
Package ‘polyCub’
February 7, 2019

Title Cubature over Polygonal Domains

Version 0.7.1

Date 2019-02-07

Description Numerical integration of continuously differentiable
functions f(x,y) over simple closed polygonal domains.
The following cubature methods are implemented:
product Gauss cubature (Sommariva and Vianello, 2007,
<doi:10.1007/s10543-007-0131-2>),
the simple two-dimensional midpoint rule
(wrapping 'spatstat' functions),
adaptive cubature for radially symmetric functions via line
integrate() along the polygon boundary (Meyer and Held, 2014,
<doi:10.1214/14-AOAS743>, Supplement B),
and integration of the bivariate Gaussian density based on
polygon triangulation.
For simple integration along the axes, the 'cubature' package
is more appropriate.

License GPL-2

URL https://github.com/bastistician/polyCub

BugReports https://github.com/bastistician/polyCub/issues

Depends R (>= 2.15.0), methods

Imports grDevices, graphics, stats, sp (>= 1.0-11)

Suggests spatstat, lattice, testthat, mvtnorm, statmod, rgeos, gpclib,
cubature, knitr, rmarkdown, microbenchmark

RoxygenNote 6.1.1

VignetteBuilder knitr, rmarkdown

NeedsCompilation yes

Author Sebastian Meyer [aut, cre, trl]
(<https://orcid.org/0000-0002-1791-9449>),
Leonhard Held [ths],
Michael Hoehle [ths]

1

https://github.com/bastistician/polyCub
https://github.com/bastistician/polyCub/issues

2 polyCub-package

Maintainer Sebastian Meyer <seb.meyer@fau.de>

Repository CRAN

Date/Publication 2019-02-07 16:30:02 UTC

R topics documented:
polyCub-package . 2
checkintrfr . 3
circleCub.Gauss . 4
coerce-gpc-methods . 5
coerce-sp-methods . 6
gpclibPermit . 7
plotpolyf . 7
plot_polyregion . 9
polyCub . 9
polyCub.exact.Gauss . 10
polyCub.iso . 12
polyCub.midpoint . 14
polyCub.SV . 16
xylist . 18

Index 21

polyCub-package Cubature over Polygonal Domains

Description

The R package polyCub implements cubature (numerical integration) over polygonal domains. It
solves the problem of integrating a continuously differentiable function f(x, y) over simple closed
polygons.

Details

polyCub provides the following cubature methods, which can either be called explicitly or via the
generic polyCub function:

polyCub.SV: General-purpose product Gauss cubature (Sommariva and Vianello, 2007)

polyCub.midpoint: Simple two-dimensional midpoint rule based on as.im.function from spat-
stat (Baddeley and Turner, 2005)

polyCub.iso: Adaptive cubature for radially symmetric functions via line integrate() along the
polygon boundary (Meyer and Held, 2014, Supplement B, Section 2.4).

polyCub.exact.Gauss: Accurate (but slow) integration of the bivariate Gaussian density based
on polygon triangulation (via tristrip from gpclib) and (numerous) evaluations of cumu-
lative densities (via pmvnorm from package mvtnorm). Note that there is also a function
circleCub.Gauss to integrate the isotropic Gaussian density over a circular domain.

checkintrfr 3

A more detailed description and benchmark experiment of the above cubature methods can be found
in the vignette("polyCub") and in Meyer (2010, Section 3.2).

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications.

Baddeley, A. and Turner, R. (2005). spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software, 12 (6), 1-42.

Meyer, S. (2010). Spatio-Temporal Infectious Disease Epidemiology based on Point Processes.
Master’s Thesis, LMU Munich. Available as http://epub.ub.uni-muenchen.de/11703/.

Meyer, S. and Held, L. (2014). Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639.
DOI-Link: https://doi.org/10.1214/14-AOAS743, arXiv:1308.5115

Sommariva, A. and Vianello, M. (2007). Product Gauss cubature over polygons based on Green’s
integration formula. BIT Numerical Mathematics, 47 (2), 441-453.
DOI-Link: https://doi.org/10.1007/s10543-007-0131-2

See Also

vignette("polyCub")

For the special case of a rectangular domain along the axes (e.g., a bounding box), the cubature
package is more appropriate.

checkintrfr Check the Integral of rf_r(r)

Description

This function is auxiliary to polyCub.iso. The (analytical) integral of rfr(r) from 0 to R is
checked against a numeric approximation using integrate for various values of the upper bound
R. A warning is issued if inconsistencies are found.

