
Package ‘pointblank’
June 22, 2020

Type Package

Version 0.4.0

Title Validation of Local and Remote Data Tables

Description Validate data in data frames, 'tibble' objects, and in database
tables (e.g., 'PostgreSQL' and 'MySQL'). Validation pipelines can be made
using easily-readable, consecutive validation steps. Upon execution of the
validation plan, several reporting options are available. User-defined
thresholds for failure rates allow for the determination of appropriate
reporting actions.

License MIT + file LICENSE

URL https://github.com/rich-iannone/pointblank

BugReports https://github.com/rich-iannone/pointblank/issues

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.1.0.9000

Depends R (>= 3.5.0)

Imports base64enc (>= 0.1-3), blastula (>= 0.3.1), cli (>= 2.0.2), DBI
(>= 1.1.0), dplyr (>= 1.0.0), dbplyr (>= 1.4.4), ggforce (>=
0.3.1), ggplot2 (>= 3.3.0), glue (>= 1.3.2), gt (>= 0.2.1),
htmltools (>= 0.4.0), log4r (>= 0.3.2), knitr (>= 1.28),
magrittr, rlang (>= 0.4.6), scales (>= 1.1.1), testthat (>=
2.3.2), tibble (>= 3.0.0), tidyselect (>= 1.1.0)

Suggests covr, lubridate, RSQLite, RMariaDB, RPostgres, readr,
rmarkdown

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>)

Maintainer Richard Iannone <riannone@me.com>

Repository CRAN

Date/Publication 2020-06-22 17:20:02 UTC

1

https://github.com/rich-iannone/pointblank
https://github.com/rich-iannone/pointblank/issues

2 R topics documented:

R topics documented:
action_levels . 3
all_passed . 5
col_exists . 6
col_is_character . 9
col_is_date . 12
col_is_factor . 15
col_is_integer . 18
col_is_logical . 21
col_is_numeric . 24
col_is_posix . 27
col_schema . 30
col_schema_match . 32
col_vals_between . 36
col_vals_equal . 41
col_vals_expr . 45
col_vals_gt . 48
col_vals_gte . 52
col_vals_in_set . 56
col_vals_lt . 60
col_vals_lte . 64
col_vals_not_between . 68
col_vals_not_equal . 73
col_vals_not_in_set . 77
col_vals_not_null . 81
col_vals_null . 84
col_vals_regex . 88
conjointly . 92
create_agent . 96
email_blast . 100
email_preview . 102
get_agent_report . 104
get_agent_x_list . 107
get_data_extracts . 110
get_sundered_data . 111
interrogate . 113
rows_distinct . 114
rows_not_duplicated . 117
scan_data . 118
small_table . 119
small_table_sqlite . 120
stock_msg_body . 121
stock_msg_footer . 122
stop_if_not . 122
validate_rmd . 123

Index 125

action_levels 3

action_levels Set action levels: failure thresholds and functions to invoke

Description

The action_levels() function works with the actions argument that is present in the create_agent()
function and in every validation step function. With it, we can provide threshold fail levels for any
combination of warn, stop, or notify states.

We can react to any entrance of a state by supplying corresponding functions to the fns argu-
ment. They will undergo evaluation at the time when the matching state is entered. If provided to
create_agent() then the policies will be applied to every validation step, acting as a default for
the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act
as an override if set also in create_agent(). Usage of action_levels() is required to have
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions oper-
ating directly on data (e.g., mtcars %>% col_vals_lt("mpg",35)). There are two helper func-
tions that are convenient when using validation functions directly on data (the agent-less work-
flow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default fail-
ure threshold for each is set to 1), and, they do so with informative warning or error messages.
The stop_on_fail() helper is applied by default when using validation functions directly on data
(more information on this is provided in Details).

Usage

action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at = 1)

stop_on_fail(stop_at = 1)

Arguments

warn_at, stop_at, notify_at

The threshold number or fraction of test units that can provide a fail result be-
fore entering the warn, stop, or notify failure states. If this a decimal value
between 0 and 1 then it’s a proportional failure threshold (e.g., 0.15 indicates
that if 15% percent of the test units are found to fail, then the designated fail-
ure state is entered). Absolute values starting from 1 can be used instead, and
this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test
units are found to fail, the failure state is entered).

fns A named list of functions that is to be paired with the appropriate failure states.
The syntax for this list involves using failure state names from the set of warn,
stop, and notify. The functions corresponding to the failure states are pro-
vided as formulas (e.g., list(warn = ~ warning("Too many failures.")). A
series of expressions for each named state can be used by enclosing the set of
statements with { }.

4 action_levels

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using
an agent or using validation functions directly on a data table. For convenience, when working
directly on data, any values supplied to warn_at or stop_at will be automatically given a stock
warning() or stop() function. For example using small_table %>% col_is_integer("date")
will provide a detailed stop message by default, indicating the reason for the failure. If you were to
supply the fns for stop or warn manually then the stock functions would be overridden. Further-
more, if actions is NULL in this workflow (the default), pointblank will use a stop_at value of 1
(providing a detailed, context-specific error message if there are any fail units). We can absolutely
suppress this automatic stopping behavior by at each validation step by setting active = FALSE. In
this interactive data case, there is no stock function given for notify_at. The notify failure state
is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify
failure states will be reported on when using create_agent_report() (and, usually that’s suffi-
cient). Instead, using the end_fns argument is a better choice since that scheme provides useful
data on the entire interrogation, allowing for finer control on side effects and reducing potential for
duplicating any side effects.

Function ID

1-4

See Also

Other Planning and Prep: col_schema(), create_agent(), scan_data(), validate_rmd()

Examples

Create an `action_levels()` list
with fractional values for the
`warn`, `stop`, and `notify` states
al <-

action_levels(
warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.5

)

Use the included `small_table` dataset
for the validation example
small_table

Validate that values in column
`a` are always greater than `2` and
apply the list of action levels (`al`)
agent <-

create_agent(tbl = small_table) %>%
col_vals_gt(vars(a), 2, actions = al) %>%
interrogate()

all_passed 5

The report from the agent will show
that the `warn` state has been entered
for the first and only validation step;
Let's look at the *tibble* version of the
agent report (accessible through the use
of the `get_agent_report()` function)
agent %>%

get_agent_report(display_table = FALSE)

In the context of using validation
functions directly on data, their
use is commonly to trigger warnings
and raise errors. The following *will*
provide a warning (but that's
suppressed here) and the `small_table`
data will be returned
suppressWarnings(

small_table %>%
col_vals_gt(vars(a), 2, actions = al)

)

all_passed Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via interrogate(), did every
single validation step result in zero fail levels? Using the all_passed() function will let us know
whether that’s TRUE or not.

Usage

all_passed(agent)

Arguments

agent An agent object of class ptblank_agent.

Value

A logical value.

Function ID

5-5

6 col_exists

See Also

Other Post-interrogation: get_agent_report(), get_agent_x_list(), get_data_extracts(),
get_sundered_data()

Examples

Create a simple table with
a column of numerical values
tbl <-

dplyr::tibble(a = c(5, 7, 8, 5))

Validate that values in column
`a` are always greater than 4
agent <-

create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), 4) %>%
interrogate()

Determine if these column
validations have all passed
by using `all_passed()`
all_passed(agent)

col_exists Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the
test_col_exists() test function all check whether one or more columns exist in the target table.
The only requirement is specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can
be used include data frames, tibbles, and even database tables of the tbl_dbi class. Each validation
step or expectation will operate over a single test unit, which is whether the column exists or not.

Usage

col_exists(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

col_exists 7

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns One or more columns from the table in focus. This can be provided as a vector
of column names using c() or bare column names enclosed in vars().

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.
active A logical value indicating whether the validation step should be active. If the

step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly

8 col_exists

returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-23

See Also

Other validation functions: col_is_character(), col_is_date(), col_is_factor(), col_is_integer(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with two columns:
`a` and `b`
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)

)

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that columns `a` and `b`
exist in the `tbl` table; this
makes two distinct validation
steps since two columns were
provided to `vars()`
agent <-

create_agent(tbl) %>%
col_exists(vars(a, b)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions

col_is_character 9

acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_exists(vars(a, b))

C: Using the expectation function

With the `expect_*()` form, we need
to be more exacting and provide one
column at a time; this is primarily
used in testthat tests
expect_col_exists(tbl, vars(a))
expect_col_exists(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us (even if there are multiple
columns tested, as is the case below)
tbl %>% test_col_exists(vars(a, b))

col_is_character Do the columns contain character/string data?

Description

The col_is_character() validation function, the expect_col_is_character() expectation func-
tion, and the test_col_is_character() test function all check whether one or more columns in
a table is of the character type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, and even database tables of the tbl_dbi class. Each validation step
or expectation will operate over a single test unit, which is whether the column is a character-type
column or not.

Usage

col_is_character(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_character(object, columns, threshold = 1)

test_col_is_character(object, columns, threshold = 1)

10 col_is_character

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col_is_character 11

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-16

See Also

Other validation functions: col_exists(), col_is_date(), col_is_factor(), col_is_integer(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with a numeric column
(`a`) and a character column (`b`)
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = LETTERS[1:6]

)

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that column `b` has the
`character` class
agent <-

create_agent(tbl) %>%
col_is_character(vars(b)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

12 col_is_date

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_character(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_character(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_character(vars(b))

col_is_date Do the columns contain R Date objects?

Description

The col_is_date() validation function, the expect_col_is_date() expectation function, and
the test_col_is_date() test function all check whether one or more columns in a table is of the
R Date type. Like many of the col_is_*()-type functions in pointblank, the only requirement is
a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of the tbl_dbi class. Each validation step or expectation
will operate over a single test unit, which is whether the column is a Date-type column or not.

Usage

col_is_date(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_date(object, columns, threshold = 1)

test_col_is_date(object, columns, threshold = 1)

col_is_date 13

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

14 col_is_date

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-20

See Also

Other validation functions: col_exists(), col_is_character(), col_is_factor(), col_is_integer(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a `date` column; the
following examples will validate
that that column is of the `Date`
class

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `date` has
the `Date` class
agent <-
create_agent(small_table) %>%
col_is_date(vars(date)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there

col_is_factor 15

is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_is_date(vars(date)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_date(

small_table, vars(date)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_is_date(vars(date))

col_is_factor Do the columns contain R factor objects?

Description

The col_is_factor() validation function, the expect_col_is_factor() expectation function,
and the test_col_is_factor() test function all check whether one or more columns in a table is
of the factor type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of the tbl_dbi class. Each validation step or expectation
will operate over a single test unit, which is whether the column is a factor-type column or not.

