
Package ‘policytree’
July 13, 2020

Title Policy Learning via Doubly Robust Empirical Welfare Maximization
over Trees

Version 1.0.1

Description Learn optimal policies via doubly robust empirical
welfare maximization over trees. This package implements the multi-action doubly
robust approach of Zhou, Athey and Wager (2018) <arXiv:1810.04778> in the case where
we want to learn policies that belong to the class of depth k decision trees.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Suggests testthat (>= 2.1.0), DiagrammeR

RoxygenNote 7.0.2

LinkingTo Rcpp, BH

Imports Rcpp, grf (>= 1.1.0)

URL https://github.com/grf-labs/policytree

NeedsCompilation yes

Author Zhengyuan Zhou [aut],
Susan Athey [aut],
Stefan Wager [aut],
Ayush Kanodia [aut],
Erik Sverdrup [cre]

Maintainer Erik Sverdrup <erikcs@stanford.edu>

Repository CRAN

Date/Publication 2020-07-13 06:30:02 UTC

R topics documented:
conditional_means.causal_forest . 2
double_robust_scores.causal_forest . 3

1

https://github.com/grf-labs/policytree

2 conditional_means.causal_forest

gen_data_epl . 5
gen_data_mapl . 5
multi_causal_forest . 6
plot.policy_tree . 9
policy_tree . 10
predict.multi_causal_forest . 11
predict.policy_tree . 12
print.multi_causal_forest . 12
print.policy_tree . 13

Index 14

conditional_means.causal_forest

Estimate mean rewards µ for each treatment a

Description

µa = m(x) + (1− ea(x))τa(x)

Usage

S3 method for class 'causal_forest'
conditional_means(object, ...)

S3 method for class 'instrumental_forest'
conditional_means(object, ...)

S3 method for class 'multi_causal_forest'
conditional_means(object, ...)

conditional_means(object, ...)

Arguments

object An appropriate causal forest type object

... Additional arguments

Value

A matrix of estimated mean rewards

Methods (by class)

• causal_forest: Mean rewards µ for control/treated

• instrumental_forest: Mean rewards µ for control/treated

• multi_causal_forest: Mean rewards µ for each treatment a

double_robust_scores.causal_forest 3

Examples

Compute conditional means for a multi_causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- sample(c("A", "B", "C"), n, replace = TRUE)
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
forests <- multi_causal_forest(X = X, Y = Y, W = W)
mu.hats <- conditional_means(forests)
head(mu.hats)

Compute conditional means for a causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
mu.hats <- conditional_means(c.forest)

double_robust_scores.causal_forest

Matrix Γ of scores for each treatment a

Description

Computes a matrix of double robust scores Γia = µa(x) + 1
ea(x)

(Yi − µa(x))1(Ai = a)

Usage

S3 method for class 'causal_forest'
double_robust_scores(object, ...)

S3 method for class 'instrumental_forest'
double_robust_scores(object, compliance.score = NULL, ...)

S3 method for class 'multi_causal_forest'
double_robust_scores(object, ...)

double_robust_scores(object, ...)

Arguments

object An appropriate causal forest type object

... Additional arguments

4 double_robust_scores.causal_forest

compliance.score

An estimate of the causal effect of Z on W. i.e., Delta(X) = E(W | X, Z = 1) -
E(W | X, Z = 0), for each sample i = 1, ..., n. If NULL (default) then this is
estimated with a causal forest.

Details

This is the matrix used for CAIPWL (Cross-fitted Augmented Inverse Propensity Weighted Learn-
ing)

Value

A matrix of scores for each treatment

Methods (by class)

• causal_forest: Scores (Γ0,Γ1)

• instrumental_forest: Scores (−Γ,Γ)

• multi_causal_forest: Matrix Γ of scores for each treatment a

Note

For instrumental_forest this method returns (−Γi,Γi) where Γi is the double robust estimator of
the treatment effect as in eqn. (52) in Athey and Wager (2017).

References

Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896
(2017).