Usage

checkintrfr(intrfr, f, ..., center, control = list(), rs = numeric(0L),
tolerance = control$rel.tol)

Arguments

intrfr a function(R, ...), which implements the (analytical) antiderivative of rfr(r)
from 0 to R. The first argument must be vectorized but not necessarily named R.
If intrfr is missing, it will be approximated numerically via integrate(function(r, ...)
r * f(cbind(x0 + r, y0), ...), 0, R, ..., control=control),
where c(x0, y0) is the center of isotropy. Note that f will not be checked for
isotropy.

http://epub.ub.uni-muenchen.de/11703/
https://doi.org/10.1214/14-AOAS743
https://arxiv.org/abs/1308.5115
https://doi.org/10.1007/s10543-007-0131-2

4 circleCub.Gauss

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f or intrfr.

center numeric vector of length 2, the center of isotropy.

control list of arguments passed to integrate, the quadrature rule used for the line
integral along the polygon boundary.

rs numeric vector of upper bounds for which to check the validity of intrfr. If it
has length 0 (default), no checks are performed.

tolerance of all.equal.numeric when comparing intrfr results with numerical inte-
gration. Defaults to the relative tolerance used for integrate.

Value

The intrfr function. If it was not supplied, its quadrature version using integrate is returned.

circleCub.Gauss Integration of the Isotropic Gaussian Density over Circular Domains

Description

This function calculates the integral of the bivariate, isotropic Gaussian density (i.e., Σ = sd^2*diag(2))
over a circular domain via the cumulative distribution function pchisq of the (non-central) Chi-
Squared distribution (Abramowitz and Stegun, 1972, Formula 26.3.24).

Usage

circleCub.Gauss(center, r, mean, sd)

Arguments

center numeric vector of length 2 (center of the circle).

r numeric (radius of the circle). Several radii may be supplied.

mean numeric vector of length 2 (mean of the bivariate Gaussian density).

sd numeric (common standard deviation of the isotropic Gaussian density in both
dimensions).

Value

The integral value (one for each supplied radius).

Note

The non-centrality parameter of the evaluated chi-squared distribution equals the squared distance
between the mean and the center. If this becomes too large, the result becomes inaccurate, see
pchisq.

coerce-gpc-methods 5

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications.

Examples

circleCub.Gauss(center=c(1,2), r=3, mean=c(4,5), sd=6)

if (requireNamespace("mvtnorm") && gpclibPermit() && requireNamespace("spatstat")) {
compare with cubature over a polygonal approximation of a circle
disc.poly <- spatstat::disc(radius=3, centre=c(1,2), npoly=32)
polyCub.exact.Gauss(disc.poly, mean=c(4,5), Sigma=6^2*diag(2))

}

coerce-gpc-methods Conversion between polygonal "owin" and "gpc.poly"

Description

Package polyCub implements converters between the classes "owin" of package spatstat and
"gpc.poly" of package rgeos (originally from gpclib). Support for the "gpc.poly" class was
dropped from spatstat as of version 1.34-0.

Usage

owin2gpc(object)

gpc2owin(object, ...)

as.owin.gpc.poly(W, ...)

Arguments

object an object of class "gpc.poly" or "owin", respectively.

... further arguments passed to owin.

W an object of class "gpc.poly".

Value

The converted polygon of class "gpc.poly" or "owin", respectively. If neither package rgeos nor
gpclib are available, owin2gpc will just return the pts slot of the "gpc.poly" (no formal class)
with a warning.

Note

The converter owin2gpc requires the package rgeos (or gpclib) for the formal class definition of
a "gpc.poly". It will produce vertices ordered according to the sp convention, i.e. clockwise for
normal boundaries and anticlockwise for holes, where, however, the first vertex is not repeated!

6 coerce-sp-methods

Author(s)

Sebastian Meyer

See Also

xylist, and the package rgeos for conversions of "gpc.poly" objects from and to sp’s "SpatialPolygons"
class.

Examples

if (gpclibPermit() && require("spatstat")) {
use example polygons from
example(plotpolyf, ask = FALSE)

letterR # a simple "xylist"
letterR.owin <- owin(poly = letterR)
letterR.gpc_from_owin <- owin2gpc(letterR.owin)
letterR.xylist_from_gpc <- xylist(letterR.gpc_from_owin)
stopifnot(all.equal(letterR, lapply(letterR.xylist_from_gpc, "[", 1:2)))
letterR.owin_from_gpc <- as.owin(letterR.gpc_from_owin)
stopifnot(all.equal(letterR.owin, letterR.owin_from_gpc))

}

coerce-sp-methods Coerce "SpatialPolygons" to "owin"

Description

Package polyCub implements coerce-methods (as(object, Class)) to convert "SpatialPolygons"
(or "Polygons" or "Polygon") to "owin". They are also available as as.owin.* functions to sup-
port polyCub.midpoint. However, these are no registered S3 methods for as.owin, since package
spatstat is optional. Note that the maptools package contains an alternative implementation of
coercion from "SpatialPolygons" to "owin" (and reverse), and R will use the S4 coerce-method
that was loaded last, and prefer the as.owin.SpatialPolygons S3-method exported from map-
tools if attached.

