
Package ‘pmdplyr’
May 30, 2020

Type Package

Title 'dplyr' Extension for Common Panel Data Maneuvers

Version 0.3.3

Description Using the 'dplyr' package as a base, adds a family of functions designed to make manipu-
lating panel data easier. Allows the addition of indexing variables to a tibble to create a pib-
ble, and the manipulation of data based on those indexing variables.

License MIT + file LICENSE

URL https://nickch-k.github.io/pmdplyr,

https://github.com/NickCH-K/pmdplyr

BugReports https://github.com/NickCH-K/pmdplyr/issues

Copyright file COPYRIGHTS

Encoding UTF-8

Depends R (>= 3.4), dplyr (>= 1.0.0)

Imports lubridate, magrittr, pillar, tidyr, tibble, tidyselect, utils,
vctrs, rlang (>= 0.4.0)

Suggests tsibble, plm, panelr, haven, utf8, sjlabelled, knitr,
rmarkdown, testthat (>= 2.1.0), covr

RoxygenNote 7.1.0.9000

VignetteBuilder knitr

LazyData true

NeedsCompilation no

Author Nick Huntington-Klein [aut, cre]
(<https://orcid.org/0000-0002-7352-3991>),
Philip Khor [aut] (<https://orcid.org/0000-0002-8333-1256>)

Maintainer Nick Huntington-Klein <nhuntington-klein@fullerton.edu>

Repository CRAN

Date/Publication 2020-05-30 07:30:02 UTC

1

https://nickch-k.github.io/pmdplyr
https://github.com/NickCH-K/pmdplyr
https://github.com/NickCH-K/pmdplyr/issues

2 as_pibble

R topics documented:
as_pibble . 2
fixed_check . 4
fixed_force . 5
id_variable . 6
inexact_join . 7
is_pibble . 10
join.tbl_pb . 11
mode_order . 12
mutate_cascade . 13
mutate_subset . 15
panel_calculations . 16
panel_convert . 18
panel_fill . 19
panel_locf . 22
pibble . 24
pibble_methods . 26
pmdplyr . 27
safe_join . 28
Scorecard . 29
setops . 30
SPrail . 31
time_variable . 32
tlag . 36

Index 40

as_pibble Coerce to a pibble panel data set object

Description

This function coerces a tibble, data.frame, or list to a pibble tibble by adding the .i, .t, and .d
attributes to it.

Usage

as_pibble(x, .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE, ...)

S3 method for class 'tbl_df'
as_pibble(x, .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE, ...)

S3 method for class 'grouped_df'
as_pibble(x, .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE, ...)

S3 method for class 'data.frame'
as_pibble(x, .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE, ...)

as_pibble 3

S3 method for class 'list'
as_pibble(x, .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE, ...)

Arguments

x A data frame, tibble or list

.i Quoted or unquoted variable(s) that identify the individual cases. If this is omit-
ted, pibble will assume the data set is a single time series.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

.d Number indicating the gap in t between one period and the next. For example, if
.t indicates a single day but data is collected once a week, you might set .d=7.
To ignore gap length and assume that "one period ago" is always the most recent
prior observation in the data, set .d=0. By default, .d=1.

.uniqcheck Logical parameter. Set to TRUE to perform a check of whether .i and .t
uniquely identify observations, and present a message if not. By default this
is set to FALSE and the warning message occurs only once per session.

... Other arguments passed on to individual methods.

Details

• .i, Quoted or unquoted variable(s) indicating the individual-level panel identifier

• .t, Quoted or unquoted variable indicating the time variable

• .d, a number indicating the gap

Note that pibble does not require that .i and .t uniquely identify the observations in your data, but
it will give a warning message (a maximum of once per session, unless .uniqcheck=TRUE) if they
do not.

Examples

data(SPrail)
I set .d=0 here to indicate that I don't care how large the gap
between one period and the next is.
If I want to use 'insert_date' for .t with a fixed gap between periods,
I need to transform it into an integer first; see time_variable()
SP <- as_pibble(SPrail,

.i = c(origin, destination),

.t = insert_date,

.d = 0
)
is_pibble(SP)
attr(SP, ".i")
attr(SP, ".t")
attr(SP, ".d")

4 fixed_check

data(Scorecard)
Here, year is an integer, so I can use it with .d = 1 to
indicate that one period is a change of one unit in year
Conveniently, .d = 1 is the default
Scorecard <- as_pibble(Scorecard, .i = unitid, .t = year)
is_pibble(Scorecard)

fixed_check Check for inconsistency in variables that should be fixed

Description

This function checks whether one set of variables is consistent within values of another set of vari-
ables. If they are, returns TRUE. If they aren’t, it will return a list of data frames, one for each element
of .var, consisting only of the observations and variables in which there are inconsistencies.

Usage

fixed_check(.df, .var = NULL, .within = NULL)

Arguments

.df Data frame, pibble, or tibble.

.var Quoted or unquoted variable(s) in .df that are to be checked for consistency. If
not specified, uses all variables in .df that are not in .within.

.within Quotes or unquoted variable(s) that the .var variables should be consistent
within.

Examples

In the Scorecard data, it should be the case that
state_abbr and inst_name never change within university.
Let's see if that's true
data(Scorecard)
fixed_check(Scorecard, .var = c(state_abbr, inst_name), .within = unitid)
it returns TRUE! We're good to go

count_not_working has no reason to be constant within unitid,
but let's see what happens if we run it through
fixed_check(Scorecard, .var = count_not_working, .within = unitid)
It gives back a tibble with inconsistent obs!

fixed_force 5

fixed_force Enforce consistency in variables

Description

This function forces values the variables in .var to take constant values within combinations of the
variables in .within. fixed_force() will return a data frame with consistency enforced.