Usage

col_is_factor(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_factor(object, columns, threshold = 1)

test_col_is_factor(object, columns, threshold = 1)

16 col_is_factor

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col_is_factor 17

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-22

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_integer(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

Let's modify the `f` column in the
`small_table` dataset so that the
values are factors instead of having
the `character` class; the following
examples will validate that the `f`
column was successfully mutated and
now consists of factors
tbl <-

small_table %>%
dplyr::mutate(f = factor(f))

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `f` in the
`tbl` object is of the `factor` class
agent <-

create_agent(tbl) %>%
col_is_factor(vars(f)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function

18 col_is_integer

directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_is_factor(vars(f)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_factor(tbl, vars(f))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_factor(vars(f))

col_is_integer Do the columns contain integer values?

Description

The col_is_integer() validation function, the expect_col_is_integer() expectation function,
and the test_col_is_integer() test function all check whether one or more columns in a table is
of the integer type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of the tbl_dbi class. Each validation step or expectation
will operate over a single test unit, which is whether the column is an integer-type column or not.

Usage

col_is_integer(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)

col_is_integer 19

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

20 col_is_integer

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-18

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with a character
column (`a`) and a integer column
(`b`)
tbl <-

dplyr::tibble(
a = letters[1:6],
b = 2:7

)

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that column `b` has the
`integer` class
agent <-

create_agent(tbl) %>%
col_is_integer(vars(b)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

col_is_logical 21

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_is_integer(vars(b))

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_integer(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_is_integer(vars(b))

col_is_logical Do the columns contain logical values?

Description

The col_is_logical() validation function, the expect_col_is_logical() expectation function,
and the test_col_is_logical() test function all check whether one or more columns in a table
is of the logical (TRUE/FALSE) type. Like many of the col_is_*()-type functions in pointblank,
the only requirement is a specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that
can be used include data frames, tibbles, and even database tables of the tbl_dbi class. Each
validation step or expectation will operate over a single test unit, which is whether the column is an
logical-type column or not.

Usage

col_is_logical(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)

22 col_is_logical

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col_is_logical 23

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-19

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has an `e` column which has
logical values; the following examples
will validate that that column is of
the `logical` class

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `e` has the
`logical` class
agent <-

create_agent(small_table) %>%
col_is_logical(vars(e)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there

24 col_is_numeric

is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_is_logical(vars(e)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_logical(

small_table, vars(e)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_is_logical(vars(e))

col_is_numeric Do the columns contain numeric values?

Description

The col_is_numeric() validation function, the expect_col_is_numeric() expectation function,
and the test_col_is_numeric() test function all check whether one or more columns in a table is
of the numeric type. Like many of the col_is_*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of tbl_dbi class. Each validation step or expectation will
operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

col_is_numeric(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)

col_is_numeric 25

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

26 col_is_numeric

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-17

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_posix(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a `d` column that is
known to be numeric; the following
examples will validate that that
column is indeed of the `numeric`
class

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `d` has
the `numeric` class
agent <-

create_agent(small_table) %>%
col_is_numeric(vars(d)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed

col_is_posix 27

through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_is_numeric(vars(d)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_numeric(

small_table, vars(d)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_is_numeric(vars(d))

col_is_posix Do the columns contain POSIXct dates?

Description

The col_is_posix() validation function, the expect_col_is_posix() expectation function, and
the test_col_is_posix() test function all check whether one or more columns in a table is of
the R POSIXct date-time type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, and even database tables of tbl_dbi class. Each validation step or
expectation will operate over a single test unit, which is whether the column is a POSIXct-type
column or not.

Usage

col_is_posix(x, columns, actions = NULL, brief = NULL, active = TRUE)

expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

28 col_is_posix

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at
argument. This is especially true when x is a table object because, otherwise, nothing happens. For
the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Verification step where a table column is expected to consist entirely of R POSIXct dates.

col_is_posix 29

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-18

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_schema_match(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a `date_time` column;
the following examples will validate
that that column is of the `POSIXct`
and `POSIXt` classes

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the column `date_time`
is indeed a date-time column
agent <-

create_agent(small_table) %>%
col_is_posix(vars(date_time)) %>%
interrogate()

Determine if this validation
had no failing test units (1)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there

30 col_schema

is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_is_posix(vars(date_time)) %>%
dplyr::slice(1:5)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_is_posix(

small_table, vars(date_time)
)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_is_posix(vars(date_time))

col_schema Generate a table column schema manually or with a reference table

Description

A table column schema object, as can be created by col_schema(), is necessary when using
the col_schema_match() validation function (which checks whether the table object under study
matches a known column schema). The col_schema object can be made by carefully supplying
the column names and their types as a set of named arguments, or, we could provide a table object,
which could by of the data.frame, tbl_df, or tbl_dbi varieties. There’s an additional option,
which is just for validating the schema of a tbl_dbi object: we can validate the schema based
on R column types (e.g., "numeric", "character", etc.), or, SQL column types (e.g., "double",
"varchar", etc.). This is great if we want to validate table column schemas both on the server side
and when tabular data is collected and loaded into R.

Usage

col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))

Arguments

... A set of named arguments where the names refer to column names and the values
are one or more column types.

col_schema 31

.tbl An option to use a table object to define the schema. If this is provided then any
values provided to ... will be ignored.

.db_col_types Determines whether the column types refer to R column types ("r") or SQL
column types ("sql").

Function ID

1-5

See Also

Other Planning and Prep: action_levels(), create_agent(), scan_data(), validate_rmd()

Examples

Create a simple table with two
columns: one `integer` and the
other `character`
tbl <-

dplyr::tibble(
a = 1:5,
b = letters[1:5]

)

Create a column schema object
that describes the columns and
their types (in the expected
order)
schema_obj <-

col_schema(
a = "integer",
b = "character"

)

Validate that the schema object
`col_schema_x` exactly defines
the column names and column types
of the `tbl_x` table
agent <-

create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if these three validation
steps passed by using `all_passed()`
all_passed(agent)

We can alternatively create
a column schema object from a
`tbl_df` object
schema_obj <-

col_schema(

32 col_schema_match

.tbl = dplyr::tibble(
a = integer(0),
b = character(0)

)
)

This should provide the same
interrogation results as in the
previous example
create_agent(tbl = tbl) %>%

col_schema_match(schema_obj) %>%
interrogate() %>%
all_passed()

col_schema_match Do columns in the table (and their types) match a predefined schema?

Description

The col_schema_match() validation function, the expect_col_schema_match() expectation func-
tion, and the test_col_schema_match() test function all work in conjunction with a col_schema
object (generated through the col_schema() function) to determine whether the expected schema
matches that of the target table. The validation function can be used directly on a data table or with
an agent object (technically, a ptblank_agent object) whereas the expectation and test functions
can only be used with a data table. The types of data tables that can be used include data frames,
tibbles, and even database tables of tbl_dbi class. The validation step or expectation operates
over a single test unit, which is whether the schema matches that of the table (within the con-
straints enforced by the complete and in_order options). If the target table is a tbl_dbi object,
we can choose to validate the column schema that is based on R column types (e.g., "numeric",
"character", etc.), or, SQL column types (e.g., "double", "varchar", etc.). That option is defined
in the col_schema() function (it is the .db_col_types argument).

Usage

col_schema_match(
x,
schema,
complete = TRUE,
in_order = TRUE,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_schema_match(
object,
schema,

col_schema_match 33

complete = TRUE,
in_order = TRUE,
threshold = 1

)

test_col_schema_match(
object,
schema,
complete = TRUE,
in_order = TRUE,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

schema A table schema of type col_schema which can be generated using the col_schema()
function.

complete A requirement to account for all table columns in the schema. By default, this
is TRUE and so that all column names in the target table must be present in the
schema object. This restriction can be relaxed by using FALSE, where we can
provide a subset of table columns in the schema.

in_order A stringent requirement for enforcing the order of columns in the provided
schema. By default, this is TRUE and the order of columns in both the schema and
the target table must match. By setting to FALSE, this strict order requirement is
removed.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

34 col_schema_match

Details

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-24

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_vals_between(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with two columns:
one `integer` (`a`) and the other
`character` (`b`); the following
examples will validate that the
table columns abides match a schema
object as created by `col_schema()`
tbl <-

dplyr::tibble(
a = 1:5,
b = letters[1:5]

)

tbl

col_schema_match 35

Create a column schema object with
the helper function `col_schema()`
that describes the columns and
their types (in the expected order)
schema_obj <-

col_schema(
a = "integer",
b = "character"

)

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that the schema object
`schema_obj` exactly defines
the column names and column types
agent <-

create_agent(tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if this validation
had no failing test units (there is
a single test unit governed by
whether there is a match)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>% col_schema_match(schema_obj)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_schema_match(tbl, schema_obj)

D: Using the test function

36 col_vals_between

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_schema_match(schema_obj)

col_vals_between Are column data between two specified values?

Description

The col_vals_between() validation function, the expect_col_vals_between() expectation func-
tion, and the test_col_vals_between() test function all check whether column values in a table
fall within a range. The range specified with three arguments: left, right, and inclusive. The
left and right values specify the lower and upper bounds. The bounds can be specified as single,
literal values or as column names given in vars(). The inclusive argument, as a vector of two
logical values relating to left and right, states whether each bound is inclusive or not. The default
is c(TRUE,TRUE), where both endpoints are inclusive (i.e., [left, right]). For partially-unbounded
versions of this function, we can use the col_vals_lt(), col_vals_lte(), col_vals_gt(), or
col_vals_gte() validation functions. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of tbl_dbi class. Each validation step or expectation will
operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_between(
x,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),

col_vals_between 37

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

left The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

right The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

inclusive A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

38 col_vals_between

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

col_vals_between 39

Function ID

2-7

See Also

The analogue to this function: col_vals_not_between().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a column of numeric
values in `c` (there are a few NAs
in that column); the following
examples will validate the values
in that numeric column

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `c`
are all between `1` and `9`; because
there are NA values, we'll choose to
let those pass validation by setting
`na_pass = TRUE`
agent <-
create_agent(small_table) %>%
col_vals_between(

vars(c), 1, 9, na_pass = TRUE
) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed

40 col_vals_between

through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_vals_between(
vars(c), 1, 9, na_pass = TRUE

) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_between(

small_table, vars(c), 1, 9,
na_pass = TRUE

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_vals_between(
vars(c), 1, 9,
na_pass = TRUE

)

An additional note on the bounds for
this function: they are inclusive by
default (i.e., values of exactly 1
and 9 will pass); we can modify the
inclusiveness of the upper and lower
bounds with the `inclusive` option,
which is a length-2 logical vector

Testing with the upper bound being
non-inclusive, we get `FALSE` since
two values are `9` and they now fall
outside of the upper (or right) bound
small_table %>%

test_col_vals_between(
vars(c), 1, 9,
inclusive = c(TRUE, FALSE),
na_pass = TRUE

)

col_vals_equal 41

col_vals_equal Are column data equal to a specified value?