Usage

as.owin.SpatialPolygons(W, ...)

as.owin.Polygons(W, ...)

as.owin.Polygon(W, ...)

Arguments

W an object of class "SpatialPolygons", "Polygons", or "Polygon".

... further arguments passed to owin.

gpclibPermit 7

Author(s)

Sebastian Meyer

Examples

if (require("spatstat") && require("sp")) {
diamond <- list(x = c(1,2,1,0), y = c(1,2,3,2)) # anti-clockwise
diamond.owin <- owin(poly = diamond)
diamond.sp <- Polygon(lapply(diamond, rev)) # clockwise
diamond.owin_from_sp <- as(diamond.sp, "owin")
stopifnot(all.equal(diamond.owin, diamond.owin_from_sp))

similarly works for Polygons and SpatialPolygons
diamond.Ps <- as(diamond.sp, "Polygons")
stopifnot(identical(diamond.owin, as.owin(diamond.Ps)))
diamond.SpPs <- SpatialPolygons(list(diamond.Ps))
stopifnot(identical(diamond.owin, as.owin(diamond.SpPs)))

}

gpclibPermit gpclib License Acceptance

Description

Similar to the handling in package maptools, these functions explicitly accept the restricted gpclib
license (commercial use prohibited) and report its acceptance status, respectively. gpclib function-
ality is only required for polyCub.exact.Gauss.

Usage

gpclibPermit()

gpclibPermitStatus()

plotpolyf Plot Polygonal Domain on Image of Bivariate Function

Description

Produces a combined plot of a polygonal domain and an image of a bivariate function, using either
lattice::levelplot or image.

Usage

plotpolyf(polyregion, f, ..., npixel = 100, cuts = 15,
col = rev(heat.colors(cuts + 1)), lwd = 3, xlim = NULL,
ylim = NULL, use.lattice = TRUE, print.args = list())

8 plotpolyf

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat, "gpc.poly" from rgeos (or gpclib), as well as "SpatialPolygons",
"Polygons", and "Polygon" from package sp. (For these classes, polyCub
knows how to get an xylist.)

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.

npixel numeric vector of length 1 or 2 setting the number of pixels in each dimension.

cuts number of cut points in the z dimension. The range of function values will be
divided into cuts+1 levels.

col color vector used for the function levels.

lwd line width of the polygon edges.

xlim, ylim numeric vectors of length 2 setting the axis limits. NULL means using the bound-
ing box of polyregion.

use.lattice logical indicating if lattice graphics (levelplot) should be used.

print.args a list of arguments passed to print.trellis for plotting the produced "trellis"
object (given use.lattice = TRUE). The latter will be returned without explicit
printing if print.args is not a list.

Author(s)

Sebastian Meyer

Examples

a polygonal domain (a rounded version of spatstat.data::letterR$bdry)
letterR <- list(

list(x = c(3.9, 3.8, 3.7, 3.5, 3.4, 3.5, 3.7, 3.8, 3.8, 3.7,
3.7, 3.5, 3.3, 2, 2, 2.7, 2.7, 2.9, 3, 3.3, 3.9),

y = c(0.7, 1.1, 1.3, 1.7, 1.8, 1.9, 2.1, 2.3, 2.5, 2.8, 3,
3.2, 3.3, 3.3, 0.7, 0.7, 1.7, 1.7, 1.5, 0.7, 0.6)),

list(x = c(2.6, 2.6, 3, 3.1, 3.2, 3.1, 3.1, 3),
y = c(2.2, 2.7, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2))

)

f: isotropic exponential decay
fr <- function(r, rate = 1) dexp(r, rate = rate)
fcenter <- c(2,3)
f <- function (s, rate = 1) fr(sqrt(rowSums(t(t(s)-fcenter)^2)), rate = rate)

plot
plotpolyf(letterR, f, use.lattice = FALSE)
plotpolyf(letterR, f, use.lattice = TRUE)

plot_polyregion 9

plot_polyregion Plots a Polygonal Domain (of Various Classes)

Description

Plots a Polygonal Domain (of Various Classes)

Usage

plot_polyregion(polyregion, lwd = 2, add = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat, "gpc.poly" from rgeos (or gpclib), as well as "SpatialPolygons",
"Polygons", and "Polygon" from package sp. (For these classes, polyCub
knows how to get an xylist.)

lwd line width of the polygon edges.

add logical. Add to existing plot?

polyCub Wrapper Function for the Various Cubature Methods

Description

The wrapper function polyCub can be used to call specific cubature methods via its method argu-
ment. It calls polyCub.SV by default, which implements general-purpose product Gauss cubature.