Examples

Compute double robust scores for a multi_causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- sample(c("A", "B", "C"), n, replace = TRUE)
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
forests <- multi_causal_forest(X = X, Y = Y, W = W)
scores <- double_robust_scores(forests)
head(scores)

Compute double robust scores for a causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
scores <- double_robust_scores(c.forest)

gen_data_epl 5

gen_data_epl Example data generating process from Efficient Policy Learning

Description

The DGP from section 5.2 in Athey and Wager (2017)

Usage

gen_data_epl(n, type = c("continuous", "jump"))

Arguments

n Number of observations

type tau is "continuous" (default - equation 54) or exhibits "jumps" (equation 55)

Value

A list

References

Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896
(2017).

gen_data_mapl Example data generating process from Offline Multi-Action Policy
Learning: Generalization and Optimization

Description

The DGP from section 6.4.1 in Zhou, Athey, and Wager (2018): There are d = 3 actions (a0, a1, a2)
which depend on 3 regions the covariates X ∼ U [0, 1]p reside in. Observed outcomes: Y ∼
N(µai(Xi), 4)

Usage

gen_data_mapl(n, p = 10, sigma2 = 4)

Arguments

n Number of observations X .

p Number of features (minimum 7). Default is 10.

sigma2 Noise variance. Default is 4.

6 multi_causal_forest

Value

A list with realized action ai, region ri, conditional mean µ, outcome Y and covariates X

References

Zhou, Zhengyuan, Susan Athey, and Stefan Wager. "Offline multi-action policy learning: General-
ization and optimization." arXiv preprint arXiv:1810.04778 (2018).

multi_causal_forest One vs. all causal forest for multiple treatment effect estimation

Description

For K treatments this "naive" multivariate-grf proceeeds by fitting K separate causal forests where
in forest k the treatment assignment vector is one-hot encoded for treament k (i.e. treatment vector
w_k entry i is one where individual i receives treatment k, else zero). The steps are:

1. Estimate propensities ek(x) for each action 1..K: This is done with k separate regression
forests with propensities normalized to sum to 1 at the final step.

2. Estimate the expected response m(x) = E(Y | X) marginalizing over treatment. This is done
with one regression forest.

3. Estimate the treatment effect τk(x) = µk(x)−m(x)
1−ek(x) with a causal forest (where µk(x) =

E[Y |X,W = Wk])

Usage

multi_causal_forest(
X,
Y,
W,
Y.hat = NULL,
W.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,

multi_causal_forest 7

tune.parameters = "none",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
orthog.boosting = FALSE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the causal regression.

Y The outcome (must be a numeric vector with no NAs).

W The treatment assignment (must be a categorical vector with no NAs).

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment.
If Y.hat = NULL, these are estimated using a separate regression forest. See
section 6.1.1 of the GRF paper for further discussion of this quantity. Default is
NULL.

W.hat Matrix with estimates of the treatment propensities E[Wk | Xi]. If W.hat =
NULL, these are estimated using a k separate regression forests. Default is
NULL.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights (experimental) Weights given to each sample in estimation. If NULL, each ob-
servation receives the same weight. Note: To avoid introducing confounding,
weights should be independent of the potential outcomes given X. Default is
NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

8 multi_causal_forest

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If true, prunes the estimation sample tree such that no leaves are empty. If
false, keep the same tree as determined in the splits sample (if an empty leave is
encountered, that tree is skipped and does not contribute to the estimate). Setting
this to false may improve performance on small/marginally powered data, but
requires more trees (note: tuning does not adjust the number of trees). Only
applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining the
imbalance of a split. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned
by cross-validation. The following parameters are tunable: ("sample.fraction",
"mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is false these parameters are not tuned. Default is
"none" (no parameters are tuned).

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 200.

tune.num.reps The number of forests used to fit the tuning model. Default is 50.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

orthog.boosting

(experimental) If TRUE, then when Y.hat = NULL or W.hat is NULL, the miss-
ing quantities are estimated using boosted regression forests. The number of
boosting steps is selected automatically. Default is FALSE.

https://grf-labs.github.io/grf/REFERENCE.html#honesty-honesty-fraction-prune-empty-leaves

plot.policy_tree 9

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained multi causal forest object (collection of causal forests). If tune.parameters is enabled, then
tuning information will be included through the tuning.output attribute of each forest.

Examples

Train a multi causal forest.
n <- 250
p <- 10
d <- 3
X <- matrix(rnorm(n * p), n, p)
W <- sample(c("A", "B", "C"), n, replace = TRUE)
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
multi.forest <- multi_causal_forest(X = X, Y = Y, W = W)

Predict using the forest.
multi.forest.pred <- predict(multi.forest)
head(multi.forest.pred$predictions)

plot.policy_tree Plot a policy_tree tree object.