Description

The col_vals_equal() validation function, the expect_col_vals_equal() expectation function,
and the test_col_vals_equal() test function all check whether column values in a table are equal
to a specified value. The value can be specified as a single, literal value or as a column name given
in vars(). The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. The types of data tables that can be used include data frames, tibbles, and even
database tables of tbl_dbi class. Each validation step or expectation will operate over the number
of test units that is equal to the number of rows in the table (after any preconditions have been
applied).

Usage

col_vals_equal(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

42 col_vals_equal

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value A numeric value used to test for equality.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In

col_vals_equal 43

the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-3

See Also

The analogue to this function: col_vals_not_equal().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_expr(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],

44 col_vals_equal

e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `a`
are all equal to the value of `5`
agent <-

create_agent(tbl) %>%
col_vals_equal(vars(a), 5) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_equal(vars(a), 5) %>%
dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_equal(tbl, vars(a), 5)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_equal(tbl, vars(a), 5)

col_vals_expr 45

col_vals_expr Do column data agree with a predicate expression?

Description

The col_vals_expr() validation function checks for whether column values in a table match a
user-defined predicate expression. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that can be used include data
frames, tibbles, and even database tables of tbl_dbi class. Each validation step or expectation will
operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_expr(
x,
expr,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

expr An expression to use for this test. This can either be in the form of a call made
with the expr() function or as a one-sided R formula (using a leading ~).

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

46 col_vals_expr

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-25

col_vals_expr 47

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_gte(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(1, 2, 1, 7, 8, 6),
b = c(0, 0, 0, 1, 1, 1),
c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `a`
are integer-like by using the R modulo
operator and expecting `0`
agent <-
create_agent(tbl) %>%
col_vals_expr(expr(a %% 1 == 0)) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option

48 col_vals_gt

tbl %>%
col_vals_expr(expr(a %% 1 == 0)) %>%
dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_expr(tbl, ~ a %% 1 == 0)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_expr(tbl, ~ a %% 1 == 0)

Variations

We can do more complex things by
taking advantage of the `case_when()`
and `between()` functions (available
for use in the pointblank package)
tbl %>%

test_col_vals_expr(~ case_when(
b == 0 ~ a %>% between(0, 5) & c < 1,
b == 1 ~ a > 5 & c >= 1

))

If you only want to test a subset of
rows, then the `case_when()` statement
doesn't need to be exhaustive; any
rows that don't fall into the cases
will be pruned (giving us less test
units overall)
tbl %>%

test_col_vals_expr(~ case_when(
b == 1 ~ a > 5 & c >= 1

))

col_vals_gt Are column data greater than a specified value?

Description

The col_vals_gt() validation function, the expect_col_vals_gt() expectation function, and the
test_col_vals_gt() test function all check whether column values in a table are greater than a

col_vals_gt 49

specified value (the exact comparison used in this function is col_val > value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. The types of data
tables that can be used include data frames, tibbles, and even database tables of tbl_dbi class. Each
validation step or expectation will operate over the number of test units that is equal to the number
of rows in the table (after any preconditions have been applied).

Usage

col_vals_gt(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_gt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_gt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value A numeric value used for this test. Any column values >value are considered
passing.

50 col_vals_gt

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level

col_vals_gt 51

(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-6

See Also

The analogous function with a left-closed bound: col_vals_gte().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

52 col_vals_gte

Validate that values in column `a`
are all greater than the value of `4`
agent <-

create_agent(tbl) %>%
col_vals_gt(vars(a), 4) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_gt(vars(a), 4) %>%
dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_gt(tbl, vars(a), 4)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_gt(tbl, vars(a), 4)

col_vals_gte Are column data greater than or equal to a specified value?

col_vals_gte 53

Description

The col_vals_gte() validation function, the expect_col_vals_gte() expectation function, and
the test_col_vals_gte() test function all check whether column values in a table are greater than
or equal to a specified value (the exact comparison used in this function is col_val >= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation step function can be used directly on a data table or with an agent object (technically,
a ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. The types of data tables that can be used include data frames, tibbles, and even database
tables of tbl_dbi class. Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gte(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_gte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_gte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

54 col_vals_gte

value A numeric value used for this test. Any column values >= value are considered
passing.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()

col_vals_gte 55

function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-5

See Also

The analogous function with a left-open bound: col_vals_gt().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_in_set(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl

56 col_vals_in_set

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `a`
are all greater than or equal to the
value of `5`
agent <-

create_agent(tbl) %>%
col_vals_gte(vars(a), 5) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_gte(vars(a), 5) %>%
dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_gte(tbl, vars(a), 5)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_gte(tbl, vars(a), 5)

col_vals_in_set Are column data part of a specified set of values?

col_vals_in_set 57

Description

The col_vals_in_set() validation function, the expect_col_vals_in_set() expectation func-
tion, and the test_col_vals_in_set() test function all check whether column values in a table
are part of a specified set of values. The validation step function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table. The types of data tables that can be used include
data frames, tibbles, and even database tables of tbl_dbi class. Each validation step or expectation
will operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_in_set(
x,
columns,
set,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

set A vector of numeric or string-based elements, where column values found within
this set will be considered as passing.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

58 col_vals_in_set

brief An optional, text-based description for the validation step.
active A logical value indicating whether the validation step should be active. If the

step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly

col_vals_in_set 59

returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-9

See Also

The analogue to this function: col_vals_not_in_set().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package will be used to validate that
column values are part of a given set

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `f`
are all part of the set of values
containing `low`, `mid`, and `high`
agent <-

create_agent(small_table) %>%
col_vals_in_set(

vars(f), c("low", "mid", "high")
) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the

60 col_vals_lt

behavior of side effects can be
customized with the `actions` option
small_table %>%

col_vals_in_set(
vars(f), c("low", "mid", "high")

) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_in_set(

small_table,
vars(f), c("low", "mid", "high")

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_vals_in_set(
vars(f), c("low", "mid", "high")

)

col_vals_lt Are column data less than a specified value?

Description

The col_vals_lt() validation function, the expect_col_vals_lt() expectation function, and
the test_col_vals_lt() test function all check whether column values in a table are less than a
specified value (the exact comparison used in this function is col_val < value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. The types of data
tables that can be used include data frames, tibbles, and even database tables of tbl_dbi class. Each
validation step or expectation will operate over the number of test units that is equal to the number
of rows in the table (after any preconditions have been applied).

Usage

col_vals_lt(

col_vals_lt 61

x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_lt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_lt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value A numeric value used for this test. Any column values < value are considered
passing.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

62 col_vals_lt

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col_vals_lt 63

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `c`
are all less than the value of `5`
agent <-

create_agent(tbl) %>%
col_vals_lt(vars(c), 5) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

64 col_vals_lte

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_lt(vars(c), 5) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_lt(tbl, vars(c), 5)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_lt(tbl, vars(c), 5)

col_vals_lte Are column data less than or equal to a specified value?

Description

The col_vals_lte() validation function, the expect_col_vals_lte() expectation function, and
the test_col_vals_lte() test function all check whether column values in a table are less than
or equal to a specified value (the exact comparison used in this function is col_val <= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation step function can be used directly on a data table or with an agent object (technically,
a ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. The types of data tables that can be used include data frames, tibbles, and even database
tables of tbl_dbi class. Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

col_vals_lte 65

Usage

col_vals_lte(
x,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_lte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_lte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value A numeric value used for this test. Any column values <= value are considered
passing.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

66 col_vals_lte

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

col_vals_lte 67

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-2

See Also

The analogous function with a right-open bound: col_vals_lt().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `c`
are all less than or equal to the
value of `4`
agent <-
create_agent(tbl) %>%
col_vals_lte(vars(c), 4) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)

68 col_vals_not_between

all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_lte(vars(c), 4) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_lte(tbl, vars(c), 4)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_lte(tbl, vars(c), 4)

col_vals_not_between Are column data not between two specified values?

Description

The col_vals_not_between() validation function, the expect_col_vals_not_between() ex-
pectation function, and the test_col_vals_not_between() test function all check whether col-
umn values in a table do not fall within a range. The range specified with three arguments:
left, right, and inclusive. The left and right values specify the lower and upper bounds.
The bounds can be specified as single, literal values or as column names given in vars(). The
inclusive argument, as a vector of two logical values relating to left and right, states whether
each bound is inclusive or not. The default is c(TRUE,TRUE), where both endpoints are inclusive
(i.e., [left, right]). For partially-unbounded versions of this function, we can use the col_vals_lt(),

col_vals_not_between 69

col_vals_lte(), col_vals_gt(), or col_vals_gte() validation functions. The validation func-
tion can be used directly on a data table or with an agent object (technically, a ptblank_agent
object) whereas the expectation and test functions can only be used with a data table. The types of
data tables that can be used include data frames, tibbles, and even database tables of tbl_dbi class.
Each validation step or expectation will operate over the number of test units that is equal to the
number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_between(
x,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

70 col_vals_not_between

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

left, right The lower and uppers bounds for the range. The validation Any values >= left
and <= right will be considered as failing.

inclusive A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names to columns, the result will be an expansion of validation steps
to that number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In

col_vals_not_between 71

the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-8

See Also

The analogue to this function: col_vals_between().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a column of numeric
values in `c` (there are a few NAs
in that column); the following
examples will validate the values
in that numeric column

A: Using an `agent` with validation
functions and then `interrogate()`

72 col_vals_not_between

Validate that values in column `c`
are all between `10` and `20`; because
there are NA values, we'll choose to
let those pass validation by setting
`na_pass = TRUE`
agent <-

create_agent(small_table) %>%
col_vals_not_between(
vars(c), 10, 20, na_pass = TRUE

) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_vals_not_between(
vars(c), 10, 20, na_pass = TRUE

) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_between(

small_table, vars(c), 10, 20,
na_pass = TRUE

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us

col_vals_not_equal 73

small_table %>%
test_col_vals_not_between(
vars(c), 10, 20,
na_pass = TRUE

)

An additional note on the bounds for
this function: they are inclusive by
default; we can modify the
inclusiveness of the upper and lower
bounds with the `inclusive` option,
which is a length-2 logical vector

In changing the lower bound to be
`9` and making it non-inclusive, we
get `TRUE` since although two values
are `9` and they fall outside of the
lower (or left) bound (and any values
'not between' count as passing test
units)
small_table %>%

test_col_vals_not_between(
vars(c), 9, 20,
inclusive = c(FALSE, TRUE),
na_pass = TRUE

)

col_vals_not_equal Are column data not equal to a specified value?