Usage

polyCub(polyregion, f, method = c("SV", "midpoint", "iso",
"exact.Gauss"), ..., plot = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat, "gpc.poly" from rgeos (or gpclib), as well as "SpatialPolygons",
"Polygons", and "Polygon" from package sp. (For these classes, polyCub
knows how to get an xylist.)

f a two-dimensional real-valued function to be integrated over polyregion. As
its first argument it must take a coordinate matrix, i.e., a numeric matrix with
two columns, and it must return a numeric vector of length the number of coor-
dinates.
For the "exact.Gauss" method, f is ignored since it is specific to the bivariate
normal density.

10 polyCub.exact.Gauss

method choose one of the implemented cubature methods (partial argument matching
is applied), see help("polyCub-package") for an overview. Defaults to using
product Gauss cubature implemented in polyCub.SV.

... arguments of f or of the specific method.

plot logical indicating if an illustrative plot of the numerical integration should be
produced.

Value

The approximated integral of f over polyregion.

See Also

Details and examples in the vignette("polyCub") and on the method-specific help pages.

Other polyCub-methods: polyCub.SV, polyCub.exact.Gauss, polyCub.iso, polyCub.midpoint

polyCub.exact.Gauss Quasi-Exact Cubature of the Bivariate Normal Density

Description

The bivariate Gaussian density can be integrated based on a triangulation of the (transformed)
polygonal domain, using formulae from the Abramowitz and Stegun (1972) handbook (Section
26.9, Example 9, pp. 956f.). This method is quite cumbersome because the A&S formula is only
for triangles where one vertex is the origin (0,0). For each triangle of the tristrip we have to check
in which of the 6 outer regions of the triangle the origin (0,0) lies and adapt the signs in the formula
appropriately: (AOB +BOC − AOC) or (AOB − AOC −BOC) or (AOB + AOC −BOC)
or (AOC + BOC − AOB) or However, the most time consuming step is the evaluation of
pmvnorm.

Usage

polyCub.exact.Gauss(polyregion, mean = c(0, 0), Sigma = diag(2),
plot = FALSE)

Arguments

polyregion a "gpc.poly" polygon or something that can be coerced to this class, e.g.,
an "owin" polygon (converted via owin2gpc and – given rgeos is available –
"SpatialPolygons" also work.

mean, Sigma mean and covariance matrix of the bivariate normal density to be integrated.

plot logical indicating if an illustrative plot of the numerical integration should be
produced. Note that the polyregion will be transformed (shifted and scaled).

polyCub.exact.Gauss 11

Value

The integral of the bivariate normal density over polyregion. Two attributes are appended to the
integral value:

nEval number of triangles over which the standard bivariate normal density had to be
integrated, i.e. number of calls to pmvnorm and pnorm, the former of which being
the most time-consuming operation.

error Approximate absolute integration error stemming from the error introduced by
the nEval pmvnorm evaluations. For this reason, the cubature method is in fact
only quasi-exact (as is the pmvnorm function).

Note

The package gpclib is required to produce the tristrip, since this is not implemented in rgeos (as
of version 0.3-25). The restricted license of gpclib (commercial use prohibited) has to be accepted
explicitly via gpclibPermit() prior to using polyCub.exact.Gauss.

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications.

See Also

circleCub.Gauss for quasi-exact cubature of the isotropic Gaussian density over a circular do-
main.

