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MDP Define an MDP Problem

Description

Defines all the elements of a MDP problem and formulates them as a POMDP where all states are
observable.

Usage

MDP(
states,
actions,
transition_prob,
reward,
discount = 0.9,
horizon = Inf,
terminal_values = 0,
start = "uniform",
max = TRUE,
name = NA

)
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Arguments

states a character vector specifying the names of the states.

actions a character vector specifying the names of the available actions.
transition_prob

Specifies the transition probabilities between states.

reward Specifies the rewards dependent on action, states and observations.

discount numeric; discount rate between 0 and 1.

horizon numeric; Number of epochs. Inf specifies an infinite horizon.
terminal_values

a vector with the terminal values for each state.

start Specifies in which state the MDP starts.

max logical; is this a maximization problem (maximize reward) or a minimization
(minimize cost specified in reward)?

name a string to identify the MDP problem.

Details

The MDP is formulated as a POMDP where all states are completely observable. This is achieved
by defining one observation per state with identity observation probability matrices.

More details on specifying the parameters can be found in the documentation for POMDP.

Value

The function returns an object of class POMDP which is list with an element called model contain-
ing a list with the model specification. solve_POMDP reads the object and adds a list element called
solution.

Author(s)

Michael Hahsler

See Also

POMDP, solve_POMDP.

Examples

## Michael's Sleepy Tiger Problem is a MDP with perfect observability

Tiger_MDP <- MDP(
name = "Michael's Sleepy Tiger Problem",
discount = 1,

states = c("tiger-left" , "tiger-right"),
actions = c("open-left", "open-right", "do-nothing"),
start = "tiger-left",
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transition_prob = list(
"open-left" = "uniform",
"open-right" = "uniform",
"do-nothing" = "identity"),

# the rew helper expects: action, start.state, end.state, observation, value
reward = rbind(

R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100),
R_("do-nothing", v = 0)

)
)

Tiger_MDP

# do 5 epochs with no discounting
s <- solve_POMDP(Tiger_MDP, method = "enum", horizon = 5)
s

# value function and policy
plot_value_function(s)
policy(s)

optimal_action Optimal action for a belief

Description

Determines the optimal action for a policy (solved POMDP) for a given belief at a given epoch.

Usage

optimal_action(model, belief, epoch = 1)

Arguments

model a solved POMDP model.

belief The belief (probability distribution over the states) as a vector or a matrix with
multiple belief states as rows.

epoch what epoch of the policy should be used.

Value

The name of the optimal action.
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Author(s)

Michael Hahsler

See Also

POMDP

Examples

data("Tiger")
Tiger

sol <- solve_POMDP(model = Tiger)

# these are the states
sol$model$states

# belief that tiger is to the left
optimal_action(sol, c(1, 0))
optimal_action(sol, "tiger-left")

# belief that tiger is to the right
optimal_action(sol, c(0, 1))
optimal_action(sol, "tiger-right")

# belief is 50/50
optimal_action(sol, c(.5, .5))
optimal_action(sol, "uniform")

# the POMDP is converged, so all epoch give the same result.
optimal_action(sol, "tiger-right", epoch = 10)

plot_belief_space Plot a 2D or 3D Projection of the Belief Space

Description

Plots the optimal action, the node in the policy graph or the reward for a given set of belief points
on a line (2D) or on a ternary plot (3D). If no points are given, points are sampled using a regular
arrangement or randomly form the (projected) belief space.

Usage

plot_belief_space(
model,
projection = NULL,
epoch = 1,
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sample = "regular",
n = 100,
what = c("action", "pg_node", "reward"),
legend = TRUE,
pch = 20,
col = NULL,
...

)

Arguments

model a solved POMDP.

projection a vector with state IDs or names to project on. Allowed are projections on two
or three states. NULL uses the first two or three states.

epoch display this epoch.

sample a matrix with belief points as rows or a character string specifying the method
used for sample_belief_space.

n number of points sampled.

what what to plot.

legend logical; add a legend? If the legend covers the plot then you need to increase the
plotting region of the plotting device.

pch plotting symbols.

col plotting colors.

... additional arguments are passed on to plot for 2D or TerneryPlot for 3D.

Value

Returns invisibly the sampled points.