Description

The col_vals_not_equal() validation function, the expect_col_vals_not_equal() expecta-
tion function, and the test_col_vals_not_equal() test function all check whether column values
in a table are not equal to a specified value. The validation step function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, and even database tables of tbl_dbi class. Each validation step or
expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_not_equal(
x,
columns,
value,
na_pass = FALSE,

74 col_vals_not_equal

preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

value a numeric value used to test for non-equality.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

col_vals_not_equal 75

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

76 col_vals_not_equal

Function ID

2-4

See Also

The analogue to this function: col_vals_equal().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all of the examples here, we'll
use a simple table with three numeric
columns (`a`, `b`, and `c`) and three
character columns (`d`, `e`, and `f`)
tbl <-

dplyr::tibble(
a = c(5, 5, 5, 5, 5, 5),
b = c(1, 1, 1, 2, 2, 2),
c = c(1, 1, 1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)],
e = LETTERS[c(1:6)],
f = LETTERS[c(1:6)]

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `a`
are all *not* equal to the value
of `6`
agent <-

create_agent(tbl) %>%
col_vals_not_equal(vars(a), 6) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 6 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

col_vals_not_in_set 77

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_not_equal(vars(a), 6) %>%
dplyr::pull(a)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_equal(tbl, vars(a), 6)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
test_col_vals_not_equal(tbl, vars(a), 6)

col_vals_not_in_set Are data not part of a specified set of values?

Description

The col_vals_not_in_set() validation function, the expect_col_vals_not_in_set() expec-
tation function, and the test_col_vals_not_in_set() test function all check whether column
values in a table are not part of a specified set of values. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. The types of data tables that can
be used include data frames, tibbles, and even database tables of tbl_dbi class. Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_not_in_set(
x,
columns,
set,

78 col_vals_not_in_set

preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

set A vector of numeric or string-based elements, where column values found within
this set will be considered as failing.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

col_vals_not_in_set 79

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-10

See Also

The analogue to this function: col_vals_in_set().

80 col_vals_not_in_set

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package will be used to validate that
column values are part of a given set

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that values in column `f`
contain none of the values `lows`,
`mids`, and `highs`
agent <-

create_agent(small_table) %>%
col_vals_not_in_set(
vars(f), c("lows", "mids", "highs")

) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_vals_not_in_set(
vars(f), c("lows", "mids", "highs")

) %>%
dplyr::pull(f) %>%
unique()

C: Using the expectation function

col_vals_not_null 81

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_in_set(

small_table,
vars(f), c("lows", "mids", "highs")

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_vals_not_in_set(
vars(f), c("lows", "mids", "highs")

)

col_vals_not_null Are column data not NULL/NA?

Description

The col_vals_not_null() validation function, the expect_col_vals_not_null() expectation
function, and the test_col_vals_not_null() test function all check whether column values in a
table are not NA values or, in the database context, not NULL values. The validation function can be
used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas
the expectation and test functions can only be used with a data table. The types of data tables that
can be used include data frames, tibbles, and even database tables of tbl_dbi class. Each validation
step or expectation will operate over the number of test units that is equal to the number of rows in
the table (after any preconditions have been applied).

Usage

col_vals_not_null(
x,
columns,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

82 col_vals_not_null

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level

col_vals_not_null 83

(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-12

See Also

The analogue to this function: col_vals_null().

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with four columns:
`a`, `b`, `c`, and `d`
tbl <-
dplyr::tibble(

a = c(5, 7, 6, 5, 8),
b = c(7, 1, 0, 0, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that all values in column
`b` are *not* NA (they would be

84 col_vals_null

non-NULL in a database context, which
isn't the case here)
agent <-

create_agent(tbl) %>%
col_vals_not_null(vars(b)) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 5 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

col_vals_not_null(vars(b)) %>%
dplyr::pull(b)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_not_null(tbl, vars(b))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_vals_not_null(vars(b))

col_vals_null Are column data NULL/NA?

col_vals_null 85

Description

The col_vals_null() validation function, the expect_col_vals_null() expectation function,
and the test_col_vals_null() test function all check whether column values in a table are NA
values or, in the database context, NULL values. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. The types of data tables that can be used
include data frames, tibbles, and even database tables of tbl_dbi class. Each validation step or
expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_null(
x,
columns,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

86 col_vals_null

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-11

See Also

The analogue to this function: col_vals_not_null().

col_vals_null 87

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_regex(), conjointly(), rows_distinct()

Examples

For all examples here, we'll use
a simple table with four columns:
`a`, `b`, `c`, and `d`
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8),
b = c(7, 1, 0, 0, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that all values in column
`c` are NA (they would be NULL in a
database context, which isn't the
case here)
agent <-

create_agent(tbl) %>%
col_vals_null(vars(c)) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 5 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option

88 col_vals_regex

tbl %>%
col_vals_null(vars(c)) %>%
dplyr::pull(c)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_null(tbl, vars(c))

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>% test_col_vals_null(vars(c))

col_vals_regex Do strings in column data match a regex pattern?

Description

The col_vals_regex() validation function, the expect_col_vals_regex() expectation function,
and the test_col_vals_regex() test function all check whether column values in a table corre-
spond to a regex matching expression. The validation step function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table. The types of data tables that can be used include
data frames, tibbles, and even database tables of tbl_dbi class. Each validation step or expectation
will operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_regex(
x,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_regex(

col_vals_regex 89

object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_regex(
object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

regex A regex pattern to test for matching strings.

na_pass Should any encountered NA values be allowed to pass a validation unit? This is
by default FALSE. Set to TRUE to give NAs a pass.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat

90 col_vals_regex

test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a,col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().
This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.
Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).
Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).
Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-13

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),

col_vals_regex 91

col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), conjointly(), rows_distinct()

Examples

The `small_table` dataset in the
package has a character-based `b`
column with values that adhere to
a very particular pattern; the
following examples will validate
that that column abides by a regex
pattern
small_table

This is the regex pattern that will
be used throughout
pattern <- "[0-9]-[a-z]{3}-[0-9]{3}"

A: Using an `agent` with validation
functions and then `interrogate()`

Validate that all values in column
`b` match the regex `pattern`
agent <-

create_agent(small_table) %>%
col_vals_regex(vars(b), pattern) %>%
interrogate()

Determine if this validation
had no failing test units (there
are 13 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
small_table %>%

col_vals_regex(vars(b), pattern) %>%
dplyr::slice(1:5)

C: Using the expectation function

92 conjointly

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_col_vals_regex(

small_table,
vars(b), pattern

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
small_table %>%

test_col_vals_regex(
vars(b), pattern

)

conjointly Perform multiple rowwise validations for joint validity

Description

The conjointly() validation function, the expect_conjointly() expectation function, and the
test_conjointly() test function all check whether test units at each index (typically each row) all
pass multiple validations with col_vals_*()-type functions. Because of the imposed constraint on the
allowed validation functions, all test units are rows of the table (after any common preconditions
have been applied). Each of the functions (composed with multiple validation function calls) ulti-
mately perform a rowwise test of whether all sub-validations reported a pass for the same test units.
In practice, an example of a joint validation is testing whether values for column a are greater than
a specific value while values for column b lie within a specified range. The validation functions
to be part of the conjoint validation are to be supplied as one-sided R formulas (using a leading ~,
and having a . stand in as the data object). The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table.

Usage

conjointly(
x,
...,
.list = list2(...),
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

conjointly 93

)

expect_conjointly(
object,
...,
.list = list2(...),
preconditions = NULL,
threshold = 1

)

test_conjointly(
object,
...,
.list = list2(...),
preconditions = NULL,
threshold = 1

)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

... a collection one-sided formulas that consist of validation step functions that vali-
date row units. Specifically, these functions should be those with the naming pat-
tern col_vals_*(). An example of this is ~ col_vals_gte(., vars(a), 5.5), ~ col_vals_not_null(., vars(b)).

.list Allows for the use of a list as an input alternative to

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat

94 conjointly

test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

If providing multiple column names in any of the supplied validation step functions, the result will
be an expansion of sub-validation steps to that number of column names. Aside from column names
in quotes and in vars(), tidyselect helper functions are available for specifying columns. They are:
starts_with(), ends_with(), contains(), matches(), and everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if
necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-14

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), rows_distinct()

conjointly 95

Examples

For all examples here, we'll use
a simple table with three numeric
columns (`a`, `b`, and `c`); this is
a very basic table but it'll be more
useful when explaining things later
tbl <-

dplyr::tibble(
a = c(5, 2, 6),
b = c(3, 4, 6),
c = c(9, 8, 7)

)

tbl

A: Using an `agent` with validation
functions and then `interrogate()`

Validate a number of things on a
row-by-row basis using validation
functions of the `col_vals*` type
(all have the same number of test
units): (1) values in `a` are less
than `4`, (2) values in `c` are
greater than the adjacent values in
`a`, and (3) there aren't any NA
values in `b`
agent <-

create_agent(tbl = tbl) %>%
conjointly(
~ col_vals_lt(., vars(a), 8),
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b))
) %>%

interrogate()

Determine if this validation
had no failing test units (there
are 3 test units, one for each row)
all_passed(agent)

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`

What's going on? Think of there being
three parallel validations, each
producing a column of `TRUE` or `FALSE`
values (`pass` or `fail`) and line them
up side-by-side, any rows with any
`FALSE` values results in a conjoint

96 create_agent

`fail` test unit

B: Using the validation function
directly on the data (no `agent`)

This way of using validation functions
acts as a data filter: data is passed
through but should `stop()` if there
is a single test unit failing; the
behavior of side effects can be
customized with the `actions` option
tbl %>%

conjointly(
~ col_vals_lt(., vars(a), 8),
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b))

)

C: Using the expectation function

With the `expect_*()` form, we would
typically perform one validation at a
time; this is primarily used in
testthat tests
expect_conjointly(

tbl,
~ col_vals_lt(., vars(a), 8),
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b))

)

D: Using the test function

With the `test_*()` form, we should
get a single logical value returned
to us
tbl %>%

test_conjointly(
~ col_vals_lt(., vars(a), 8),
~ col_vals_gt(., vars(c), vars(a)),
~ col_vals_not_null(., vars(b))

)

create_agent Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting
workflow. The overall aim of this workflow is to generate useful reporting information for assessing

create_agent 97

the level of data quality for the target table. We can supply as many validation functions as the user
wishes to write, thereby increasing the level of validation coverage for that table. The agent assigned
by the create_agent() call takes validation functions, which expand to validation steps (each one
is numbered). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the
interrogate() function is called. That kicks off the process of the agent acting on the valida-
tion plan and getting results for each step. Once the interrogation process is complete, we can say
that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the
interrogation can also be accessed with the get_agent_report() function, where there are more
reporting options.

