,nlf_objfun-method (nlf), 60
nlf_objfun,pomp-method (nlf), 60
nlf_objfun-data.frame (nlf), 60
nlf_objfun-nlf_objfun (nlf), 60
nlf_objfun-pomp (nlf), 60
nloptr, 92, 121, 128

obs, 16, 64
obs,pomp-method (obs), 64
obs-pomp (obs), 64
ode, 46, 127, 129
onestep (rprocess_spec), 101
optim, 63, 91, 92, 107, 121, 128
ou2, 18, 19, 31, 42, 48, 55, 65, 70, 83, 95, 105,

112, 135

par, 75
parameter_trans, 5, 9, 21, 27, 29, 36, 38, 41,

58, 66, 69, 80, 86, 91, 96, 99, 104,
115, 120, 127, 131, 133

parameter_trans,ANY,ANY-method
(parameter_trans), 66

parameter_trans,ANY,missing-method
(parameter_trans), 66

parameter_trans,character,character-method
(parameter_trans), 66

parameter_trans,Csnippet,Csnippet-method
(parameter_trans), 66

parameter_trans,function,function-method
(parameter_trans), 66

parameter_trans,missing,ANY-method
(parameter_trans), 66

parameter_trans,missing,missing-method
(parameter_trans), 66

parameter_trans,NULL,NULL-method
(parameter_trans), 66

parameter_trans,pomp_fun,pomp_fun-method
(parameter_trans), 66

parameter_trans-character,character
(parameter_trans), 66

parameter_trans-Csnippet,Csnippet
(parameter_trans), 66

parameter_trans-function,function
(parameter_trans), 66

parameter_trans-missing,missing
(parameter_trans), 66

parmat, 68
partrans, 37, 39, 40, 46, 69, 95, 98–100, 113,

136, 137
partrans,ANY-method (partrans), 69
partrans,missing-method (partrans), 69
partrans,pomp-method (partrans), 69
partrans-pomp (partrans), 69
parus, 18, 19, 31, 42, 48, 55, 66, 69, 83, 95,

105, 112, 135
paste, 23
periodic.bspline.basis (bsplines), 22
pfilter, 5, 22, 25, 44, 45, 58, 60, 70, 78, 84,

85, 89, 108, 110, 118, 132, 137, 139
pfilter,ANY-method (pfilter), 70
pfilter,data.frame-method (pfilter), 70
pfilter,missing-method (pfilter), 70
pfilter,objfun-method (pfilter), 70
pfilter,pfilterd_pomp-method (pfilter),

70
pfilter,pomp-method (pfilter), 70
pfilter-data.frame (pfilter), 70
pfilter-objfun (pfilter), 70
pfilter-pfilterd_pomp (pfilter), 70
pfilter-pomp (pfilter), 70
pfilterd_pomp, 58
pfilterd_pomp (pfilter), 70

146 INDEX

pfilterd_pomp-class (pfilter), 70
plot, 21, 73, 74, 139
plot,Abc-method (plot), 74
plot,abcd_pomp-method (plot), 74
plot,abcList-method (plot), 74
plot,bsmcd_pomp-method (plot), 74
plot,Mif2-method (plot), 74
plot,mif2d_pomp-method (plot), 74
plot,mif2List-method (plot), 74
plot,missing-method (plot), 74
plot,pfilterd_pomp-method (plot), 74
plot,Pmcmc-method (plot), 74
plot,pmcmcd_pomp-method (plot), 74
plot,pmcmcList-method (plot), 74
plot,pomp-method (plot), 74
plot,pomp_plottable-method (plot), 74
plot,probe_match_objfun-method (plot),

74
plot,probed_pomp-method (plot), 74
plot,spect_match_objfun-method (plot),

74
plot,spectd_pomp-method (plot), 74
plot,wpfilterd_pomp-method (plot), 74
plot-Abc (plot), 74
plot-bsmcd_pomp (plot), 74
plot-Mif2 (plot), 74
plot-pfilterd_pomp (plot), 74
plot-Pmcmc (plot), 74
plot-pomp (plot), 74
plot-probe_match_objfun (plot), 74
plot-probed_pomp (plot), 74
plot-spect_match_objfun (plot), 74
plot-spectd_pomp (plot), 74
plot-wpfilterd_pomp (plot), 74
pmcmc, 5, 8, 22, 25, 26, 44, 45, 52, 60, 63, 73,