Author(s)

Michael Hahsler

See Also

sample_belief_space

Examples

# two-state POMDP
data("Tiger")
sol <- solve_POMDP(Tiger)

plot_belief_space(sol)
plot_belief_space(sol, n = 10)
plot_belief_space(sol, n = 10, sample = "random")
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# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)

# plot different measures
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward")

# three-state POMDP
# Note: If the plotting region is too small then the legend might run into the plot
data("Three_doors")
sol <- solve_POMDP(Three_doors)
sol

plot_belief_space(sol)
plot_belief_space(sol, sample = "random")
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward")

# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)

# plot the belief points obtained using simulated trajectories (we use n = 50 to save time).
plot_belief_space(sol, sample = simulate_POMDP(Three_doors, n = 50, horizon = 100,

random_actions = TRUE, visited_beliefs = TRUE))

plot_policy_graph Visualize a POMDP Policy Graph

Description

The function plots the POMDP policy graph in a POMDP. It uses plot in igraph with appropriate
plotting options.

Usage

plot_policy_graph(
x,
belief = TRUE,
legend = TRUE,
engine = c("igraph", "visNetwork"),
col = NULL,
...

)

Arguments

x object of class POMDP containing a solved POMDP problem.

belief logical; display belief proportions as a pie chart in each node.
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legend logical; display a legend for colors used belief proportions?

engine The plotting engine to be used.

col colors used for the states.

... plotting options passed on to the plotting engine (see Details section).

Details

The function currently only plots converged policy graphs.

The policy graph nodes represent segments in the value function. Each segment represents one or
more believe states. The pie chart in each node (if available) represent the average belief proportions
of the belief states belonging to the node/segment.

The built in plotting engines are igraph and visNetwork. The additional arguments specified in ...
are passed on to the engine plotting function. For igraph this is plot.igraph (see plot.common
for available options). For visNetwork this is visIgraph.

Other plotting libraries can be used by creating a policy graph (as an igraph object) using policy_graph
and converting it into a suitable representation for that library.

See Also

solve_POMDP, policy_graph.

From: igraph plot.igraph, igraph_options, plot.common.

From visNetwork: visIgraph.

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol

## policy graph
policy_graph(sol)

## visualization
plot_policy_graph(sol)

## use a different graph layout (circle and manual; needs igraph)
library("igraph")
plot_policy_graph(sol, layout = layout.circle)
plot_policy_graph(sol, layout = rbind(c(1,1), c(1,-1), c(0,0), c(-1,-1), c(-1,1)))

## hide labels and legend
plot_policy_graph(sol, edge.label = NA, vertex.label = NA, legend = FALSE)

## add a plot title
plot_policy_graph(sol, main = sol$model$name)

## custom larger vertex labels (A, B, ...)
plot_policy_graph(sol,
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vertex.label = LETTERS[1:nrow(policy(sol)[[1]])],
vertex.label.cex = 2,
vertex.label.color = "white")

## plotting using the graph object
## (e.g., using the graph in the layout and to change the edge curvature)
pg <- policy_graph(sol)
plot(pg,

layout = layout_as_tree(pg, root = 3, mode = "out"),
edge.curved = curve_multiple(pg, .2))

## changes labels
plot(pg,

edge.label = abbreviate(E(pg)$label),
vertex.label = sol$solution$pg$action,
vertex.size = 10)

## plot interactive graphs using the visNetwork library
plot_policy_graph(sol, engine = "visNetwork")

## add smooth edges and a layout (note, engine can be abbreviated)
plot_policy_graph(sol, engine = "vis", layout = "layout_in_circle", smooth = TRUE)

plot_value_function Plot the Value Function of a POMDP Solution

Description

Plots the value function of a POMDP solution as a line plot. The solution is projected on two states
(i.e., the belief for the other states is held constant at zero).

Usage

plot_value_function(
model,
projection = 1:2,
epoch = 1,
ylim = NULL,
legend = TRUE,
col = NULL,
lwd = 1,
lty = 1,
...

)

Arguments

model a solved POMDP.

projection index or name of two states for the projection.
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epoch the value function of what epoch should be plotted? Ignored for infinite-horizon
solutions.

ylim the y limits of the plot.

legend logical; add a legend?

col potting colors.

lwd line width.

lty line type.

... additional arguments are passed on to line.

Author(s)

Michael Hahsler

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol

plot_value_function(sol, ylim = c(0,20))

## finite-horizon
sol <- solve_POMDP(model = Tiger, horizon = 3, discount = 1,

method = "enum")
sol

plot_value_function(sol, epoch =1, ylim = c(-5, 25))
plot_value_function(sol, epoch =2, ylim = c(-5, 25))
plot_value_function(sol, epoch =3, ylim = c(-5, 25))

policy Extract the Policy from a POMDP/MDP

Description

Extracts the policy from a solves POMDP/MDP.