A very detailed list object, known as the x-list, can be obtained by using the get_agent_x_list()
function. This font of information can be taken as a whole, or, broken down by the step number.

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts()
functions, we either get a list of tibbles (for those steps that have data extracts) or one tibble if the
validation step is specified.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test
units), the all_passed() function could be used. However, in practice, it’s rarely the case that all
data validation steps are free from any failing units.

Usage

create_agent(
tbl,
name = NULL,
actions = NULL,
end_fns = NULL,
embed_report = FALSE,
reporting_lang = NULL

)

Arguments

tbl The input table. This can be a data frame, a tibble, or a tbl_dbi object.
name An optional name for the validation plan that the agent will eventually carry

out during the interrogation process. If no value is provided, a name will be
generated based on the current system time.

actions A list containing threshold levels so that all validation steps can react accord-
ingly when exceeding the set levels. This is to be created with the action_levels()
helper function. Should an action levels list be used for specific validation step,
any default set here will be overridden.

end_fns A list of functions that should be performed at the end of an interrogation.
embed_report An option to embed a gt-based validation report into the ptblank_agent object.

If FALSE (the default) then the table object will be not generated and available
with the agent upon returning from the interrogation.

reporting_lang The language to use for automatic creation of briefs (short descriptions for each
validation step) and for the agent report (a summary table that provides the val-
idation plan and the results from the interrogation. By default, NULL will create

98 create_agent

English ("en") text. Other options include French ("fr"), German ("de"), Ital-
ian ("it"), and Spanish ("es").

Value

A ptblank_agent object.

Function ID

1-2

See Also

Other Planning and Prep: action_levels(), col_schema(), scan_data(), validate_rmd()

Examples

Let's walk through a data quality
analysis of an extremely small table;
it's actually called `small_table` and
we can find it as a dataset in this
package
small_table

We ought to think about what's
tolerable in terms of data quality so
let's designate proportional failure
thresholds to the `warn`, `stop`, and
`notify` states using `action_levels()`
al <-

action_levels(
warn_at = 0.1,
stop_at = 0.25,
notify_at = 0.35

)

Now create a pointblank `agent` object
and give it the `al` object (which
serves as a default for all validation
steps which can be overridden); the
static thresholds provided by `al` will
make the reporting a bit more useful
agent <-

create_agent(
small_table,
name = "example",
actions = al

)

Then, as with any `agent` object, we
can add steps to the validation plan by
using as many validation functions as we

create_agent 99

want; then, we use `interrogate()` to
physically perform the validations and
gather intel
agent <-

agent %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"

) %>%
rows_distinct() %>%
col_vals_gt(vars(d), 100) %>%
col_vals_lte(vars(c), 5) %>%
col_vals_equal(

vars(d), vars(d),
na_pass = TRUE

) %>%
col_vals_between(

vars(c),
left = vars(a), right = vars(d),
na_pass = TRUE

) %>%
interrogate()

Calling `agent` in the console
prints the agent's report; but we
can get a `gt_tbl` object directly
with `get_agent_report(agent)`
report <- get_agent_report(agent)
class(report)

What can you do with the report?
Print it from an R Markdown code,
use it in an email, put it in a
webpage, or further modify it with
the **gt** package

From the report we know that Step
4 had two test units (rows, really)
that failed; we can see those rows
with `get_data_extracts()`
agent %>% get_data_extracts(i = 4)

We can get an x-list for the whole
validation (8 steps), or, just for
the 4th step with `get_agent_x_list()`
xl_step_4 <-

agent %>% get_agent_x_list(i = 4)

And then we can peruse the different
parts of the list; let's get the
fraction of test units that failed
xl_step_4$f_failed

100 email_blast

Just printing the x-list will tell
us what's available therein
xl_step_4

An x-list not specific to any step
will have way more information and a
slightly different structure; see
`help(get_agent_x_list)` for more info
get_agent_x_list(agent)

email_blast Send email at a step or at the end of an interrogation

Description

The email_blast() function is useful for sending an email message that explains the result of a
pointblank validation. It is powered by the blastula and glue packages. This function should
be invoked as part of the end_fns argument of create_agent(). It’s also possible to invoke
email_blast() as part of the fns argument of the action_levels() function (to possibly send an
email message at one or more steps).

Usage

email_blast(
x,
to,
from,
credentials = NULL,
msg_subject = NULL,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer(),
send_condition = ~TRUE %in% x$notify

)

Arguments

x A reference to list object prepared by the agent. It’s only available in an internal
evaluation context.

to, from The email addresses for the recipients and the sender.

credentials A credentials list object that is produced by either of the blastula::creds(),
blastula::creds_anonymous(), blastula::creds_key(), or blastula::creds_file()
functions. Please refer to the blastula documentation for details on each of these
helper functions.

msg_subject The subject line of the email message.

email_blast 101

msg_header, msg_body, msg_footer

Content for the header, body, and footer components of the HTML email mes-
sage.

send_condition An expression that should evaluate to a logical vector of length 1. If TRUE then
the email will be sent, if FALSE then that won’t happen. The expression can
use x-list variables (e.g., x$notify, x$type, etc.) and all of those variables can
be viewed using the get_agent_x_list() function. The default expression is
~TRUE %in% x$notify, which results in TRUE if there are any TRUE values in the
x$notify logical vector (i.e., any validation step results in a ’notify’ condition).

Details

To better get a handle on emailing with email_blast(), the analogous email_preview() can be
used with a pointblank agent object or the output obtained from using the get_agent_x_list()
function.

Function ID

3-1

See Also

Other Emailing: email_preview(), stock_msg_body(), stock_msg_footer()

Examples

Create a simple table with two
columns of numerical values
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)

)

Create an `action_levels()` list
with absolute values for the
`warn`, and `notify` states (with
thresholds of 1 and 2 'fail' units)
al <-

action_levels(
warn_at = 1,
notify_at = 2

)

Validate that values in column
`a` from `tbl` are always > 5 and
that `b` values are always < 5;
first, apply the `actions_levels()`
directive to `actions` and set up
an `email_blast()` as one of the
`end_fns` (by default, the email

102 email_preview

will be sent if there is a single
'notify' state across all
validation steps)
agent <-
create_agent(
tbl = tbl,
actions = al,
end_fns = list(
~ email_blast(
x,
to = "joe_public@example.com",
from = "pb_notif@example.com",
msg_subject = "Table Validation",
credentials = blastula::creds_key(
id = "gmail"
),
)
)
) %>%
col_vals_gt(vars(a), 5) %>%
col_vals_lt(vars(b), 5) %>%
interrogate()

This example was intentionally
not run because email credentials
aren't available and the `to`
and `from` email addresses are
nonexistent; to look at the email
message before sending anything of
the like, we can use the
`email_preview()` function
email_object <-

create_agent(
tbl = tbl,
actions = al

) %>%
col_vals_gt(vars(a), 5) %>%
col_vals_lt(vars(b), 5) %>%
interrogate() %>%
email_preview()

email_preview Get a preview of an email before actually sending that email

Description

The email_preview() function provides a preview of an email that would normally be produced
and sent through the email_blast() function. The x that we need for this is the agent x-list that
is produced by the get_agent_x_list() function. Or, we can supply an agent object. In both

email_preview 103

cases, the email message with appear in the Viewer and a blastula email_message object will be
returned.

Usage

email_preview(
x,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer()

)

Arguments

x A pointblank agent or an agent x-list. The x-list object can be created with
the get_agent_x_list() function. It is recommended that the i = NULL and
generate_report = TRUE so that the agent report is available within the email
preview.

msg_header, msg_body, msg_footer

Content for the header, body, and footer components of the HTML email mes-
sage.

Value

A blastula email_message object.

Function ID

3-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()

Examples

Create a simple table with two
columns of numerical values
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)

)

Create an `action_levels()` list
with absolute values for the
`warn`, and `notify` states (with
thresholds of 1 and 2 'fail' units)
al <-

action_levels(
warn_at = 1,

104 get_agent_report

notify_at = 2
)

In a workflow that involves an
`agent` object, we can set up a
series of `end_fns` and have report
emailing with `email_blast()` but,
first, we can look at the email
message object beforehand by using
the `email_preview()` function
on an `agent` object
email_object <-
create_agent(
tbl = tbl,
actions = al
) %>%
col_vals_gt(vars(a), 5) %>%
col_vals_lt(vars(b), 5) %>%
interrogate() %>%
email_preview()

The `email_preview()` function can
also be used on an agent x-list to
get the same email message object
email_object <-
create_agent(
tbl = tbl,
actions = al
) %>%
col_vals_gt(vars(a), 5) %>%
col_vals_lt(vars(b), 5) %>%
interrogate() %>%
get_agent_x_list() %>%
email_preview()

We can view the HTML email just
by printing `email_object`; it
should appear in the Viewer

get_agent_report Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the get_agent_report() func-
tion. The table can be provided in two substantially different forms: as a gt based display table
(the default), or, as a tibble. The amount of fields with intel is different depending on whether
or not the agent performed an interrogation (with the interrogate() function). Basically, before
interrogate() is called, the agent will contain just the validation plan (however many rows it has

get_agent_report 105

depends on how many validation functions were supplied a part of that plan). Post-interrogation,
information on the passing and failing test units is provided, along with indicators on whether cer-
tain failure states were entered (provided they were set through actions). The display table variant
of the agent report, the default form, will have the following columns:

• i (unlabeled): the validation step number
• STEP: the name of the validation function used for the validation step
• COLUMNS: the names of the target columns used in the validation step (if applicable)
• VALUES: the values used in the validation step, where applicable; this could be as literal val-

ues, as column names, an expression, a set of sub-validations (for a conjointly() validation
step), etc.