Description

Plot a policy_tree tree object.

Usage

S3 method for class 'policy_tree'
plot(x, ...)

Arguments

x The tree to plot

... Additional arguments (currently ignored).

10 policy_tree

policy_tree Fit a policy with exact tree search

Description

Finds the optimal (maximizing the sum of rewards) depth L tree by exhaustive search. If the optimal
action is the same in both the left and right leaf of a node, the node is pruned.

Usage

policy_tree(X, Gamma, depth = 2, split.step = 1)

Arguments

X The covariates used. Dimension Np where p is the number of features.

Gamma The rewards for each action. Dimension Nd where d is the number of actions.

depth The depth of the fitted tree. Default is 2.

split.step An optional approximation parameter (integer above zero), the number of pos-
sible splits to consider when performing tree search. split.step = 1 (default)
considers every possible split, split.step = 10 considers splitting at every 10’th
distinct value and will yield a substantial speedup for densely packed continuous
data.

Value

A policy_tree object.

References

Zhou, Zhengyuan, Susan Athey, and Stefan Wager. "Offline multi-action policy learning: General-
ization and optimization." arXiv preprint arXiv:1810.04778 (2018).

Examples

n <- 50
p <- 10
d <- 3
features <- matrix(rnorm(n * p), n, p)
rewards <- matrix(rnorm(n * d), n, d)
tree <- policy_tree(features, rewards, depth = 2)
tree

predict.multi_causal_forest 11

predict.multi_causal_forest

Predict with multi_causal_forest

Description

Computes estimates of τa(x)

Usage

S3 method for class 'multi_causal_forest'
predict(object, newdata = NULL, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

... Additional arguments passed to grf::predict.causal_forest.

Value

List containing matrix of predictions and other estimates (debiased error, etc.) for each treatment.

Examples

Train a multi causal forest.
n <- 250
p <- 10
d <- 3
X <- matrix(rnorm(n * p), n, p)
W <- sample(c("A", "B", "C"), n, replace = TRUE)
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
multi.forest <- multi_causal_forest(X = X, Y = Y, W = W)

Predict using the forest.
multi.forest.pred <- predict(multi.forest)
head(multi.forest.pred$predictions)

https://grf-labs.github.io/grf/reference/predict.causal_forest.html

12 print.multi_causal_forest

predict.policy_tree Predict method for policy_tree

Description

Predict values based on fitted policy_tree object.

Usage

S3 method for class 'policy_tree'
predict(object, newdata, ...)

Arguments

object policy_tree object

newdata A data frame with features

... Additional arguments (currently ignored).

Value

A vector of predictions. Each element is an integer from 1 to d where d is the number of columns
in the reward matrix.

Examples

n <- 50
p <- 10
d <- 3
features <- matrix(rnorm(n * p), n, p)
rewards <- matrix(rnorm(n * d), n, d)
tree <- policy_tree(features, rewards, depth = 2)
print(tree)
predict(tree, features)

print.multi_causal_forest

Print a multi_causal_forest object.

Description

Print a multi_causal_forest object.

print.policy_tree 13

Usage

S3 method for class 'multi_causal_forest'
print(x, ...)

Arguments

x The object to print.

... Additional arguments (currently ignored).

print.policy_tree Print a policy_tree object.

Description

Print a policy_tree object.

Usage

S3 method for class 'policy_tree'
print(x, ...)

Arguments

x The tree to print.

... Additional arguments (currently ignored).

Index

conditional_means
(conditional_means.causal_forest),
2

conditional_means.causal_forest, 2

double_robust_scores
(double_robust_scores.causal_forest),
3

double_robust_scores.causal_forest, 3

gen_data_epl, 5
gen_data_mapl, 5

multi_causal_forest, 6

plot.policy_tree, 9
policy_tree, 10
predict.multi_causal_forest, 11
predict.policy_tree, 12
print.multi_causal_forest, 12
print.policy_tree, 13

14

	conditional_means.causal_forest
	double_robust_scores.causal_forest
	gen_data_epl
	gen_data_mapl
	multi_causal_forest
	plot.policy_tree
	policy_tree
	predict.multi_causal_forest
	predict.policy_tree
	print.multi_causal_forest
	print.policy_tree
	Index