Usage

policy(x)

Arguments

x A solved POMDP object.
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Details

A list (one entry per epoch) with the optimal policy. The policy is a data frame consisting of three
parts.

Part 1: The value function with one column per state. (For MDPs this is just one column with the
state).

Part 2: One column with the optimal action.

Part 3: One column per observation with the index of the row representing the policy node in the
next epoch.

Value

A list with the policy for each epoch. returned

comp2 Description of ’comp2’

Author(s)

Michael Hahsler

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol

# policy with value function, optimal action and transitions for observations.
policy(sol)

policy_graph Extract the Policy Graph (as an igraph Object)

Description

Convert the policy graph in a POMDP solution object into an igraph object.

Usage

policy_graph(x, belief = TRUE, col = NULL)

Arguments

x A POMDP object.
belief logical; add belief proportions as a pie chart in each node of the graph? If belief

points are provided by the solver, then these are used. If a number is specified,
then a random sample of that size is used instead to calculate belief proportions.

col colors used for the states in the belief proportions.



12 POMDP

Value

An object of class igraph containing a directed graph.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

See Also

solve_POMDP

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol

pg <- policy_graph(sol)

plot(pg)

POMDP Define a POMDP Problem

Description

Defines all the elements of a POMDP problem including the discount rate, the set of states, the
set of actions, the set of observations, the transition probabilities, the observation probabilities, and
rewards.

Usage

POMDP(
states,
actions,
observations,
transition_prob,
observation_prob,
reward,
discount = 0.9,
horizon = Inf,
terminal_values = 0,
start = "uniform",
max = TRUE,
name = NA

)
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O_(action = "*", end.state = "*", observation = "*", probability)

T_(action = "*", start.state = "*", end.state = "*", probability)

R_(action = "*", start.state = "*", end.state = "*", observation = "*", value)

Arguments

states a character vector specifying the names of the states.

actions a character vector specifying the names of the available actions.

observations a character vector specifying the names of the observations.
transition_prob

Specifies action-dependent transition probabilities between states. See Details
section.

observation_prob

Specifies the probability that an action/state combination produces an observa-
tion. See Details section.

reward Specifies the rewards structure dependent on action, states and observations. See
Details section.

discount numeric; discount factor between 0 and 1.

horizon numeric; Number of epochs. Inf specifies an infinite horizon.
terminal_values

a vector with the terminal values for each state or a matrix specifying the termi-
nal rewards via a terminal value function (e.g., the alpha component produced
by solve_POMDP). A single 0 specifies that all terminal values are zero.

start Specifies the initial probabilities for each state (i.e., the initial belief), typically
as a vector or the string "uniform" (default). This belief is used to calculate the
total expected cumulative reward. It is also used by some solvers. See Details
section for more information.

max logical; is this a maximization problem (maximize reward) or a minimization
(minimize cost specified in reward)?

name a string to identify the POMDP problem.
action, start.state, end.state, observation, probability, value

Values used in the helper functions O_(), R_(), and T_() to create an entry for
observation_prob, reward, or transistion_prob above, respectively. The
default value "*" matches any action/state/observation.

Details

POMDP problems can be solved using solve_POMDP. More details about the available specifications
can be found in [1].

In the following we use the following notation. The POMDP is a 7-duple (S,A, T,R,Ω, O, γ). S
is the set of states; A is the set of actions; T are the conditional transition probabilities between
states; R is the reward function; Ω is the set of observations; O are the conditional observation
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probabilities; and γ is the discount factor. We will use lower case letters to represent a member of
a set, e.g., s is a specific state. To refer to the size of a set we will use carnality, e.g., the number of
actions is |A|.
Specification of transition probabilities
Transition probability to transition to state s′ from s given action a is T (s′|s, a). The transition
probabilities can be specified in the following ways:

• A data frame with 4 columns, where the columns specify action a, start-state s, end-state
s′ and the transition probability T (s′|s, a), respectively. The first 3 columns can be either
character (the name of the action or state) or integer indices. You can use rbind() with helper
function T_() to create this data frame.

• A named list of |A| matrices. Each matrix is square of size |S| × |S|. Instead of a matrix, also
the strings "identity" or "uniform" can be specified.

Specification of observation probabilities
The POMDP specifies the probability for each observation o given an action a and that the system
transitioned to a specific state s′, O(o|s′, a). These probabilities can be specified in the following
ways:

• A data frame with 4 columns, where the columns specify the action a, the end-state s′, the
observation o and the probability O(o|s′, a), respectively. The first 3 columns could be either
character (the name of the action, state, or observation), integer indices, or they can be "*" to
indicate that the observation probability applies to all actions or states. You can use rbind()
with helper function O_() to create this data frame.