• TBL: indicates whether any there were any preconditions to apply before interrogation; if not,
a script ’I’ stands for ’identity’ but, if so, a right-facing arrow appears

• EVAL: a character value that denotes the result of each validation step functions’ evaluation
during interrogation

• UNITS: the total number of test units for the validation step
• PASS: the number of test units that received a pass
• FAIL: the fraction of test units that received a pass
• W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset

states appear as dashes, states that are set with thresholds appear as unfilled circles when not
entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and
blue)

• EXT: a column that provides buttons with data extracts for each validation step where failed
rows are available (as CSV files)

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL,
and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

• i: the validation step number
• type: the name of the validation function used for the validation step
• columns: the names of the target columns used in the validation step (if applicable)
• values: the values used in the validation step, where applicable; for a conjointly() validation

step, this is a listing of all sub-validations
• precon: indicates whether any there are any preconditions to apply before interrogation and,

if so, the number of statements used
• active: a logical value that indicates whether a validation step is set to "active" during an

interrogation
• eval: a character value that denotes the result of each validation step functions’ evaluation

during interrogation
• units: the total number of test units for the validation step
• n_pass: the number of test units that received a pass
• f_pass: the fraction of test units that received a pass
• W, S, N: logical value stating whether the warn, stop, or notify states were entered
• extract: a logical value that indicates whether a data extract is available for the validation step

106 get_agent_report

Usage

get_agent_report(
agent,
arrange_by = c("i", "severity"),
keep = c("all", "fail_states"),
display_table = TRUE,
size = "standard"

)

Arguments

agent An agent object of class ptblank_agent.

arrange_by A choice to arrange the report table rows by the validation step number ("i", the
default), or, to arrange in descending order by severity of the failure state (with
"severity").

keep An option to keep "all" of the report’s table rows (the default), or, keep only
those rows that reflect one or more "fail_states".

display_table Should a display table be generated? If TRUE (the default), and if the gt package
is installed, a display table for the report will be shown in the Viewer. If FALSE,
or if gt is not available, then a tibble will be returned.

size The size of the display table, which can be either "standard" (the default) or
"small". This only applies to a display table (where display_table = TRUE).

Value

A gt table object if display_table = TRUE or a tibble if display_table = FALSE.

Function ID

5-1

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), get_sundered_data()

Examples

Create a simple table with a
column of numerical values
tbl <-

dplyr::tibble(a = c(5, 7, 8, 5))

Validate that values in column
`a` are always greater than 4
agent <-

create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), 4) %>%
interrogate()

get_agent_x_list 107

Get a tibble-based report from the
agent by using `get_agent_report()`
with `display_table = FALSE`
agent %>%

get_agent_report(display_table = FALSE)

View a the report by printing the
`agent` object anytime, but, return a
gt table object by using this with
`display_table = TRUE` (the default)
report <- get_agent_report(agent)
class(report)

What can you do with the report?
Print it from an R Markdown code,
use it in an email, put it in a
webpage, or further modify it with
the **gt** package

The agent report as a **gt** display
table comes in two sizes: "standard"
(the default) and "small"
small_report <-

get_agent_report(agent, size = "small")
class(small_report)

The standard report is 875px wide
the small one is 575px wide

get_agent_x_list Get the agent’s x-list

Description

The agent’s x-list is a record of information that the agent possesses at any given time. The x-list
will contain the most complete information after an interrogation has taken place (before then, the
data largely reflects the validation plan). The x-list can be constrained to a particular validation step
(by supplying the step number to the i argument), or, we can get the information for all validation
steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable
cornucopia of information.

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.

108 get_agent_x_list

i The validation step number, which is assigned to each validation step in the
order of invocation. If NULL (the default), the x-list will provide information
for all validation steps. If a valid step number is provided then x-list will have
information pertaining only to that step.

Details

For an x-list obtained with i specified for a validation step, the following components are available:

• time: the time at which the validation may have been performed (POSIXct [0 or 1])

• name: the (optional) name given to the validation (chr [1])

• tbl_name: the name of the table object, if available (chr [1])

• tbl_src: the type of table used in the validation (chr [1])

• tbl_src_details: if the table is a database table, this provides further details for the DB
table (chr [1])

• tbl: the table object itself

• col_names: the table’s column names (chr [ncol(tbl)])

• col_types: the table’s column types (chr [ncol(tbl)])

• i: the validation step index (int [1])

• type: the type of validation, value is validation function name (chr [1])

• columns: the columns specified for the validation function (chr [variable length])

• values: the values specified for the validation function (mixed types [variable length])

• briefs: the brief for the validation step in the specified reporting_lang (chr [1])

• eval_error, eval_warning: indicates whether the evaluation of the step function, during
interrogation, resulted in an error or a warning (lgl [1])

• capture_stack: a list of captured errors or warnings during step-function evaluation at inter-
rogation time (list [1])

• n: the number of test units for the validation step (num [1])

• n_passed, n_failed: the number of passing and failing test units for the validation step (num
[1])

• f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])

• f_failed: the fraction of failing test units for the validation step, n_failed / n (num [1])

• warn, stop, notify: a logical value indicating whether the level of failing test units caused
the corresponding conditions to be entered (lgl [1])

• reporting_lang: the two-letter language code that indicates which language should be used
for all briefs, the agent report, and the reporting generated by the scan_data() function (chr
[1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one com-
ponents in the x-list will be expanded to the total number of validation steps (these are: i, type,
columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed,
f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components
when i is NULL, which are:

get_agent_x_list 109

• report_object: a gt table object, which is also presented as the default print method for a
ptblank_agent

• email_object: a blastula email_message object with a default set of components

• report_html: the HTML source for the report_object, provided as a length-one character
vector

• report_html_small: the HTML source for a narrower, more condensed version of report_object,
provided as a length-one character vector; The HTML has inlined styles, making it more suit-
able for email message bodies

Value

A list object.

Function ID

5-2

See Also

Other Post-interrogation: all_passed(), get_agent_report(), get_data_extracts(), get_sundered_data()

Examples

Create a simple data frame with
a column of numerical values
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

Create an `action_levels()` list
with fractional values for the
`warn`, `stop`, and `notify` states
al <-

action_levels(
warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.345

)

Create an agent (giving it the
`tbl` and the `al` objects),
supply two validation step
functions, then interrogate
agent <-

create_agent(
tbl = tbl,
actions = al

) %>%
col_vals_gt(vars(a), 7) %>%
col_is_numeric(vars(a)) %>%
interrogate()

Get the agent x-list

110 get_data_extracts

x <- get_agent_x_list(agent)

Print the x-list object `x`
x

Get the `f_passed` component
of the x-list
x$f_passed

get_data_extracts Collect data extracts from a validation step

Description

In an agent-based workflow, after interrogation with interrogate() we can get the row data that
didn’t pass row-based validation steps with the get_data_extracts() function. The amount of
data available in a particular extract depends on both the fraction of test units that didn’t pass a
validation step and the level of sampling or explicit collection from that set of units.

The availability of data extracts for each row-based validation step is depends on whether extract_failed
is set to TRUE within the interrogate() call (it is by default). The amount of fail rows extracted
depends on the collection parameters in interrogate(), and the default behavior is to collect up
to the first 5000 fail rows.

Row-based validation steps are based on the validation functions of the form col_vals_*() and also
include conjointly() and rows_distinct(). Only those types of validation steps can provide
data extracts.

Usage

get_data_extracts(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent. It should have had interrogate()
called on it, such that the validation steps were carried out and any sample rows
from non-passing validations could potentially be available in the object.

i The validation step number, which is assigned to each validation step in the
order of definition. If NULL (the default), all data extract tables will be provided
in a list object.

Value

A list of tables if i is not provided, or, a standalone table if i is given.

Function ID

5-3

get_sundered_data 111

See Also

Other Post-interrogation: all_passed(), get_agent_report(), get_agent_x_list(), get_sundered_data()

Examples

Create a simple table with a
column of numerical values
tbl <-

dplyr::tibble(a = c(5, 7, 8, 5))

Create 2 simple validation steps
that test whether values within
column `a`
agent <-

create_agent(tbl = tbl) %>%
col_vals_between(vars(a), 4, 6) %>%
col_vals_lte(vars(a), 7) %>%
interrogate(
extract_failed = TRUE,
get_first_n = 10

)

Get row sample data for those rows
in `tbl` that did not pass the first
validation step (`col_vals_between`)
agent %>% get_data_extracts(i = 1)

get_sundered_data Sunder the data, splitting it into ’pass’ and ’fail’ pieces

Description

Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset
for something else. The get_sundered_data() function works with an agent object that has intel
(i.e., post interrogate()) and gets either the ’pass’ data piece (rows with no failing units across
all row-based validation functions), or, the ’fail’ data piece (rows with at least one failing unit
across the same series of validations). There are some caveats, only those validation steps with
no preconditions are considered. And, the validation steps used for this must, again, be of the
row-based variety (e.g., the col_vals_*() functions, and conjointly()).

Usage

get_sundered_data(agent, type = "pass", id_cols = NULL)

112 get_sundered_data

Arguments

agent An agent object of class ptblank_agent. It should have had interrogate()
called on it, such that the validation steps were actually carried out.

type The desired piece of data resulting from the splitting. Options are "pass" (the
default) and "fail".

id_cols An optional specification of one or more identifying columns. When taken to-
gether, we can count on this single column or grouping of columns to distinguish
rows.

Value

A list of table objects if type is NULL, or, a table object piece if a type is given.

Function ID

5-4

See Also

Other Post-interrogation: all_passed(), get_agent_report(), get_agent_x_list(), get_data_extracts()

Examples

Create a series of three validation
steps focus on test row values for
the `small_table` tibble object;
`interrogate()` immediately
agent <-
create_agent(tbl = small_table) %>%
col_vals_gt(vars(d), 100) %>%
col_vals_equal(

vars(d), vars(d),
na_pass = TRUE

) %>%
col_vals_between(

vars(c), left = vars(a), right = vars(d),
na_pass = TRUE

) %>%
interrogate()

Get the sundered data piece that
contains only rows that passed all
validation steps (the default piece)
agent %>% get_sundered_data()

interrogate 113

interrogate Given an agent that has a validation plan, perform an interrogation

Description

When the agent has all the information on what to do (i.e., a validation plan which is a series of
validation steps), the interrogation process can occur according its plan. After that, the agent will
have gathered intel, and we can use functions like get_agent_report() and all_passed() to
understand how the interrogation went down.

