
Simulating from the Polya posterior

Glen Meeden (gmeeden@umn.edu)
Charles Geyer (geyer@umn.edu)

April 30, 2020

1 Introduction

The Polya posterior is an objective Bayesian approach to finite population
sampling. In its simplest form it assumes little prior information is available
about the population and that the sample, however chosen, is “representative.”
That is the unobserved or unseen units in the population are assumed to be
similar to the observed or seen units in the sample. It is appropriate when a
classical survey sampler would be willing to use simple random sampling as their
sampling design. Let ysamp = (y1, . . . , yn) be the vector of observed values in
the sample of size n from a population of size N .

Given the data, the Polya posterior is a predictive joint distribution for the
unobserved units in the population conditioned on ysamp, the values in the
sample. For a sample ysamp we now define this distribution for the unseen
units. Consider two urns where the first urn contains the n observed ysamp

values while the second urn contains the N − n unsampled units. We begin
by choosing one unit at random from each of the two urns. We then assign
the observed y value of the unit selected from the first urn to the unit selected
from the second urn and then place them both in the first urn. The urns now
contain n + 1 and N − n − 1 items respectively. This process is repeated until
all the units have been moved from the second urn to the first and have been
assigned a value. At each step in the process all the units in the first urn have
the same probability of being selected. That is, unobserved units which have
been assigned a value are treated just like the ones that actually appeared in the
sample. Once this is done, we have generated one realization of the complete
population from the Polya posterior distribution. This simulated, completed
copy contains the n observed values along with the N − n simulated values
for the unobserved members of the population. Hence, simple Polya sampling
yields a predictive distribution for the unobserved given the observed. One
can use the Polya posterior in the usual Bayesian manner to find point and
interval estimates of various population parameters. In practice such estimates
are usually found approximately by considering many simulated copies of the
completed population.

A good reference for Polya sampling is Feller (1968). The Polya posterior

1

is related to the Bayesian bootstrap of Rubin (1981). See also Lo (1988). For
more discussion on the Polya posterior see Ghosh and Meeden (1997).

The Polya posterior can be modified to take into account available prior
information about the population. This leads to the constrained Polya posterior.
More discussion about the theory underlying the constrained Polya posterior can
be found in Lazar, Meeden and Nelson (2008). The discussion in this vignette
will focus on using the constrained Polya posterior to simulate completed copies
of the population.

2 R

> library(polyapost)

This document was processed with R, version 4.0.0, using the CRAN packages
polyapost, version 1.6, and rcdd, version 1.2.2.

> set.seed(313)

3 Simulating from the Polya posterior

This package has a function, polyap, which given a sample ysamp will simu-
late one completed copy of the population. To begin suppose we have a sample
of size 2 from a population of size 10 where the values in the sample are 0 and
1. The next bit of code simulates one completed copy of the population.

> ysamp<-c(0,1)

> K<-10-2

> polyap(ysamp,K)

[1] 0 1 0 0 1 0 1 1 0 1

For a more realistic example we construct a population of size 500, select a
random sample of 25 units, generate 10 completed copies of the population and
return the 10 means of the simulated populations.

> y<-rgamma(500,5)

> mean(y)

[1] 5.021535

> samp<-sample(1:500,25)

> ysamp<-y[samp]

> mean(ysamp)

[1] 5.459067

2

> K<-500-25

> simmns<-rep(0,10)

> for(i in 1:10){simmns[i]<-mean(polyap(ysamp,K))}

> round(simmns,digits=2)

[1] 5.65 5.64 5.02 5.34 5.94 6.02 5.28 5.96 4.76 5.01

When the sample size n is small compared to the population size N a well
known approximation can be used to generate simulated copies of the population
given the sample values. For simplicity assume the sample values ysamp are
all distinct. For j = 1, . . . , n let pj be the proportion of units in a complete
simulated copy of the entire population which take on the jth value of ysamp.
Then, under the Polya posterior, p = (p1, . . . , pn) has approximately a Dirichlet
distribution with a parameter vector of all ones, i.e., it is uniform on the n− 1
dimensional simplex, where

∑n
j=1 pj = 1. So rather than using simple Polya

sampling to randomly assign each unseen member of the population an observed
value we can construct a completed copy of the population by generating an
observation from the uniform distribution on the appropriate simplex. This
second approach will be very useful when we consider the constrained Polya
posterior.