• A named list of |A| matrices. Each matrix is of size |S| × |Ω|. The name of each matrix is the
action it applies to. Instead of a matrix, also the string "uniform" can be specified.

Specification of the reward function
The reward function R(s, s′, o, a) can be specified in the following ways:

• a data frame with 5 columns, where the columns specify action a, start.state s, end.state s′,
observation o and the associated reward R(s, s′, a), respectively. The first 4 columns could
be either character (names of the action, states, or observation), integer indices, or they can
be "*" to indicate that the reward applies to all transitions. Use rbind() with helper function
R_() to create this data frame.

• a named list of |A| lists. Each list contains |S| named matrices representing the start states s.
Each matrix is of size |S| × |Ω|, representing the end states s′ and observations.

Start Belief
This belief is used to calculate the total expected cumulative reward printed with the solved model.
The function reward can be used to calculate rewards for any belief.

Some methods use this belief to decide which belief states to explore (e.g., the finite grid method).
The default initial belief is a uniform distribution over all states. No initial belief state can be used
by setting start = NULL.

Options to specify the start belief state are:

• a probability distribution over the states. That is, a vector of |S| probabilities, that add up to 1.
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• the string "uniform" for a uniform distribution over all states.

• an integer in the range 1 to n to specify the index of a single starting state.

• a string specifying the name of a single starting state.

Time-dependent POMDPs
Time dependence of transition probabilities, observation probabilities and reward structure can be
modeled by considering a set of episodes representing epoch with the same settings. The length of
each episode is specified as a vector for horizon, where the length is the number of episodes and
each value is the length of the episode in epochs. Transition probabilities, observation probabilities
and/or reward structure can contain a list with the values for each episode. See solve_POMDP for
more details and an example.

Value

The function returns an object of class POMDP which is list with an element called model contain-
ing a list with the model specification. solve_POMDP reads the object and adds a list element called
solution.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

[1] For further details on how the POMDP solver utilized in this R package works check the fol-
lowing website: http://www.pomdp.org

See Also

solve_POMDP

Examples

## The Tiger Problem

Tiger <- POMDP(
name = "Tiger Problem",

discount = 0.75,

states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
observations = c("tiger-left", "tiger-right"),

start = "uniform",

transition_prob = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),

http://www.pomdp.org
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observation_prob = list(
"listen" = rbind(c(0.85, 0.15),

c(0.15, 0.85)),
"open-left" = "uniform",
"open-right" = "uniform"),

# the reward helper expects: action, start.state, end.state, observation, value
reward = rbind(

R_("listen", v = -1),
R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100)

)
)

Tiger

Tiger$model

reward Calculate the Reward for a POMDP Solution

Description

This function calculates the expected total reward for a POMDP solution given a starting belief
state.

Usage

reward(x, belief = NULL, epoch = 1)

Arguments

x a POMDP solution (object of class POMDP).

belief specification of the current belief state (see argument start in POMDP for details).
By default the belief state defined in the model as start is used.

epoch return reward for this epoch. Default is the first epoch.

Details

The value is calculated using the value function stored in the POMDP solution.
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Value

A list with the components

reward the total expected reward given a belief and epoch.

belief_state the belief state specified in belief.

pg_node the policy node that represents the belief state.

action the optimal action.

Author(s)

Michael Hahsler

See Also

POMDP, solve_POMDP

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)

# if no start is specified, a uniform belief is used.
reward(sol)

# we have additional information that makes us belief that the tiger
# is more likely to the left.
reward(sol, belief = c(0.85, 0.15))

# we start with strong evidence that the tiger is to the left.
reward(sol, belief = "tiger-left")

# Note that in this case, the total discounted expected reward is greater
# than 10 since the tiger problem resets and another game staring with
# a uniform belief is played which produces addional reward.

round_stochastic Round a stochastic vector or a row-stochastic matrix

Description

Rounds a vector such that the sum of 1 is preserved. Rounds a matrix such that the rows still sum
up to 1.

Usage

round_stochastic(x, digits = 3)
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Arguments

x a stochastic vector or a row-stochastic matrix.

digits number of digits for rounding.

Details

Rounds and adjusts one entry such that the rounding error is the smallest.

Value

The rounded vector or matrix.

See Also

round

Examples

x <- c(0.25, 0.25, 0.5)
round_stochastic(x, 2)
round_stochastic(x, 1)
round_stochastic(x, 0)

sample_belief_space Sample from the Belief Space

Description

Sample randomly (uniform) or regularly spaced points from the projected belief space.