Other polyCub-methods: polyCub.SV, polyCub.iso, polyCub.midpoint, polyCub

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

quasi-exact integration based on gpclib::tristrip() and mvtnorm::pmvnorm()
if (requireNamespace("mvtnorm") && gpclibPermit()) {

hexagon.gpc <- new("gpc.poly", pts = lapply(hexagon, c, list(hole = FALSE)))
plotpolyf(hexagon.gpc, f, xlim = c(-8,8), ylim = c(-8,8))
print(polyCub.exact.Gauss(hexagon.gpc, mean = c(0,0), Sigma = 5^2*diag(2),

plot = TRUE), digits = 16)
}

12 polyCub.iso

polyCub.iso Cubature of Isotropic Functions over Polygonal Domains

Description

polyCub.iso numerically integrates a radially symmetric function f(x, y) = fr(||(x, y) − µ||),
with µ being the center of isotropy, over a polygonal domain. It internally approximates a line
integral along the polygon boundary using integrate. The integrand requires the antiderivative of
rfr(r)), which should be supplied as argument intrfr (f itself is only required if check.intrfr=TRUE).
The two-dimensional integration problem thereby reduces to an efficient adaptive quadrature in one
dimension. If intrfr is not available analytically, polyCub.iso can use a numerical approximation
(meaning integrate within integrate), but the general-purpose cubature method polyCub.SV
might be more efficient in this case. See Meyer and Held (2014, Supplement B, Section 2.4) for
mathematical details.

.polyCub.iso is a “bare-bone” version of polyCub.iso.

Usage

polyCub.iso(polyregion, f, intrfr, ..., center, control = list(),
check.intrfr = FALSE, plot = FALSE)

.polyCub.iso(polys, intrfr, ..., center, control = list(),
.witherror = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat, "gpc.poly" from rgeos (or gpclib), as well as "SpatialPolygons",
"Polygons", and "Polygon" from package sp. (For these classes, polyCub
knows how to get an xylist.)

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

intrfr a function(R, ...), which implements the (analytical) antiderivative of rfr(r)
from 0 to R. The first argument must be vectorized but not necessarily named R.
If intrfr is missing, it will be approximated numerically via integrate(function(r, ...)
r * f(cbind(x0 + r, y0), ...), 0, R, ..., control=control),
where c(x0, y0) is the center of isotropy. Note that f will not be checked for
isotropy.

... further arguments for f or intrfr.

center numeric vector of length 2, the center of isotropy.

control list of arguments passed to integrate, the quadrature rule used for the line
integral along the polygon boundary.

polyCub.iso 13

check.intrfr logical (or numeric vector) indicating if (for which r’s) the supplied intrfr
function should be checked against a numeric approximation. This check re-
quires f to be specified. If TRUE, the set of test r’s defaults to a seq of length 20
from 1 to the maximum absolute x or y coordinate of any edge of the polyregion.

plot logical indicating if an image of the function should be plotted together with the
polygonal domain, i.e., plotpolyf(polyregion, f, ...).

polys something like owin$bdry, but see xylist.

.witherror logical indicating if an upper bound for the absolute integration error should be
attached as an attribute to the result?

Value

The approximate integral of the isotropic function f over polyregion.
If the intrfr function is provided (which is assumed to be exact), an upper bound for the absolute
integration error is appended to the result as attribute "abs.error". It equals the sum of the absolute
errors reported by all integrate calls (there is one for each edge of polyregion).

Author(s)

Sebastian Meyer

The basic mathematical formulation of this efficient integration for radially symmetric functions
was ascertained with great support by Emil Hedevang (2013), Dept. of Mathematics, Aarhus Uni-
versity, Denmark.

References

Hedevang, E. (2013). Personal communication at the Summer School on Topics in Space-Time
Modeling and Inference (May 2013, Aalborg, Denmark).

Meyer, S. and Held, L. (2014). Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639.
DOI-Link: https://doi.org/10.1214/14-AOAS743, arXiv:1308.5115

See Also

system.file("include", "polyCubAPI.h", package = "polyCub") for a full C-implementation
of this cubature method (for a single polygon). The corresponding C-routine polyCub_iso can be
used by other R packages, notably surveillance, via ‘LinkingTo: polyCub’ (in the ‘DESCRIPTION’)
and ‘#include <polyCubAPI.h>’ (in suitable ‘/src’ files). Note that the intrfr function must
then also be supplied as a C-routine. An example can be found in the package tests.

Other polyCub-methods: polyCub.SV, polyCub.exact.Gauss, polyCub.midpoint, polyCub