4 The constrained Polya posterior

4.1 The basic idea

The Polya posterior can be modified to take into account prior information
about the population. For example, suppose that attached to each unit there is
an auxiliary variable, x say. Moreover suppose that the population mean of x is
known and for units in the observed sample we learn both their y and x values.
Then given the sample values ysamp and xsamp one should restrict the Polya
posterior to only generate completed populations which satisfy the population
mean constraint for x. If xsamp = (x1, . . . , xn) then when using the approximate
form of the Polya posterior we should only consider the subset of the simplex
where

∑n
j=1 pjxj equals the known population mean. More generally, when

using the Polya posterior to simulate completed copies of the entire population,
one should restrict it to yield only completed copies which satisfy all the known
constraints coming from prior information about the auxiliary variables. The
appropriately constrained Polya posterior can then be used to make inferences
about the population parameters of interest.

We assume that prior information about the population can be expressed
through a set of linear equalities and inequalities for the probability vector p.
In particular we suppose that p satisfies the following equations

A1p = b1 A2p ≤ b2 A3p ≥ b3

Here the Ai’s are matrices, p and the bi’s are column vectors and they have the
correct dimensions so all the equations make sense. In each system of equations

3

the equalities or inequalities are assumed to hold componentwise. Furthermore
all the components of the bi’s must be nonnegative.

To see how this can work we first construct a population using an auxiliary
variable x to construct the y values.

> x<-sort(rgamma(500,10))

> y<-rnorm(500,20 + 2*x,3)

> cor(x,y)

[1] 0.89672

> mean(y)

[1] 39.86569

> mnx<-mean(x)

> mnx

[1] 9.892615

We divide the population into two strata, the first 250 units and the remain-
ing 250 units. Our sampling plan will select 8 units at random from the first
stratum and 17 from the second. In addition we assume prior knowledge indi-
cates that the population mean of x lies between 9.7 and 10.0. The next chuck
of code selects the stratified random sample and constructs the Ai matrices and
the the bi vectors which incorporate the prior information.

> samp<-sort(c(sample(1:250,8),sample(251:500,17)))

> ysamp<-y[samp]

> xsamp<-x[samp]

> mean(ysamp)

[1] 41.67035

> mean(xsamp)

[1] 11.05348

> A1<-rbind(rep(1,25),c(rep(1,8),rep(0,17)))

> b1<-c(1,0.5)

> A2<-rbind(xsamp,-diag(25))

> b2<-c(10.0,rep(0,25))

> A3<-matrix(xsamp,1,25)

> b3<-9.7

Note that the first row of A1 represents the fact that the pi’s, the weights or
probabilities assigned to the units in the sample, must sum to one. The second
row represents the fact that the sum of the first eight must be 0.5 since their
stratum is half the population. The last 25 rows of A2 guarantee that all the

4

pi’s are greater than zero. Its first row represents the prior information that the
population mean of x is less than 10. The single row of A3 represents the prior
information that the population mean of x is greater than 9.7.

The next step is to find a probability distribution on the sample units which
satisfies all of the constraints. The function feasible will do this. It uses a
simplex algorithm in R to a find solution. The function feasible is a function
of the Ai’s, the bi’s and a positive real number eps which is close to zero. This
is a lower bound which all the pi’s in the solution must satisfy since our method
will not work if any of the pi’s are zero. One must be careful to not choose a
value of eps which is too large. We let initsol denote the solution found by
feasible. The next bit of code finds initsol for our example. In the solution
all but the third, ninth and twenty-fifth have the value 0.001. These remaining
values are given just below.

> eps<-0.001

> initsol<-feasible(A1,A2,A3,b1,b2,b3,eps)

> initsol[c(3,9,25)]

[1] 0.001000 0.372716 0.112284

We are ready to generate completed copies of the population and calcu-
late their respective means. This will be done using the function constrppmn.
Starting at the initial distribution, initsol, the function constrppmn uses the
Metropolis-Hastings algorithm to generate a Markov chain of reps dependent
observations from the subset of the simplex defined by the constraints. The
Markov chain generated in this way converges in distribution to the uniform
distribution over the subset. If we wish to approximate the expected value of
some function defined on the subset under the uniform distribution then the
average of the function computed at the simulated values converges to its actual
value. For example, if we were estimating the population mean then for each
simulated probability vector p we would compute the p expectation of ysamp.
This allows one to find point estimates of population parameters approximately.