Usage

sample_belief_space(model, projection = NULL, n = 1000, method = "random")

Arguments

model a unsolved or solved POMDP.

projection Sample in a projected belief space. All states not included in the projection are
held at a belief of 0. NULL means no projection.

n size of the sample.

method character string specifying the sampling strategy. Available are "random", "regular",
and "vertices".
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Details

Method random samples uniformly sample from the projected belief space using the method de-
scribed by Luc Devroye. Method regular samples points using a regularly spaced grid. This method
is only available for projections on 2 or 3 states. Method vertices only samples from the vertices of
the belief space.

Value

Returns a matrix. Each row is a sample from the belief space.

Author(s)

Michael Hahsler

References

Luc Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986.

Examples

data("Tiger")

sample_belief_space(Tiger, n = 5)
sample_belief_space(Tiger, n = 5, method = "regular")

# sample and calculate the reward for a solve POMDP
sol <- solve_POMDP(Tiger)
reward(sol, belief = sample_belief_space(sol, n = 5, method = "regular"))

simulate_POMDP # Simulate belief points

Description

If we have a solution, the policy is followed. Otherwise, a random action is chosen. Simulate
Trajectories in a POMDP

Usage

simulate_POMDP(
model,
n = 100,
belief = NULL,
horizon = NULL,
visited_beliefs = FALSE,
random_actions = FALSE,
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digits = 7,
verbose = FALSE

)

Arguments

model a POMDP model.

n number of trajectories.

belief probability distribution over the states for choosing the starting states for the
trajectories.

horizon number of epochs for the simulation. If NULL then the horizon for the model is
used.

visited_beliefs

logical; Should all belief points visited on the trajectories be returned? If FALSE
then only the belief at the final epoch is returned.

random_actions logical; should randomized actions be used instead of the policy of the solved
POMDP? Randomized actions can be used for unsolved POMDPs.

digits round belief points.

verbose report used parameters.

Details

Simulate several trajectories through a POMDP. The start state for each trajectory is randomly
chosen using the specified belief. For solved POMDPs the optimal actions will be chosen, for
unsolved POMDPs random actions will be used.

Value

A matrix with belief points as rows. Attributes containing action counts, and rewards may be
available.

Author(s)

Michael Hahsler

See Also

POMDP

Examples

data(Tiger)

# solve the POMDP for 5 epochs and no discounting
sol <- solve_POMDP(Tiger, horizon = 5, discount = 1, method = "enum")
sol
policy(sol)
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## Example 1: simulate 10 trajectories, only the final belief state is returned
sim <- simulate_POMDP(sol, n = 100, verbose = TRUE)
head(sim)

# plot the final belief state, look at the average reward and how often different actions were used.
plot_belief_space(sol, sample = sim)

# additional data is available as attributes
names(attributes(sim))
attr(sim, "avg_reward")
colMeans(attr(sim, "action"))

## Example 2: look at all belief states in the trajectory starting with an initial start belief.
sim <- simulate_POMDP(sol, n = 100, belief = c(.5, .5), visited_beliefs = TRUE)

# plot with added density
plot_belief_space(sol, sample = sim, ylim = c(0,3))
lines(density(sim[,1], bw = .05)); axis(2); title(ylab = "Density")

## Example 3: simulate trajectories for an unsolved POMDP using randomized actions
sim <- simulate_POMDP(Tiger, n = 100, horizon = 5, random_actions = TRUE, visited_beliefs = TRUE)
plot_belief_space(sol, sample = sim, ylim = c(0,6))
lines(density(sim[,1], bw = .05)); axis(2); title(ylab = "Density")

solve_POMDP Solve a POMDP Problem

Description

This function utilizes the C implementation of ’pomdp-solve’ by Cassandra (2015) to solve prob-
lems that are formulated as partially observable Markov decision processes (POMDPs). The result
is an optimal or approximately optimal policy.