Usage

interrogate(
agent,
extract_failed = TRUE,
get_first_n = NULL,
sample_n = NULL,
sample_frac = NULL,
sample_limit = 5000

)

Arguments

agent An agent object of class ptblank_agent.

extract_failed An option to collect rows that didn’t pass a particular validation step. The default
is TRUE and further options allow for fine control of how these rows are collected.

get_first_n If the option to collect non-passing rows is chosen, there is the option here to
collect the first n rows here. Supply the number of rows to extract from the top
of the non-passing rows table (the ordering of data from the original table is
retained).

sample_n If the option to collect non-passing rows is chosen, this option allows for the
sampling of n rows. Supply the number of rows to sample from the non-passing
rows table. If n is greater than the number of non-passing rows, then all the rows
will be returned.

sample_frac If the option to collect non-passing rows is chosen, this option allows for the
sampling of a fraction of those rows. Provide a number in the range of 0 and
1. The number of rows to return may be extremely large (and this is especially
when querying remote databases), however, the sample_limit option will apply
a hard limit to the returned rows.

sample_limit A value that limits the possible number of rows returned when sampling non-
passing rows using the sample_frac option.

Value

A ptblank_agent object.

114 rows_distinct

Function ID

4-1

Examples

Create a simple table with two
columns of numerical values
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 0, 3)

)

Validate that values in column
`a` from `tbl` are always > 5,
using `interrogate()` carries out
the validation plan and completes
the whole process
agent <-

create_agent(tbl = tbl) %>%
col_vals_gt(vars(a), 5) %>%
interrogate()

rows_distinct Are row data distinct?

Description

The rows_distinct() validation function, the expect_rows_distinct() expectation function,
and the test_rows_distinct() test function all check whether row values (optionally constrained
to a selection of specified columns) are, when taken as a complete unit, distinct from all other units
in the table. The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. The types of data tables that can be used include data frames, tibbles, and even
database tables of tbl_dbi class. As a validation step or as an expectation, this will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

rows_distinct(
x,
columns = NULL,
preconditions = NULL,
actions = NULL,
brief = NULL,
active = TRUE

rows_distinct 115

)

expect_rows_distinct(
object,
columns = NULL,
preconditions = NULL,
threshold = 1

)

test_rows_distinct(object, columns = NULL, preconditions = NULL, threshold = 1)

Arguments

x A data frame, tibble (tbl_df or tbl_dbi), or, an agent object of class ptblank_agent
that can be created with create_agent().

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

brief An optional, text-based description for the validation step.

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

object A data frame or tibble (tbl_df or tbl_dbi) that serves as the target table for the
expectation function.

threshold A simple failure threshold value for use with the expectation function. By de-
fault, this is set to 1 meaning that any single unit of failure in data validation
results in an overall test failure. Whole numbers beyond 1 indicate that any fail-
ing units up to that absolute threshold value will result in a succeeding testthat
test. Likewise, fractional values (between 0 and 1) act as a proportional failure
threshold.

Details

We can specify the constraining column names in quotes, in vars(), and with the following tidyse-
lect helper functions: starts_with(), ends_with(), contains(), matches(), and everything().

Having table preconditions means pointblank will mutate the table just before interrogation.
Such a table mutation is isolated in scope to the validation step(s) produced by the validation func-
tion call. Using dplyr code is suggested here since the statements can be translated to SQL if

116 rows_distinct

necessary. The code is most easily supplied as a one-sided R formula (using a leading ~). In
the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>%
dplyr::mutate(col_a = col_b + 10)). Alternatively, a function could instead be supplied (e.g.,
function(x) dplyr::mutate(x,col_a = col_b + 10)).

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at
= 0.25) are good choices depending on the situation (the first produces a warning when a quarter
of the total test units fails, the other stop()s at the same threshold level).

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Function ID

2-15

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gte(), col_vals_gt(),
col_vals_in_set(), col_vals_lte(), col_vals_lt(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), conjointly()

Examples

Create a simple table with three
columns of numerical values
tbl <-

dplyr::tibble(
a = c(5, 7, 6, 5, 8, 7),
b = c(7, 1, 0, 0, 8, 3),
c = c(1, 1, 1, 3, 3, 3)

)

Validate that when considering only
data in columns `a` and `b`, there

rows_not_duplicated 117

are no duplicate rows (i.e., all
rows are distinct)
agent <-

create_agent(tbl = tbl) %>%
rows_distinct(vars(a, b)) %>%
interrogate()

Determine if these column
validations have all passed
by using `all_passed()`
all_passed(agent)

rows_not_duplicated Verify that row data are not duplicated (deprecated)

Description

Verify that row data are not duplicated (deprecated)

Usage

rows_not_duplicated(
x,
columns = NULL,
preconditions = NULL,
brief = NULL,
actions = NULL,
active = TRUE

)

Arguments

x An agent object of class ptblank_agent.

columns The column (or a set of columns, provided as a character vector) to which this
validation should be applied.

preconditions expressions used for mutating the input table before proceeding with the valida-
tion. This is ideally as a one-sided R formula using a leading ~. In the formula
representation, the . serves as the input data table to be transformed (e.g., ~ .
%>% dplyr::mutate(col = col + 10).

brief An optional, text-based description for the validation step.

actions A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

118 scan_data

active A logical value indicating whether the validation step should be active. If the
step function is working with an agent, FALSE will make the validation step in-
active (still reporting its presence and keeping indexes for the steps unchanged).
If the step function will be operating directly on data, then any step with active
= FALSE will simply pass the data through with no validation whatsoever. The
default for this is TRUE.

Value

A ptblank_agent object.

scan_data Thoroughly scan the table data so as to understand it better

Description

Generates an HTML report that scours the input table data. Before calling up an agent to validate
the data, it’s a good idea to understand the data with some level of precision. Make this the initial
step of a well-balanced data quality reporting workflow. The reporting output contains several
sections to make everything more digestible, and these are:

Overview Table dimensions, duplicate row count, column types, and reproducibility information

Variables A summary for each table variable and further statistics and summaries depending on
the variable type

Interactions A matrix plot that shows interactions between variables

Correlations A set of correlation matrix plots for numerical variables

Missing Values A summary figure that shows the degree of missingness across variables

Sample A table that provides the head and tail rows of the dataset

The output HTML report is viewable in the RStudio Viewer and can also be integrated in R Mark-
down HTML reports. If you need the output HTML as a string, it’s possible to get that by using
as.character() (e.g., scan_data(tbl = mtcars) %>% as.character()). The resulting HTML
string is a complete HTML document where Bootstrap and jQuery are embedded within.

Usage

scan_data(
tbl,
sections = c("overview", "variables", "interactions", "correlations", "missing",

"sample"),
navbar = TRUE,
reporting_lang = NULL

)

small_table 119

Arguments

tbl The input table. This can be a data frame, tibble, or tbl_dbi. object.

sections The sections to include in the finalized Table Scan report. A character vector
with section names is required here. The sections in their default order are:
"overview", "variables", "interactions", "correlations", "missing",
and "sample". This vector can be comprised of less elements and the order can
be changed to suit the desired layout of the report. For tbl_dbi objects, the
"interactions" and "correlations" sections are excluded.

navbar Should there be a navigation bar anchored to the top of the report page? By
default this is TRUE.

reporting_lang The language to use for label text in the report. By default, NULL will create En-
glish ("en") text. Other options include French ("fr"), German ("de"), Italian
("it"), and Spanish ("es").

Function ID

1-1

See Also

Other Planning and Prep: action_levels(), col_schema(), create_agent(), validate_rmd()

Examples

Get an HTML report that describes all of
the data in the `dplyr::storms` dataset
scan_data(tbl = dplyr::storms)

small_table A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing
the functions from pointblank. Rows 9 and 10 are exact duplicates. The c column contains two NA
values.

Usage

small_table

120 small_table_sqlite

Format

A tibble with 13 rows and 8 variables:

date_time A date-time column (of the POSIXct class) with dates that correspond exactly to those
in the date column. Time values are somewhat randomized but all ’seconds’ values are 00.

date A Date column with dates from 2016-01-04 to 2016-01-30.

a An integer column with values ranging from 1 to 8.

b A character column with values that adhere to a common pattern.

c An integer column with values ranging from 2 to 9. Contains two NA values.

d A numeric column with values ranging from 108 to 10000.

e A logical column.

f A character column with "low", "mid", and "high" values.

Function ID

6-1

See Also

Other Datasets: small_table_sqlite()

Examples

Here is a glimpse at the data
available in `small_table`
dplyr::glimpse(small_table)

small_table_sqlite A SQLite version of the small_table dataset

Description

The small_table_sqlite() function creates a SQLite, tbl_dbi version of the small_table
dataset. A requirement is the availability of the DBI and RSQLite packages. These packages
can be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage

small_table_sqlite()

Function ID

6-2

stock_msg_body 121

See Also

Other Datasets: small_table

Examples

Use `small_table_sqlite()` to
create a SQLite version of the
`small_table` table
#
small_table_sqlite <- small_table_sqlite()

stock_msg_body Provide simple email message body components: body

Description

The stock_msg_body() function simply provides some stock text for an email message sent via
email_blast() or previewed through email_preview().

Usage

stock_msg_body()

Value

Text suitable for the msg_body arguments of email_blast() and email_preview().

Function ID

3-3

See Also

Other Emailing: email_blast(), email_preview(), stock_msg_footer()

122 stop_if_not

stock_msg_footer Provide simple email message body components: footer

Description

The stock_msg_footer() functions simply provide some stock text for an email message sent via
email_blast() or previewed through email_preview().

Usage

stock_msg_footer()

Value

Text suitable for the msg_footer argument of email_blast() and email_preview().

Function ID

3-4

See Also

Other Emailing: email_blast(), email_preview(), stock_msg_body()

stop_if_not The next generation of stopifnot()-type functions: stop_if_not()

Description

This is stopifnot() but with a twist: it works well as a standalone, replacement for stopifnot()
but is also customized for use in validation checks in R Markdown documents where pointblank is
loaded. Using stop_if_not() in a code chunk where the validate = TRUE option is set will yield
the correct reporting of successes and failures whereas stopifnot() does not.

Usage

stop_if_not(...)

Arguments

... R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in ... are TRUE.

validate_rmd 123

Examples

This checks whether the number of
rows in `small_table` is greater
than `10`
stop_if_not(nrow(small_table) > 10)

This will stop for sure: there
isn't a `time` column in `small_table`
(but there are the `date_time` and
`date` columns)
stop_if_not("time" %in% colnames(small_table))

You're not bound to using tabular
data here, any statements that
evaluate to logical vectors will work
stop_if_not(1:5 < 20:25)

validate_rmd Modify pointblank validation testing options within R Markdown doc-
uments

Description

Using pointblank in an R Markdown workflow is enabled by default once the pointblank library
is loaded. The framework allows for validation testing within specialized validation code chunks
where the validate = TRUE option is set. Using pointblank validation functions on data in these
marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors
are reported in the validation code chunk after rendering the document to HTML, where green or
red status buttons indicate whether all validations succeeded or failures occurred. Clicking any
such button reveals the otherwise hidden validation statements and their error messages (if any).
While the framework for such testing is set up by default, the validate_rmd() function offers an
opportunity to set UI and logging options.