75, 84, 85, 92, 94, 108, 121, 125, 139
pmcmc,ANY-method (pmcmc), 75
pmcmc,data.frame-method (pmcmc), 75
pmcmc,missing-method (pmcmc), 75
pmcmc,pfilterd_pomp-method (pmcmc), 75
pmcmc,pmcmcd_pomp-method (pmcmc), 75
pmcmc,pomp-method (pmcmc), 75
pmcmc-data.frame (pmcmc), 75
pmcmc-pfilterd_pomp (pmcmc), 75
pmcmc-pmcmcd_pomp (pmcmc), 75
pmcmc-pomp (pmcmc), 75
pomp, 7, 21, 50, 51, 58, 62, 72, 77, 78, 79, 88,

91, 110, 117, 120, 121, 138

pomp,package (pomp-package), 4
pomp-package, 4
pomp_example (pomp_examples), 82
pomp_examples, 18, 19, 31, 42, 48, 55, 66, 70,

82, 95, 105, 112, 135
pompExample (pomp_examples), 82
pompExamples (pomp_examples), 82
pred.mean, 22, 25, 44, 45, 60, 73, 78, 83, 85,

108, 139
pred.mean,ANY-method (pred.mean), 83
pred.mean,kalmand_pomp-method

(pred.mean), 83
pred.mean,missing-method (pred.mean), 83
pred.mean,pfilterd_pomp-method

(pred.mean), 83
pred.mean-kalmand_pomp (pred.mean), 83
pred.mean-pfilterd_pomp (pred.mean), 83
pred.var, 22, 25, 44, 45, 60, 73, 78, 84, 84,

108, 139
pred.var,ANY-method (pred.var), 84
pred.var,missing-method (pred.var), 84
pred.var,pfilterd_pomp-method

(pred.var), 84
pred.var-pfilterd_pomp (pred.var), 84
print, 85
print,listie-method (print), 85
print,pomp_fun-method (print), 85
print,unshowable-method (print), 85
prior_spec, 5, 9, 27, 29, 36, 38, 39, 41, 68,

85, 96, 99, 104, 115, 131, 133
probe, 5, 8, 16, 53, 73, 86, 92, 110, 118, 137,

139
probe,ANY-method (probe), 86
probe,data.frame-method (probe), 86
probe,missing-method (probe), 86
probe,objfun-method (probe), 86
probe,pomp-method (probe), 86
probe,probe_match_objfun-method

(probe), 86
probe,probed_pomp-method (probe), 86
probe-data.frame (probe), 86
probe-objfun (probe), 86
probe-pomp (probe), 86
probe-probe_match_obfjun (probe), 86
probe-probed_pomp (probe), 86
probe.acf (basic_probes), 15
probe.ccf (basic_probes), 15
probe.marginal (basic_probes), 15

INDEX 147

probe.match, 5, 8, 16, 22, 52, 60, 63, 78, 89,
89, 107, 118, 121

probe.mean (basic_probes), 15
probe.median (basic_probes), 15
probe.nlar (basic_probes), 15
probe.period (basic_probes), 15
probe.quantile (basic_probes), 15
probe.sd (basic_probes), 15
probe.var (basic_probes), 15
probe_objfun, 16
probe_objfun (probe.match), 89
probe_objfun,ANY-method (probe.match),

89
probe_objfun,data.frame-method

(probe.match), 89
probe_objfun,missing-method

(probe.match), 89
probe_objfun,pomp-method (probe.match),

89
probe_objfun,probe_match_objfun-method

(probe.match), 89
probe_objfun,probed_pomp-method

(probe.match), 89
probe_objfun-data.frame (probe.match),

89
probe_objfun-pomp (probe.match), 89
probe_objfun-probe_match_objfun

(probe.match), 89
probe_objfun-probed_pomp (probe.match),

89
profileDesign (design), 32
proposals, 93

quantile, 16

R CMD SHLIB, 28, 29
readRDS, 14
reulermultinom (distributions), 34
rgammawn (distributions), 34
ricker, 18, 19, 31, 42, 48, 55, 66, 70, 83, 94,

105, 112, 135
rinit, 37, 39, 40, 46, 69, 95, 98–100, 113, 137
rinit,ANY-method (rinit), 95
rinit,missing-method (rinit), 95
rinit,pomp-method (rinit), 95
rinit-pomp (rinit), 95
rinit_spec, 5, 9, 27, 29, 36, 38, 41, 68, 86,

95, 96, 99, 104, 115, 131, 133

rmeasure, 37, 39, 40, 46, 69, 95, 97, 99, 100,
113, 136, 137

rmeasure,ANY-method (rmeasure), 97
rmeasure,missing-method (rmeasure), 97
rmeasure,pomp-method (rmeasure), 97
rmeasure-pomp (rmeasure), 97
rmeasure_spec, 5, 9, 27, 29, 36, 38, 41, 68,