Usage

solve_POMDP(
model,
horizon = NULL,
discount = NULL,
terminal_values = NULL,
method = "grid",
digits = 7,
parameter = NULL,
verbose = FALSE

)
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Arguments

model a POMDP problem specification created with POMDP. Alternatively, a POMDP
file or the URL for a POMDP file can be specified.

horizon an integer with the number of epochs for problems with a finite planning hori-
zon. If set to Inf, the algorithm continues running iterations till it converges to
the infinite horizon solution. If NULL, then the horizon specified in model will be
used. For time-dependent POMDPs a vector of horizons can be specified (see
Details section).

discount discount factor in range [0, 1]. If NULL, then the discount factor specified in
model will be used.

terminal_values

a vector with the terminal values for each state or a matrix specifying the termi-
nal rewards via a terminal value function (e.g., the alpha component produced
by solve_POMDP). If NULL, then the terminal values specified in model will be
used.

method string; one of the following solution methods: "grid", "enum", "twopass",
"witness", or "incprune". The default is "grid" implementing the finite grid
method.

digits precision used when writing POMDP files (see write_POMDP).

parameter a list with parameters passed on to the pomdp-solve program.

verbose logical, if set to TRUE, the function provides the output of the pomdp solver in
the R console.

Details

solve_POMDP_parameter() displays available solver parameter options.

Horizon: Infinite-horizon POMDPs (horizon = Inf) converge to a single policy graph. Finite-
horizon POMDPs result in a policy tree of a depth equal to the smaller of the horizon or the number
of epochs to convergence. The policy (and the associated value function) are stored in a list by
epoch. The policy for the first epoch is stored as the first element.

Policy: Each policy is a data frame where each row representing a policy graph node with an
associated optimal action and a list of node IDs to go to depending on the observation (specified as
the column names). For the finite-horizon case, the observation specific node IDs refer to nodes in
the next epoch creating a policy tree. Impossible observations have a NA as the next state.

Value function: The value function is stored as a matrix. Each row is associated with a node (row)
in the policy graph and represents the coefficients (alpha vector) of a hyperplane. An alpha vector
contains one value per state and is the value for the belief state that has a probability of 1 for that
state and 0s for all others.

Precision: The POMDP solver uses various epsilon values to control precision for comparing al-
pha vectors to check for convergence, and solving LPs. Overall precision can be changed using
parameter = list(epsilon = 1e-3).

Methods: Several algorithms for dynamic-programming updates are available:

• Enumeration (Sondik 1971).

• Two pass (Sondik 1971).
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• Witness (Littman, Cassandra, Kaelbling, 1996).

• Incremental pruning (Zhang and Liu, 1996, Cassandra et al 1997).

• Grid implements a variation of point-based value iteration to solve larger POMDPs (PBVI;
see Pineau 2003) without dynamic belief set expansion.

Details can be found in (Cassandra, 2015).

Note on method grid: The grid method implements a version of Point Based Value Iteration
(PBVI). The used belief points are by default created using points that are reachable from the initial
belief (start) by following all combinations of actions and observations. The size of the grid can
be set via parameter = list(fg_points = 100). Alternatively, different strategies can be chosen
using the parameter fg_type. In this implementation, the user can also specify manually a grid of
belief states by providing a matrix with belief states as produced by sample_belief_space as the
parameter grid.

To guarantee convergence in point-based (finite grid) value iteration, the initial value function must
be a lower bound on the optimal value function. If all rewards are strictly non-negative, a initial
value function with an all zero vector can be used and results will be similar to other methods.
However, if there are negative rewards, lower bounds can be guaranteed by setting a single vector
with the values min(reward)/(1 − discount). The value function is guaranteed to converge to
the true value function, but finite-horizon value functions will not be as expected. solve_POMDP
produces a warning in this case.

Time-dependent POMDPs: Time dependence of transition probabilities, observation probabilities
and reward structure can be modeled by considering a set of episodes representing epoch with
the same settings. In the scared tiger example (see Examples section), the tiger has the normal
behavior for the first three epochs (episode 1) and then become scared with different transition
probabilities for the next three epochs (episode 2). The episodes can be solved in reverse order
where the value function is used as the terminal values of the preceding episode. This can be done
by specifying a vector of horizons (one horizon for each episode) and then lists with transitions
matrices, observation matrices, and rewards. If the horizon vector has names, then the lists also
need to be named, otherwise they have to be in the same order (the numeric index is used). Only the
time-varying matrices need to be specified. An example can be found in Example 4 in the Examples
section. The procedure can also be done by calling the solver multiple times (see Example 5).

Note: The parser for POMDP files is experimental. Please report problems here: https://github.
com/farzad/pomdp/issues.

Value

The solver returns an object of class POMDP which is a list with the model specifications (model),
the solution (solution), and the solver output (solver_output).

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

Cassandra, A. (2015). pomdp-solve: POMDP Solver Software, http://www.pomdp.org.