Usage

validate_rmd(summary = TRUE, log_to_file = NULL)

Arguments

summary If TRUE (the default), then there will be a leading summary of all validations in
the rendered R Markdown document. With FALSE, this element is not shown.

log_to_file An option to log errors to a text file. By default, no logging is done but TRUE
will write log entries to "validation_errors.log" in the working directory.
To both enable logging and to specify a file name, include a path to a log file of
the desired name.

124 validate_rmd

Function ID

1-3

See Also

Other Planning and Prep: action_levels(), col_schema(), create_agent(), scan_data()

Index

∗Topic datasets
small_table, 119

action_levels, 3, 31, 98, 119, 124
action_levels(), 7, 10, 13, 16, 19, 22, 25,

28, 33, 34, 37, 38, 42, 43, 45, 46, 50,
54, 57, 58, 61, 62, 65, 66, 70, 71, 74,
75, 78, 79, 82, 85, 86, 89, 90, 93, 94,
97, 100, 115–117

all_passed, 5, 106, 109, 111, 112
all_passed(), 97, 113

blastula::creds(), 100
blastula::creds_anonymous(), 100
blastula::creds_file(), 100
blastula::creds_key(), 100

col_exists, 6, 11, 14, 17, 20, 23, 26, 29, 34,
39, 43, 47, 51, 55, 59, 63, 67, 71, 76,
80, 83, 87, 90, 94, 116

col_is_character, 8, 9, 14, 17, 20, 23, 26,
29, 34, 39, 43, 47, 51, 55, 59, 63, 67,
71, 76, 80, 83, 87, 90, 94, 116

col_is_date, 8, 11, 12, 17, 20, 23, 26, 29, 34,
39, 43, 47, 51, 55, 59, 63, 67, 71, 76,
80, 83, 87, 90, 94, 116

col_is_factor, 8, 11, 14, 15, 20, 23, 26, 29,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 90, 94, 116

col_is_integer, 8, 11, 14, 17, 18, 23, 26, 29,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 90, 94, 116

col_is_logical, 8, 11, 14, 17, 20, 21, 26, 29,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 90, 94, 116

col_is_numeric, 8, 11, 14, 17, 20, 23, 24, 29,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 90, 94, 116

col_is_posix, 8, 11, 14, 17, 20, 23, 26, 27,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 90, 94, 116

col_schema, 4, 30, 98, 119, 124
col_schema(), 32, 33
col_schema_match, 8, 11, 14, 17, 20, 23, 26,

29, 32, 39, 43, 47, 51, 55, 59, 63, 67,
71, 76, 80, 83, 87, 90, 94, 116

col_schema_match(), 30
col_vals_between, 8, 11, 14, 17, 20, 23, 26,

29, 34, 36, 43, 47, 51, 55, 59, 63, 67,
71, 76, 80, 83, 87, 91, 94, 116

col_vals_between(), 71
col_vals_equal, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 41, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 91, 94, 116

col_vals_equal(), 76
col_vals_expr, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 43, 45, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 91, 94, 116

col_vals_gt, 8, 11, 14, 17, 20, 23, 26, 29, 34,
39, 43, 47, 48, 55, 59, 63, 67, 71, 76,
80, 83, 87, 91, 94, 116

col_vals_gt(), 36, 55, 69
col_vals_gte, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 43, 47, 51, 52, 59, 63, 67, 71,
76, 80, 83, 87, 91, 94, 116

col_vals_gte(), 36, 51, 69
col_vals_in_set, 8, 11, 14, 17, 20, 23, 26,

29, 34, 39, 43, 47, 51, 55, 56, 63, 67,
71, 76, 80, 83, 87, 91, 94, 116

col_vals_in_set(), 79
col_vals_lt, 8, 11, 14, 17, 20, 23, 26, 29, 34,

39, 43, 47, 51, 55, 59, 60, 67, 71, 76,
80, 83, 87, 91, 94, 116

col_vals_lt(), 36, 67, 68
col_vals_lte, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 43, 47, 51, 55, 59, 63, 64, 71,
76, 80, 83, 87, 91, 94, 116

col_vals_lte(), 36, 63, 69
col_vals_not_between, 8, 11, 14, 17, 20, 23,

26, 29, 34, 39, 43, 47, 51, 55, 59, 63,

125

126 INDEX

67, 68, 76, 80, 83, 87, 91, 94, 116
col_vals_not_between(), 39
col_vals_not_equal, 8, 11, 14, 17, 20, 23,

26, 29, 34, 39, 43, 47, 51, 55, 59, 63,
67, 71, 73, 80, 83, 87, 91, 94, 116

col_vals_not_equal(), 43
col_vals_not_in_set, 8, 11, 14, 17, 20, 23,

26, 29, 34, 39, 43, 47, 51, 55, 59, 63,
67, 71, 76, 77, 83, 87, 91, 94, 116

col_vals_not_in_set(), 59
col_vals_not_null, 8, 11, 14, 17, 20, 23, 26,

29, 34, 39, 43, 47, 51, 55, 59, 63, 67,
71, 76, 80, 81, 87, 91, 94, 116

col_vals_not_null(), 86
col_vals_null, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 84, 91, 94, 116

col_vals_null(), 83
col_vals_regex, 8, 11, 14, 17, 20, 23, 26, 29,

34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 88, 94, 116

conjointly, 8, 11, 14, 17, 20, 23, 26, 29, 34,
39, 43, 47, 51, 55, 59, 63, 67, 71, 76,
80, 83, 87, 91, 92, 116

conjointly(), 105, 110, 111
create_agent, 4, 31, 96, 119, 124
create_agent(), 3, 7, 10, 13, 16, 19, 22, 25,

28, 33, 37, 42, 45, 49, 53, 57, 61, 65,
69, 74, 78, 82, 85, 89, 93, 100, 115

email_blast, 100, 103, 121, 122
email_blast(), 102, 121, 122
email_preview, 101, 102, 121, 122
email_preview(), 101, 121, 122
expect_col_exists (col_exists), 6
expect_col_is_character

(col_is_character), 9
expect_col_is_date (col_is_date), 12
expect_col_is_factor (col_is_factor), 15
expect_col_is_integer (col_is_integer),

18
expect_col_is_logical (col_is_logical),

21
expect_col_is_numeric (col_is_numeric),

24
expect_col_is_posix (col_is_posix), 27
expect_col_schema_match

(col_schema_match), 32

expect_col_vals_between
(col_vals_between), 36

expect_col_vals_equal (col_vals_equal),
41

expect_col_vals_expr (col_vals_expr), 45
expect_col_vals_gt (col_vals_gt), 48
expect_col_vals_gte (col_vals_gte), 52
expect_col_vals_in_set

(col_vals_in_set), 57
expect_col_vals_lt (col_vals_lt), 60
expect_col_vals_lte (col_vals_lte), 64
expect_col_vals_not_between

(col_vals_not_between), 68
expect_col_vals_not_equal

(col_vals_not_equal), 73
expect_col_vals_not_in_set

(col_vals_not_in_set), 77
expect_col_vals_not_null

(col_vals_not_null), 81
expect_col_vals_null (col_vals_null), 84
expect_col_vals_regex (col_vals_regex),

88
expect_conjointly (conjointly), 92
expect_rows_distinct (rows_distinct),

114

get_agent_report, 6, 104, 109, 111, 112
get_agent_report(), 97, 113
get_agent_x_list, 6, 106, 107, 111, 112
get_agent_x_list(), 97, 101–103
get_data_extracts, 6, 106, 109, 110, 112
get_data_extracts(), 97
get_sundered_data, 6, 106, 109, 111, 111

interrogate, 113
interrogate(), 97, 104, 110, 112

rows_distinct, 8, 11, 14, 17, 20, 23, 26, 29,
34, 39, 43, 47, 51, 55, 59, 63, 67, 71,
76, 80, 83, 87, 91, 94, 114

rows_distinct(), 110
rows_not_duplicated, 117

scan_data, 4, 31, 98, 118, 124
scan_data(), 108
small_table, 119, 121
small_table_sqlite, 120, 120
stock_msg_body, 101, 103, 121, 122
stock_msg_footer, 101, 103, 121, 122

INDEX 127

stop_if_not, 122
stop_on_fail (action_levels), 3

test_col_exists (col_exists), 6
test_col_is_character

(col_is_character), 9
test_col_is_date (col_is_date), 12
test_col_is_factor (col_is_factor), 15
test_col_is_integer (col_is_integer), 18
test_col_is_logical (col_is_logical), 21
test_col_is_numeric (col_is_numeric), 24
test_col_is_posix (col_is_posix), 27
test_col_schema_match

(col_schema_match), 32
test_col_vals_between

(col_vals_between), 36
test_col_vals_equal (col_vals_equal), 41
test_col_vals_expr (col_vals_expr), 45
test_col_vals_gt (col_vals_gt), 48
test_col_vals_gte (col_vals_gte), 52
test_col_vals_in_set (col_vals_in_set),

57
test_col_vals_lt (col_vals_lt), 60
test_col_vals_lte (col_vals_lte), 64
test_col_vals_not_between

(col_vals_not_between), 68
test_col_vals_not_equal

(col_vals_not_equal), 73
test_col_vals_not_in_set

(col_vals_not_in_set), 77
test_col_vals_not_null

(col_vals_not_null), 81
test_col_vals_null (col_vals_null), 84
test_col_vals_regex (col_vals_regex), 88
test_conjointly (conjointly), 92
test_rows_distinct (rows_distinct), 114

validate_rmd, 4, 31, 98, 119, 123
vars(), 7

warn_on_fail (action_levels), 3

	action_levels
	all_passed
	col_exists
	col_is_character
	col_is_date
	col_is_factor
	col_is_integer
	col_is_logical
	col_is_numeric
	col_is_posix
	col_schema
	col_schema_match
	col_vals_between
	col_vals_equal
	col_vals_expr
	col_vals_gt
	col_vals_gte
	col_vals_in_set
	col_vals_lt
	col_vals_lte
	col_vals_not_between
	col_vals_not_equal
	col_vals_not_in_set
	col_vals_not_null
	col_vals_null
	col_vals_regex
	conjointly
	create_agent
	email_blast
	email_preview
	get_agent_report
	get_agent_x_list
	get_data_extracts
	get_sundered_data
	interrogate
	rows_distinct
	rows_not_duplicated
	scan_data
	small_table
	small_table_sqlite
	stock_msg_body
	stock_msg_footer
	stop_if_not
	validate_rmd
	Index