Examples

we use the example polygon and f (exponential decay) from
example(plotpolyf)

numerical approximation of 'intrfr' (not recommended)
(intISOnum <- polyCub.iso(letterR, f, center = fcenter))

https://doi.org/10.1214/14-AOAS743
https://arxiv.org/abs/1308.5115

14 polyCub.midpoint

analytical 'intrfr'
intrfr(R) = int_0^R r*f(r) dr, for f(r) = dexp(r), gives
intrfr <- function (R, rate = 1) pgamma(R, 2, rate) / rate
(intISOana <- polyCub.iso(letterR, f, intrfr = intrfr, center = fcenter,

check.intrfr = TRUE))
f is only used to check 'intrfr' against a numerical approximation

stopifnot(all.equal(intISOana, intISOnum, check.attributes = FALSE))

polygon area: f(r) = 1, f(x,y) = 1, center does not really matter

intrfr(R) = int_0^R r*f(r) dr = int_0^R r dr = R^2/2
intrfr.const <- function (R) R^2/2
(area.ISO <- polyCub.iso(letterR, intrfr = intrfr.const, center = c(0,0)))

if (require("spatstat")) { # check against area.owin()
stopifnot(all.equal(area.owin(owin(poly = letterR)),

area.ISO, check.attributes = FALSE))
}

polyCub.midpoint Two-Dimensional Midpoint Rule

Description

The surface is converted to a binary pixel image using the as.im.function method from package
spatstat (Baddeley and Turner, 2005). The integral under the surface is then approximated as the
sum over (pixel area * f(pixel midpoint)).

Usage

polyCub.midpoint(polyregion, f, ..., eps = NULL, dimyx = NULL,
plot = FALSE)

Arguments

polyregion a polygonal integration domain. It can be any object coercible to the spatstat
class "owin" via a corresponding as.owin-method. Note that this includes poly-
gons of the classes "gpc.poly" and "SpatialPolygons", because polyCub
defines methods as.owin.gpc.poly and as.owin.SpatialPolygons, respec-
tively.

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.

eps width and height of the pixels (squares), see as.mask.

polyCub.midpoint 15

dimyx number of subdivisions in each dimension, see as.mask.

plot logical indicating if an illustrative plot of the numerical integration should be
produced.

Value

The approximated value of the integral of f over polyregion.

References

Baddeley, A. and Turner, R. (2005). spatstat: an R package for analyzing spatial point patterns.
Journal of Statistical Software, 12 (6), 1-42.

See Also

Other polyCub-methods: polyCub.SV, polyCub.exact.Gauss, polyCub.iso, polyCub

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

if (require("spatstat")) {
hexagon.owin <- owin(poly = hexagon)

show_midpoint <- function (eps)
{

plotpolyf(hexagon.owin, f, xlim = c(-8,8), ylim = c(-8,8),
use.lattice = FALSE)

add evaluation points to plot
with(as.mask(hexagon.owin, eps = eps),

points(expand.grid(xcol, yrow), col = t(m), pch = 20))
title(main = paste("2D midpoint rule with eps =", eps))

}

show nodes (eps = 0.5)
show_midpoint(0.5)

show pixel image (eps = 0.5)
polyCub.midpoint(hexagon.owin, f, eps = 0.5, plot = TRUE)

use a decreasing pixel size (increasing number of nodes)
for (eps in c(5, 3, 1, 0.5, 0.3, 0.1))

cat(sprintf("eps = %.1f: %.7f\n", eps,
polyCub.midpoint(hexagon.owin, f, eps = eps)))

16 polyCub.SV

}

polyCub.SV Product Gauss Cubature over Polygonal Domains

Description

Product Gauss cubature over polygons as proposed by Sommariva and Vianello (2007).

Usage

polyCub.SV(polyregion, f, ..., nGQ = 20, alpha = NULL,
rotation = FALSE, engine = "C", plot = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat, "gpc.poly" from rgeos (or gpclib), as well as "SpatialPolygons",
"Polygons", and "Polygon" from package sp. (For these classes, polyCub
knows how to get an xylist.)

f a two-dimensional real-valued function to be integrated over polyregion (or
NULL to only compute nodes and weights). As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.

nGQ degree of the one-dimensional Gauss-Legendre quadrature rule (default: 20) as
implemented in function gauss.quad of package statmod. Nodes and weights
up to nGQ=60 are cached in polyCub, for larger degrees statmod is required.

alpha base-line of the (rotated) polygon at x = α (see Sommariva and Vianello (2007)
for an explication). If NULL (default), the midpoint of the x-range of each poly-
gon is chosen if no rotation is performed, and otherwise the x-coordinate of
the rotated point "P" (see rotation). If f has its maximum value at the ori-
gin (0, 0), e.g., the bivariate Gaussian density with zero mean, alpha = 0 is a
reasonable choice.

rotation logical (default: FALSE) or a list of points "P" and "Q" describing the preferred
direction. If TRUE, the polygon is rotated according to the vertices "P" and
"Q", which are farthest apart (see Sommariva and Vianello, 2007). For convex
polygons, this rotation guarantees that all nodes fall inside the polygon.