86, 96, 98, 98, 104, 115, 131, 133
rprior, 37, 39, 40, 46, 69, 95, 98, 99, 100,

113, 136, 137
rprior,ANY-method (rprior), 99
rprior,missing-method (rprior), 99
rprior,pomp-method (rprior), 99
rprior-pomp (rprior), 99
rprocess, 37, 39, 40, 46, 69, 95, 98, 99, 100,

113, 136, 137
rprocess plugins, 7, 21, 51, 57, 62, 72, 77,

80, 88, 91, 109, 117, 120, 138
rprocess,ANY-method (rprocess), 100
rprocess,missing-method (rprocess), 100
rprocess,pomp-method (rprocess), 100
rprocess-pomp (rprocess), 100
rprocess_spec, 5, 9, 27, 29, 36, 38, 41, 68,

86, 96, 99, 100, 101, 115, 131, 133
runifDesign, 32
runifDesign (design), 32
rw.sd, 57, 104
rw2, 18, 19, 31, 42, 48, 55, 66, 70, 83, 95, 105,

112, 135

sannbox, 106
saved.states, 22, 25, 44, 45, 60, 73, 78, 84,

85, 107, 139
saved.states,ANY-method (saved.states),

107
saved.states,missing-method

(saved.states), 107
saved.states,pfilterd_pomp-method

(saved.states), 107
saved.states,pfilterList-method

(saved.states), 107
saved.states-pfilterd_pomp

(saved.states), 107
saved.states-pfilterList

(saved.states), 107
see ?rprocess_spec for the

documentation on these
plugins, 7, 21, 51, 57, 62, 72, 77,
80, 88, 91, 109, 117, 120, 138

148 INDEX

set.seed, 13
simulate, 5, 73, 87–89, 108, 116, 118, 132,

137, 139
simulate,data.frame-method (simulate),

108
simulate,missing-method (simulate), 108
simulate,objfun-method (simulate), 108
simulate,pomp-method (simulate), 108
simulate-data.frame (simulate), 108
simulate-missing (simulate), 108
simulate-objfun (simulate), 108
simulate-pomp (simulate), 108
sir, 9, 83
sir (sir_models), 111
sir2, 83
sir2 (sir_models), 111
sir_models, 18, 19, 31, 42, 48, 55, 66, 70, 83,

95, 105, 111, 135
skeleton, 37, 39, 40, 46, 69, 95, 98–100, 113,

130, 136, 137
skeleton,ANY-method (skeleton), 113
skeleton,missing-method (skeleton), 113
skeleton,pomp-method (skeleton), 113
skeleton-pomp (skeleton), 113
skeleton_spec, 5, 9, 27, 29, 36, 38, 41, 68,

86, 96, 99, 104, 113, 114, 131, 133
sliceDesign (design), 32
sobolDesign, 32
sobolDesign (design), 32
spect, 5, 8, 16, 73, 89, 92, 110, 115, 121, 139
spect,ANY-method (spect), 115
spect,data.frame-method (spect), 115
spect,missing-method (spect), 115
spect,objfun-method (spect), 115
spect,pomp-method (spect), 115
spect,spect_match_objfun-method

(spect), 115
spect,spectd_pomp-method (spect), 115
spect-data.frame (spect), 115
spect-objfun (spect), 115
spect-pomp (spect), 115
spect-spect_match_objfun (spect), 115
spect-spectd_pomp (spect), 115
spect.match, 5, 8, 22, 52, 60, 63, 78, 92, 118
spect_objfun (spect.match), 118
spect_objfun,ANY-method (spect.match),

118
spect_objfun,data.frame-method

(spect.match), 118
spect_objfun,missing-method

(spect.match), 118
spect_objfun,pomp-method (spect.match),

118
spect_objfun,spect_match_objfun-method

(spect.match), 118
spect_objfun,spectd_pomp-method

(spect.match), 118
spect_objfun-data.frame (spect.match),

118
spect_objfun-pomp (spect.match), 118
spect_objfun-spect_match_objfun

(spect.match), 118
spect_objfun-spectd_pomp (spect.match),

118
sprintf, 23
spy, 50, 122
spy,ANY-method (spy), 122
spy,missing-method (spy), 122
spy,pomp-method (spy), 122
states, 122
states,pomp-method (states), 122
states-pomp (states), 122
stew (bake), 13
subplex, 92, 121, 128
summary (summary-probed_pomp), 123
summary,objfun-method

(summary-probed_pomp), 123
summary,probed_pomp-method

(summary-probed_pomp), 123
summary,spectd_pomp-method

(summary-probed_pomp), 123
summary-objfun (summary-probed_pomp),

123
summary-probed_pomp, 123
summary-spectd_pomp

(summary-probed_pomp), 123

time, 123
time,missing-method (time), 123
time,pomp-method (time), 123
time-pomp (time), 123
time<- (time), 123
time<-,pomp-method (time), 123
time<--pomp (time), 123
timezero, 124
timezero,ANY-method (timezero), 124
timezero,missing-method (timezero), 124