The function constrppmn returns a list of 3 objects. To call it you also must
specify reps and burnin. For now we will only be concerned with the first
item in the list which is just the simulated population means created after the
burnin. That is, it ignores the first burnin − 1 simulated population means
and returns the remaining reps − burnin + 1 simulated population means. In
this case we are keeping all of the simulated means because burnin = 1. We
generated a total of reps = 200, 001 means. The average of these 200,001 is
given in the output. The plot of the first and each successive two hundredth
simulated population mean is given in Figure 1. From the plot it appears that
the chain is mixing well and standard diagnostics indicate that this is so.

> burnin<-1

> reps<-200001

> out<-constrppmn(A1,A2,A3,b1,b2,b3,initsol,reps,ysamp,burnin)

> mean(out[[1]])

5

0 200 400 600 800 1000

38
.0

38
.5

39
.0

39
.5

40
.0

40
.5

Index

ou
t[[

1]
][s

eq
(1

, 2
00

00
1,

 b
y

=
 2

00
)]

Figure 1: Plot of a subsequence of 1,000 simulated population means where
every two hundredth was taken from a dependent sequence of length 200,001.
The constrained Polya posterior uses the strata information and assumes the
population mean of the dependent variable x lies between 9.7 and 10.0.

[1] 39.30069

The second component of the output from the function constrppmn is the
mean of the first component, i.e. the Polya estimate of the population mean.
The third component is the 2.5th and 97.5th quantiles of the first component,
i.e. an approximate 95 percent confidence interval of the population mean.

> out[[2]]

[1] 39.30069

> out[[3]]

2.5% 97.5%

38.35525 40.15017

Qu, Meeden and Zhang (2015) and Strief and Meeden (2014) discuss two sit-
uations where the constrained Polya posterior yields good inference procedures.

6

In the first, they demonstrate that for some small area estimation problems
the constrained Polya posterior yields more robust procedures than standard
methods. In the second, they demonstrate that for each unit in a sample the
constrained Polya posterior can be used to find a weight. This weight can be
given the usual interpretation as the number of units in the population the sam-
pled unit represents. These weights can then be used to find good estimates of
population parameters.

4.2 Some computing issues

4.2.1 How long to run the chain

The Markov chain generated by constrppmn converges in distribution to the
uniform distribution over the polytope. The convergence result of such mixing
algorithms was proven by Smith (1984). If we wish to approximate the expected
value of some function defined on the polytope then the average of the function
computed at the simulated values converges to its actual value. This allows
one to compute point estimates of population parameters. Finding the 0.95
Bayesian credible interval approximately is more difficult.

One possibility is to run the chain for a long time; for example, we may
generate 4.1 million values, throw away the first 100,000 values, and find the
0.025 and 0.975 quantiles of the remaining values. These two numbers will form
our approximate 0.95 credible interval. For sample sizes of less than 100 we
have found that chains of a few million suffice.

How fast a chain mixes can depend on the constraints and the parameter
being estimated. It seems to take longer to get good mixing when estimating
the median rather than the mean. Another approach which can work well is to
run the chain for a long time and then just use every mth point where m is a
large integer. Although this is inefficient it can give good answers when finding
a 0.95 credible interval for the median.

To get a sense of how fast these chains can mix we run the following com-
parison. Although it would be silly, we could use the function constrppmn

to generated dependent samples from the unconstrained Polya posterior. The
following bit of code does that and a plot of a subsequence of the simulate
population means are given in Figure 2.

> A1<-rbind(rep(1,25))

> A2<--diag(25)

> b1<-1

> b2<-rep(0,25)

> initsol<-rep(0.04,25)

> reps<-1000001

> out<-constrppmn(A1,A2,NULL,b1,b2,NULL,initsol,reps,ysamp,burnin)

> mean(out[[1]])

[1] 41.66603

7

0 200 400 600 800 1000

38
40

42
44

46

Index

ou
t[[

1]
][s

ub
se

q]

Figure 2: Plot of a subsequence of 1,000 simulated population means where
every thousandth was taken from a dependent sequence of length 1,000,001. In
this case the constrained polytope was the entire simplex.

> subseq<-seq(1,1000001,by=1000)

> mean(out[[1]][subseq])

[1] 41.65774

> sqrt(var(out[[1]][subseq]))

[1] 1.371893

We can now compare this sequence of 1,000 dependent simulated population
means to a sequence of 1,000 truly independent copies generated by polyap. We
see from the plots in Figures 2 and 3 that the subsequence of dependent means
look very much like the sequence of independent means.