engine character string specifying the implementation to use. Up to polyCub ver-
sion 0.4-3, the two-dimensional nodes and weights were computed by R func-
tions and these are still available by setting engine = "R". The new C-
implementation is now the default (engine = "C") and requires approximately
30% less computation time.
The special setting engine = "C+reduce" will discard redundant nodes at (0,0)
with zero weight resulting from edges on the base-line x = α or orthogonal to it.

polyCub.SV 17

This extra cleaning is only worth its cost for computationally intensive functions
f over polygons which really have some edges on the baseline or parallel to the
x-axis. Note that the old R implementation does not have such unset zero nodes
and weights.

plot logical indicating if an illustrative plot of the numerical integration should be
produced.

Value

The approximated value of the integral of f over polyregion.
In the case f = NULL, only the computed nodes and weights are returned in a list of length the
number of polygons of polyregion, where each component is a list with nodes (a numeric matrix
with two columns), weights (a numeric vector of length nrow(nodes)), the rotation angle, and
alpha.

Author(s)

Sebastian Meyer
These R and C implementations of product Gauss cubature are based on the original MATLAB
implementation polygauss by Sommariva and Vianello (2007), which is available under the GNU
GPL (>=2) license from http://www.math.unipd.it/~alvise/software.html.

References

Sommariva, A. and Vianello, M. (2007): Product Gauss cubature over polygons based on Green’s
integration formula. BIT Numerical Mathematics, 47 (2), 441-453.
DOI-Link: https://doi.org/10.1007/s10543-007-0131-2

See Also

Other polyCub-methods: polyCub.exact.Gauss, polyCub.iso, polyCub.midpoint, polyCub

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

image of the function and integration domain
plotpolyf(hexagon, f, xlim = c(-8,8), ylim = c(-8,8))

use a degree of nGQ = 3 and show the corresponding nodes
polyCub.SV(hexagon, f, nGQ = 3, plot = TRUE)

extract nodes and weights

http://www.math.unipd.it/~alvise/software.html
https://doi.org/10.1007/s10543-007-0131-2

18 xylist

nw <- polyCub.SV(hexagon, f = NULL, nGQ = 3)[[1]]
nrow(nw$nodes)

manually apply the cubature rule
sum(nw$weights * f(nw$nodes))

use an increasing number of nodes
for (nGQ in c(1:5, 10, 20, 60))

cat(sprintf("nGQ = %2i: %.16f\n", nGQ,
polyCub.SV(hexagon, f, nGQ = nGQ)))

polyCub.SV() is the default method used by the polyCub() wrapper
polyCub(hexagon, f, nGQ = 3) # calls polyCub.SV()

now using a simple *rectangular* integration domain

rectangle <- list(list(x = c(-1, 7, 7, -1), y = c(-3, -3, 7, 7)))

try rotation (may improve accuracy)
opar <- par(mfrow = c(1,3))
polyCub.SV(rectangle, f, nGQ = 4, rotation = FALSE, plot = TRUE)

title(main = "without rotation")
polyCub.SV(rectangle, f, nGQ = 4, rotation = TRUE, plot = TRUE)

title(main = "default rotation")
polyCub.SV(rectangle, f, nGQ = 4,

rotation = list(P = c(0,0), Q = c(2,-3)), plot = TRUE)
title(main = "custom rotation")

par(opar)

comparison with cubature::adaptIntegrate()
if (require("cubature")) {

fc <- function (s, sigma = 5)
exp(-sum(s^2)/2/sigma^2) / (2*pi*sigma^2)

adaptIntegrate(f = fc, lowerLimit = c(-1, -3), upperLimit = c(7, 7))
}

xylist Convert Various Polygon Classes to a Simple List of Vertices

Description

Different packages concerned with spatial data use different polygon specifications, which some-
times becomes very confusing (see Details below). To be compatible with the various polygon
classes, package polyCub uses an S3 class "xylist", which represents polygons by their core fea-
ture only, a list of lists of vertex coordinates (see the "Value" section below). The generic function
xylist can deal with the following polygon classes:

• "owin" from package spatstat
• "gpc.poly" from package rgeos (or gpclib)

xylist 19

• "Polygons" from package sp (as well as "Polygon" and "SpatialPolygons")

The (somehow useless) default xylist-method does not perform any transformation but only en-
sures that the polygons are not closed (first vertex not repeated).

Usage

xylist(object, ...)

S3 method for class 'owin'
xylist(object, ...)

S3 method for class 'gpc.poly'
xylist(object, ...)