Sondik, E. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D. Disser-
tation, Stanford University.

https://github.com/farzad/pomdp/issues
https://github.com/farzad/pomdp/issues
http://www.pomdp.org
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Cassandra, A., Littman M.L., Zhang L. (1997). Incremental Pruning: A Simple, Fast, Exact Algo-
rithm for Partially Observable Markov Decision Processes. UAI’97: Proceedings of the Thirteenth
conference on Uncertainty in artificial intelligence, August 1997, pp. 54-61.

Monahan, G. E. (1982). A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science 28(1):1-16.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. (1996). Efficient dynamic-programming
updates in partially observable Markov decision processes. Technical Report CS-95-19, Brown
University, Providence, RI.

Zhang, N. L., and Liu, W. (1996). Planning in stochastic domains: Problem characteristics and
approximation. Technical Report HKUST-CS96-31, Department of Computer Science, Hong Kong
University of Science and Technology.

Pineau J., Geoffrey J Gordon G.J., Thrun S.B. (2003). Point-based value iteration: an anytime algo-
rithm for POMDPs. IJCAI’03: Proceedings of the 18th international joint conference on Artificial
Intelligence. Pages 1025-1030.

Examples

################################################################
# Example 1: Solving the simple infinite-horizon Tiger problem
data("Tiger")
Tiger

sol <- solve_POMDP(model = Tiger)
sol

# look at the model
sol$model

# look at solver output
sol$solver_output

# look at the solution
sol$solution

# policy (value function (alpha vectors), optimal action and observation dependent transitions)
policy(sol)

# plot the policy graph of the infinite-horizon POMDP
plot_policy_graph(sol)

# value function
plot_value_function(sol, ylim = c(0,20))

# display available solver options which can be passed on to the solver as parameter.
solve_POMDP_parameter()

################################################################
# Example 2: Solve a problem specified as a POMDP file
# using a grid of size 10
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sol <- solve_POMDP("http://www.pomdp.org/examples/cheese.95.POMDP",
method = "grid", parameter = list(fg_points = 10))

sol

policy(sol)
plot_policy_graph(sol)

# Example 3: Solving a finite-horizon POMDP using the incremental
# pruning method (without discounting)
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune")
sol

# look at the policy tree
policy(sol)
# note: it does not make sense to open the door in epochs 1 or 2 if you only have 3 epochs.

reward(sol) # listen twice and then open the door or listen 3 times
reward(sol, belief = c(1,0)) # listen twice (-2) and then open-left (10)
reward(sol, belief = c(1,0), epoch = 3) # just open the right door (10)
reward(sol, belief = c(.95,.05), epoch = 3) # just open the right door (95% chance)

################################################################
# Example 4: Using terminal values
#
# Specify 1000 if the tiger is right after 3 (horizon) epochs
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune",
terminal_values = c(0, 1000))

sol

policy(sol)
# Note: the optimal strategy is never to open the left door, because we think the
# tiger is there then we better wait to get 1000 as the terminal value. If we think
# the Tiger is to the left then open the right door and have a 50/50 chance that the
# Tiger will go to the right door.

################################################################
# Example 4: Model time-dependent transition probabilities

# The tiger reacts normally for 3 epochs (goes randomly two one
# of the two doors when a door was opened). After 3 epochs he gets
# scared and when a door is opened then he always goes to the other door.

# specify the horizon for each of the two differnt episodes
Tiger_time_dependent <- Tiger
Tiger_time_dependent$model$name <- "Scared Tiger Problem"
Tiger_time_dependent$model$horizon <- c(normal_tiger = 3, scared_tiger = 3)
Tiger_time_dependent$model$transition_prob <- list(

normal_tiger = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),
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scared_tiger = list(
"listen" = "identity",
"open-left" = rbind(c(0, 1), c(0, 1)),
"open-right" = rbind(c(1, 0), c(1, 0))

)
)

Tiger_time_dependent

sol <- solve_POMDP(model = Tiger_time_dependent, discount = 1, method = "incprune")
sol

policy(sol)

################################################################
# Example 5: Alternative method to solve time-dependent POMDPs

# 1) create the scared tiger model
Tiger_scared <- Tiger
Tiger_scared$model$transition_prob <- list(

"listen" = "identity",
"open-left" = rbind(c(0, 1), c(0, 1)),
"open-right" = rbind(c(1, 0), c(1, 0))

)

# 2) Solve in reverse order. Scared tiger without terminal values first.
sol_scared <- solve_POMDP(model = Tiger_scared,

horizon = 3, discount = 1, method = "incprune")
sol_scared
policy(sol_scared)

# 3) Solve the regular tiger with the value function of the scared tiger as terminal values
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune",
terminal_values = sol_scared$solution$alpha[[1]])

sol
policy(sol)
# note: it is optimal to mostly listen till the Tiger gets in the scared mood. Only if we are
# extremely sure in the first epoch, then opening a door is optimal.