> K<-500-25

> simmns<-rep(0,1000)

> for(i in 1:1000){

8

0 200 400 600 800 1000

38
40

42
44

46

Index

si
m

m
ns

Figure 3: Plot of 1,000 independent simulated population means generated from
the uniform distribution over the simplex.

+ simmns[i]<-mean(polyap(ysamp,K))

+ }

> mean(simmns)

[1] 41.69104

> sqrt(var(simmns))

[1] 1.311089

4.2.2 Estimating parameters other than the mean

The function constrppmn is setup for estimating a population mean. Often
one is interested in estimating other population quantities, like the median. In
order to do this one needs to have observations from the polytope of the entire
probability distribution. With these one can compute the parameter of interest
from the simulated populations and find point and interval estimates.

9

The function constrppprob returns a subsequence of dependent observations
from the from the polytope. A simple example is given just below.

> A1<-rbind(rep(1,6),1:6)

> A2<-rbind(c(2,5,7,1,10,8),diag(-1,6))

> A3<-matrix(c(1,1,1,0,0,0),1,6)

> b1<-c(1,3.5)

> b2<-c(6,rep(0,6))

> b3<-0.45

> initsol<-rep(1/6,6)

> out<-constrppprob(A1,A2,A3,b1,b2,b3,initsol,2000,5)

> round(out,digits=5)

[,1] [,2] [,3] [,4] [,5] [,6]

initsol 0.16037 0.19878 0.13807 0.19067 0.10750 0.20461

initsol 0.05095 0.23939 0.17355 0.38326 0.00047 0.15237

initsol 0.09005 0.20213 0.15903 0.29465 0.17485 0.07929

initsol 0.22338 0.02755 0.28794 0.16770 0.07367 0.21976

initsol 0.10953 0.20315 0.20953 0.21140 0.08833 0.17805

4.2.3 The weighted Polya posterior

In the simple Polya posterior each member of the sample is treated the same
and assigned a weight of one. In some situations it is sensible to assign different
weighs to the units in the sample. A detailed discussion of the weighted Polya
posterior can be found in Meeden (1999). The process proceeds in much the
same way as before. Consider an urn containing a finite set of n sampled values
selected from a population of size N . In addition associated with each sampled
unit is a positive weight. An item is selected at random from the urn with
probability proportional to its weight. Then it is returned to the urn and its
weight is increased by one. The process is repeated on the adjusted urn. We
continue until the total weight in the urn has been increased by N − n. The
original composition of the urn along with the N − n selected values, in order,
are returned. A simple example follows.

> ysamp<-c(1,2,3)

> wts<-c(1,2,3)

> wtpolyap(ysamp,wts,25)

[1] 1 2 3 2 3 3 3 2 3 3 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3 3 2 2

5 An example using the hitrun function

A limitation of the function constrppprob is that one cannot add any con-
straints. In practice one would like to be able to find approximately the expec-
tation of the components of a constrained Dirichlet distribution. The hitrun

function handles this more general problem.

10

For a survey sampling example suppose we have a population that is divided
into two strata. For h = 1, 2 let Nh be the number of units that belong to
stratum h. Suppose a random sample of size nh is taken from stratum h and
nh/Nh is small. In addition suppose that each unit in the population belongs
to a class, or poststratum that may cut across the design strata. Let Nc denote
the number of units that belongs to the cth class. If for each h and c we knew
the number of units that belonged to class c in stratum h then this is just the
standard poststratification problem with a textbook solution. When this is not
the case the standard approach is to adjust the sampling weights by using the
information contained in the Nc’s. For our example we assume that the number
of classes is three.

Let pch be the proportion of the units in the population that belong to class
c in stratum h. Our goal is to estimate the pch’s using the prior information
about the class sizes and strata sizes. Let N be the total size of the population.
For each class c we know that

pc1 + pc2 = Nc/N

while for each stratum h we have

p1h + p2h + p3h = Nh/N

where
p11 + p21 + p31 + p12 + p22 + p32 = 1

There is no need to include the last constraint since that is done automatically
in the hitrun function. For the class constraints we will only include two of
them since the third is redundant. For the same reason we will only include one
constraint for the strata sizes.