S3 method for class 'SpatialPolygons'
xylist(object, reverse = TRUE, ...)

S3 method for class 'Polygons'
xylist(object, reverse = TRUE, ...)

S3 method for class 'Polygon'
xylist(object, reverse = TRUE, ...)

Default S3 method:
xylist(object, ...)

Arguments

object an object of one of the supported spatial classes.

... (unused) argument of the generic.

reverse logical (TRUE) indicating if the vertex order of the sp classes should be reversed
to get the xylist/owin convention.

Details

Different packages concerned with spatial data use different polygon specifications with respect to:

• do we repeat the first vertex?

• which direction represents holes?

Package overview:

sp: Repeat first vertex at the end (closed), anticlockwise = hole, clockwise = normal boundary

spatstat: do not repeat first vertex, anticlockwise = normal boundary, clockwise = hole. This
convention is also used in xylist.

gpclib: Unfortunately, there seems to be no convention for the specification of polygons of class
"gpc.poly".

20 xylist

Value

Applying xylist to a polygon object, one gets a simple list, where each component (polygon) is
a list of "x" and "y" coordinates. These represent vertex coordinates following spatstat’s "owin"
convention (anticlockwise order without repeating any vertex). The opposite vertex order can be
retained for the sp-classes by the non-default use with reverse=FALSE.

Author(s)

Sebastian Meyer

Index

∗Topic hplot
plotpolyf, 7

∗Topic math
circleCub.Gauss, 4
polyCub, 9
polyCub.exact.Gauss, 10
polyCub.iso, 12
polyCub.midpoint, 14
polyCub.SV, 16

∗Topic methods
coerce-gpc-methods, 5
coerce-sp-methods, 6
xylist, 18

∗Topic spatial
circleCub.Gauss, 4
coerce-gpc-methods, 5
coerce-sp-methods, 6
polyCub, 9
polyCub.exact.Gauss, 10
polyCub.iso, 12
polyCub.midpoint, 14
polyCub.SV, 16
xylist, 18

.polyCub.iso (polyCub.iso), 12

all.equal.numeric, 4
as.im.function, 2, 14
as.mask, 14, 15
as.owin, 6, 14
as.owin.gpc.poly, 14
as.owin.gpc.poly (coerce-gpc-methods), 5
as.owin.Polygon (coerce-sp-methods), 6
as.owin.Polygons (coerce-sp-methods), 6
as.owin.SpatialPolygons, 14
as.owin.SpatialPolygons

(coerce-sp-methods), 6

checkintrfr, 3
circleCub.Gauss, 2, 4, 11

coerce,Polygon,owin-method
(coerce-sp-methods), 6

coerce,Polygon,Polygons-method
(coerce-sp-methods), 6

coerce,Polygons,owin-method
(coerce-sp-methods), 6

coerce,SpatialPolygons,owin-method
(coerce-sp-methods), 6

coerce-gpc-methods, 5
coerce-sp-methods, 6

gauss.quad, 16
gpc.poly, 5, 8–10, 12, 16, 18
gpc2owin (coerce-gpc-methods), 5
gpclibPermit, 7, 11
gpclibPermitStatus (gpclibPermit), 7

image, 7
integrate, 2–4, 12, 13

lattice::levelplot, 7
levelplot, 8

owin, 5, 6, 8, 9, 12, 14, 16, 18
owin2gpc, 10
owin2gpc (coerce-gpc-methods), 5

pchisq, 4
plot_polyregion, 9
plotpolyf, 7, 13
pmvnorm, 2, 10, 11
pnorm, 11
polyCub, 2, 9, 11, 13, 15, 17
polyCub-package, 2
polyCub.exact.Gauss, 2, 7, 10, 10, 13, 15, 17
polyCub.iso, 2, 3, 10, 11, 12, 15, 17
polyCub.midpoint, 2, 6, 10, 11, 13, 14, 17
polyCub.SV, 2, 9–13, 15, 16
Polygon, 6, 8, 9, 12, 16, 19
Polygons, 6, 8, 9, 12, 16, 19
print.trellis, 8

21

22 INDEX

seq, 13
SpatialPolygons, 6, 8, 9, 12, 14, 16, 19

tristrip, 2, 10

xylist, 6, 8, 9, 12, 13, 16, 18

	polyCub-package
	checkintrfr
	circleCub.Gauss
	coerce-gpc-methods
	coerce-sp-methods
	gpclibPermit
	plotpolyf
	plot_polyregion
	polyCub
	polyCub.exact.Gauss
	polyCub.iso
	polyCub.midpoint
	polyCub.SV
	xylist
	Index