################################################################
# Example 5: PBVI with a custom grid
custom_grid <- sample_belief_space(Tiger, n = 10, method = "regular")
custom_grid

sol <- solve_POMDP(Tiger, method = "grid", parameter = list(grid = custom_grid))
sol

# visualize used grid
plot_belief_space(sol, sample = custom_grid)
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Tiger Tiger Problem POMDP Specification

Description

The model for the Tiger Problem [1].

Format

An object of class POMDP.

Details

The original Tiger problem was published in [1]. A tiger is put with equal probability behind one of
two doors represented by the states tiger-left and tiger-right, while treasure is put behind the other
door. You are standing in front of the two closed doors and need to decide which one to open. If
you open the door with the tiger, you will get hurt by the tiger (a negative reward of -100), but if you
open the door with the treasure, you receive a positive reward of 10. Instead of opening a door right
away, you also have the option to wait and listen for tiger noises producing an observation (tiger-left
or tiger-right). But listening is neither free (reward of -1) nor entirely accurate. You might hear the
tiger behind the left door while it is actually behind the right door and vice versa. Once you open a
door (actions open-left or open-right), you receive the appropriate reward and the problem is reset
(i.e., the tiger is randomly assigned to a door and the belief is set to 50/50).

The three doors problem is an extension of the Tiger problem where the tiger is behind one of three
doors represented by three states (tiger-left, tiger-center, and tiger-right) and treasure is behind the
other two doors. There are also three observations for listening.

References

[1] Anthony R. Cassandra, Leslie P Kaelbling, and Michael L. Littman (1994). Acting Optimally
in Partially Observable Stochastic Domains. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pp. 1023-1028.

Examples

data("Tiger")
Tiger

Tiger$model

data("Three_doors")
Three_doors

Three_doors$model
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transition_matrix Extract the Transition, Observation or Reward Matrices from a
POMDP

Description

Converts the description of transition probabilities and observation probabilities in a POMDP into a
list of matrices, one for each action. Rewards are converted into a list (actions) of lists (start states)
of matrices.

Usage

transition_matrix(x, episode = 1)

Arguments

x A POMDP object.

episode Episode used for time-dependent POMDPs (see POMDP).

Value

A list or a list of lists of matrices.

Author(s)

Michael Hahsler

See Also

POMDP

Examples

data("Tiger")

# transition matrices for each action in the from states x states
transition_matrix(Tiger)

# observation matrices for each action in the from states x observations
observation_matrix(Tiger)

# reward matrices for each matrix and (start) state in
# the form (end) state x observation
reward_matrix(Tiger)

# Visualize transition matrix for action 'open-left'
library("igraph")
g <- graph_from_adjacency_matrix(transition_matrix(Tiger)$"open-left", weighted = TRUE)
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edge_attr(g, "label") <- edge_attr(g, "weight")

igraph.options("edge.curved" = TRUE)
plot(g, layout = layout_on_grid, main = "Transitions for action 'open=left'")

update_belief Belief Update

Description

Update the belief given a taken action and observation.

Usage

update_belief(
model,
belief = NULL,
action = NULL,
observation = NULL,
episode = 1,
digits = 7,
drop = TRUE

)

Arguments

model a POMDP model. Defaults to the start belief state specified in the model or
"uniform".

belief the current belief state.

action the taken action.

observation the received observation.

episode Use transition and observation matrices for the given episode for time-dependent
POMDPs (see POMDP).

digits round decimals.

drop logical; drop the result to a vector if only a single belief state is returned.

Author(s)

Michael Hahsler

See Also

POMDP
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Examples

data(Tiger)

update_belief(c(.5,.5), model = Tiger)
update_belief(c(.5,.5), action = "listen", observation = "tiger-left", model = Tiger)
update_belief(c(.15,.85), action = "listen", observation = "tiger-right", model = Tiger)

write_POMDP Read and write a POMDP Model to a File in POMDP Format

Description

Reads and write a POMDP file suitable for the pomdp-solve program.

Usage

write_POMDP(model, file, digits = 7)

read_POMDP(file)

Arguments

model an object of class POMDP_model.

file a file name.

digits precision for writing numbers (digits after the decimal point).

Value

read_POMDP returns a POMDP object.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

POMDP solver website: http://www.pomdp.org

See Also

POMDP

http://www.pomdp.org
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