We set the class sizes to be 5,000, 3,000 and 2,000 while the stratum sizes
are 6,000 and 4,000. The vector

> smp<-c(20,10,10,25,15,20)

gives the observed number of units in each class and stratum combination for
a sample of size 40 from the first stratum and of size 60 from the second.
Since the sample size is small compared to the population size and the sam-
pling design is simple random sampling without replacement within the strata,
the theory underlying the Polya posterior justifies taking as the posterior the
Dirichlet distribution with parameter smp restricted to the polytope defined by
the constraints.

The next bit of code shows how the function hitrun can find the posterior
expectation of the p vector given the sample and the constraints.

> mxcst<-rbind(c(1,0,0,1,0,0),c(0,1,0,0,1,0),c(1,1,1,0,0,0))

> mncst<-c("5000/10000","3000/10000","6000/10000")

> out<-hitrun(smp, a2=mxcst, b2=mncst, nbatch=20, blen=1000)

11

Note that a1 and b1 are omitted because there are no inequality constraints in
this example.

Also note that hitrun requires no initial distribution. It figures out a point
in the relative interior of the constraint set to start at all by itself.

The reason why mncst is given as character strings is so hitrun will use
infinite-precision rational arithmetic to calculate the constraint set, thus as-
suring no errors due to the inexactness of ordinary computer arithmetic. The
reason why mxcst did not need the same trick is that it is integer-valued and
integers are exact in ordinary computer arithmetic. The reason why 3000/10000
is not a round number to computers is that they use binary arithmetic rather
than decimal as shown by

> foo <- d2q(3000/10000)

> bar <- q2q("3000/10000")

> baz <- qmq(foo, bar)

> foo # three tenths decimal converted to binary converted to rational

[1] "5404319552844595/18014398509481984"

> bar # three tenths rational

[1] "3/10"

> baz # the difference

[1] "-1/90071992547409920"

The difference is not large, but such differences can change not just the position
of vertices of the constraint polytope but the actual number of vertices.

The (Monte Carlo approximations of) posterior means are

> round(colMeans(out$batch), digits=3)

[1] 0.322 0.186 0.092 0.178 0.114 0.108

and the Monte Carlo standard errors are

> round(apply(out$batch, 2, sd) / sqrt(out$nbatch), digits=3)

[1] 0.000 0.001 0.000 0.000 0.001 0.000

Thus we see that the posterior means have almost the reported three-significant-
figure accuracy, so long as the batch means have no serial correlation, which is
shown by Figure 4, which is made by the following code.

> i <- 1

> acf(out$batch[,i], main=paste("Batch Means for Component", i))

12

0 2 4 6 8 10 12

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Batch Means for Component 1

Figure 4: Autocorrelation Plot for Batch Means

13

This figure only shows the code for component 1 of the state vector. The other
components (not shown) could be seen by changing the variable i and rerun-
ning the Sweave source for the vignette (which is found in the package source
tarball on CRAN). None of the components have any statistically significant
autocorrelation for this batch size (1000). (We looked at them.)

Even though it is more general than constrppprob we recommend that
hitrun be used even in problems where constrppprob is applicable, because
hitrun has many features that constrppprob lacks.

References

Feller, W. (1968). An Introduction to Probability Theory and its Applications,
volume I. New York: Wiley.

Ghosh, M. and Meeden, G. (1997). Bayesian Methods for Finite Population
Sampling. London: Chapman and Hall.

Lazar, R., Meeden, G., and Nelson, D. (2008). A noninformative Bayesian ap-
proach to finite population sampling using auxiliary variables. Survey Method-
ology, 34:51–64.

Lo, A. (1988). A Bayesian bootstrap for a finite population. Annals of Statistics,
16:1684–1695.

Meeden, G. (1999). Interval estimators for the population mean for skewed
distributions with a small sample size. Journal of Applied Statistics, 26:81–
96.

Qu, Y., Meeden, G., and Zhang, B. (2015). An objective stepwise Bayes ap-
proach to small area estimation. Journal of Statistical Computation and Sim-
ulation, 85:1474–1494.

Rubin, D. (1981). The Bayesian bootstrap. Annals of Statistics, 9:130–134.

Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions. Operations Research, 32:1296–
1308.

Strief, J. and Meeden, G. (2014). Objective stepwise Bayes weights in survey
sampling. Survey Methodology, 39:1–27.

14