INDEX 149

timezero,pomp-method (timezero), 124
timezero-pomp (timezero), 124
timezero<- (timezero), 124
timezero<-,ANY-method (timezero), 124
timezero<-,missing-method (timezero),

124
timezero<-,pomp-method (timezero), 124
timezero<--pomp (timezero), 124
traces, 124
traces,Abc-method (traces), 124
traces,abcd_pomp-method (traces), 124
traces,abcList-method (traces), 124
traces,ANY-method (traces), 124
traces,Mif2-method (traces), 124
traces,mif2d_pomp-method (traces), 124
traces,mif2List-method (traces), 124
traces,missing-method (traces), 124
traces,Pmcmc-method (traces), 124
traces,pmcmcd_pomp-method (traces), 124
traces,pmcmcList-method (traces), 124
traces-Abc (traces), 124
traces-abcd_pomp (traces), 124
traces-abcList (traces), 124
traces-Mif2 (traces), 124
traces-mif2d_pomp (traces), 124
traces-mif2List (traces), 124
traces-Pmcmc (traces), 124
traces-pmcmcd_pomp (traces), 124
traces-pmcmcList (traces), 124
traj.match, 5, 107, 114, 126
traj_objfun (traj.match), 126
traj_objfun,ANY-method (traj.match), 126
traj_objfun,data.frame-method

(traj.match), 126
traj_objfun,missing-method

(traj.match), 126
traj_objfun,pomp-method (traj.match),

126
traj_objfun,traj_match_objfun-method

(traj.match), 126
traj_objfun-data.frame (traj.match), 126
traj_objfun-pomp (traj.match), 126
traj_objfun-traj_match_objfun

(traj.match), 126
trajectory, 46, 113, 114, 128, 129, 137
trajectory,ANY-method (trajectory), 129
trajectory,missing-method (trajectory),

129

trajectory,pomp-method (trajectory), 129
trajectory,traj_match_objfun-method

(trajectory), 129
trajectory-pomp (trajectory), 129
trajectory-traj_match_objfun

(trajectory), 129
transformations, 5, 9, 27, 29, 36, 38, 41, 68,

86, 96, 99, 104, 115, 130, 133

userdata, 5, 9, 27, 29, 36, 38, 41, 68, 86, 96,
99, 104, 115, 131, 131

vectorfield, 80, 127
vectorfield (skeleton_spec), 114
verhulst, 18, 19, 31, 42, 48, 55, 66, 70, 83,

95, 105, 112, 134

window, 136
window,pomp-method (window), 136
window-pomp (window), 136
workhorses, 37, 39, 40, 46, 48, 69, 95,

98–100, 113, 136
wpfilter, 5, 22, 25, 44, 45, 60, 73, 78, 84, 85,

89, 108, 110, 118, 137
wpfilter,ANY-method (wpfilter), 137
wpfilter,data.frame-method (wpfilter),

137
wpfilter,missing-method (wpfilter), 137
wpfilter,pomp-method (wpfilter), 137
wpfilter,wpfilterd_pomp-method

(wpfilter), 137
wpfilter-data.frame (wpfilter), 137
wpfilter-pomp (wpfilter), 137
wpfilter-wpfilterd_pomp (wpfilter), 137
wpfilterd_pomp (wpfilter), 137
wpfilterd_pomp-class (wpfilter), 137

	pomp-package
	abc
	accumulators
	as.data.frame
	bake
	basic_probes
	blowflies
	bsflu
	bsmc2
	bsplines
	coef
	cond.logLik
	continue
	covariate_table
	covmat
	Csnippet
	dacca
	design
	distributions
	dmeasure
	dmeasure_spec
	dprior
	dprocess
	dprocess_spec
	ebola
	eff.sample.size
	filter.mean
	filter.traj
	flow
	forecast
	gompertz
	hitch
	kalman
	logLik
	logmeanexp
	measles
	mif2
	nlf
	obs
	ou2
	parameter_trans
	parmat
	partrans
	parus
	pfilter
	plot
	pmcmc
	pomp
	pomp_examples
	pred.mean
	pred.var
	print
	prior_spec
	probe
	probe.match
	proposals
	ricker
	rinit
	rinit_spec
	rmeasure
	rmeasure_spec
	rprior
	rprocess
	rprocess_spec
	rw.sd
	rw2
	sannbox
	saved.states
	simulate
	sir_models
	skeleton
	skeleton_spec
	spect
	spect.match
	spy
	states
	summary-probed_pomp
	time
	timezero
	traces
	traj.match
	trajectory
	transformations
	userdata
	verhulst
	window
	workhorses
	wpfilter
	Index