Usage

fixed_force(
.df,
.var = NULL,
.within = NULL,
.resolve = mode_order,
.flag = NA

)

Arguments

.df Data frame, pibble, or tibble.

.var Quoted or unquoted variable(s) in .df that should be consistent. If not specified,
uses all variables in .df that are not in .within.

.within Quotes or unquoted variable(s) that the .var variables should be consistent
within.

.resolve Function capable of being passed to dplyr::summarize() that will be used to
resolve inconsistencies. Or, set to 'drop' or any string to drop all inconsistent
observations. By default, this will return the mode (ties use the first observed
value).

.flag String indicating the name of a new variable that flags any observations altered
by fixed_force().

Details

Inconsistencies will be resolved by the function .resolve. Or, set .resolve to 'drop' (or any
string, really) to drop all cases with inconsistency.

Examples

data(Scorecard)
The variables pred_degree_awarded_ipeds and state_abbr should be constant within unitid
However, sometimes colleges change what they offer.
For the purpose of my analysis, though,
I want to treat any changers as whatever they are most often (the mode).
So let's enforce that with fixed_force
Scorecard <- fixed_force(Scorecard,

6 id_variable

.var = c(pred_degree_awarded_ipeds, state_abbr),

.within = unitid, .flag = "changed"
)
Did we catch any changers?
table(Scorecard$changed)
We did!

id_variable Create a single panel ID variable out of several

Description

The pmdplyr library accepts the use of multiple ID variables. However, you may wish to combine
these into a single variable, or renumber the single variable you already have for some reason.

Usage

id_variable(..., .method = "number", .minwidth = FALSE)

Arguments

... variables (vectors) that, together, make up the ID variables in the data and
uniquely identifies the individual. Note that id_variable() will not check
whether you’ve selected an appropriate set of variables; try running as_pibble()
after getting your ID and time variables.

.method Can be 'number', 'random', or 'character', as described below.

.minwidth If .method = 'character', omits the additional spacing that makes the ID vari-
able fixed-width and ensures uniqueness. WARNING: This option saves space
but may in rare cases cause two individuals to have the same ID. Defaults to
FALSE.

Details

By default, id_variable() will create a unique numeric identifier out of your ID variables, sequential
following the order in the original data (.method='number'). However, you may want to remove
the ordering and assign IDs randomly (.method='random'), or preserve all the original informa-
tion and create a single fixed-width character ID variable that contains all the original information
(.method='character').

Examples

data(SPrail)
I want to identify observations at the route (origin-destination)/year level
Let's make it a character variable so we can tell at a glance what route we're talking
SPrail <- SPrail %>%

dplyr::mutate(route_id = id_variable(origin, destination, .method = "character"))

inexact_join 7

inexact_join Join two data frames inexactly

Description

These functions are modifications of the standard dplyr join functions, except that it allows a
variable of an ordered type (like date or numeric) in x to be matched in inexact ways to variables in
y.

Usage

inexact_inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
var = NULL,
jvar = NULL,
method,
exact = TRUE

)

inexact_left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
var = NULL,
jvar = NULL,
method,
exact = TRUE

)

inexact_right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
var = NULL,
jvar = NULL,
method,

8 inexact_join

exact = TRUE
)

inexact_full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
var = NULL,
jvar = NULL,
method,
exact = TRUE

)

inexact_semi_join(
x,
y,
by = NULL,
copy = FALSE,
...,
var = NULL,
jvar = NULL,
method,
exact = TRUE

)

inexact_nest_join(
x,
y,
by = NULL,
copy = FALSE,
keep = FALSE,
name = NULL,
...,
var = NULL,
jvar = NULL,
method,
exact = TRUE

)

inexact_anti_join(
x,
y,
by = NULL,
copy = FALSE,
...,

inexact_join 9

var = NULL,
jvar = NULL,
method,
exact = TRUE

)

Arguments

x, y, by, copy, suffix, keep, name, ...

Arguments to be passed to the relevant join function.

var Quoted or unquoted variable from the x data frame which is to be indirectly
matched.

jvar Quoted or unquoted variable(s) from the y data frame which are to be indirectly
matched. These cannot be variable names also in x or var.

method The approach to be taken in performing the indirect matching.

exact A logical, where TRUE indicates that exact matches are acceptable. For example,
if method = 'last', x contains var = 2, and y contains jvar = 1 and jvar = 2,
then exact = TRUE will match with the jvar = 2 observation, and exact = FALSE
will match with the jvar = 1 observation. If jvar contains two variables and
you want them treated differently, set to c(TRUE,FALSE) or c(FALSE,TRUE).

Details

This allows matching, for example, if one data set contains data from multiple days in the week,
while the other data set is weekly. Another example might be matching an observation in one data
set to the *most recent* previous observation in the other.

The available methods for matching are:

• method = "last" matches var to the closest value of jvar that is *lower*.

• method = "next" matches var to the closest value of jvar that is *higher*.

• method = "closest" matches var to the closest value of jvar, above or below. If equidistant
between two values, picks the lower of the two.

• method = "between" requires two variables in jvar which constitute the beginning and end of
a range, and matches var to the range it is in. Make sure that the ranges are non-overlapping
within the joining variables, or else you will get strange results (specifically, it should join
to the earliest-starting range). If the end of one range is the exact start of another, exact =
c(TRUE,FALSE) or exact = c(FALSE,TRUE) is recommended to avoid overlaps. Defaults to
exact = c(TRUE,FALSE).

Note that if, given the method, var finds no proper match, it will be merged with any is.na(jvar[1])
values.

Examples

data(Scorecard)
We also have this data on the December unemployment rate for US college grads nationally

10 is_pibble

but only every other year
unemp_data <- data.frame(

unemp_year = c(2006, 2008, 2010, 2012, 2014, 2016, 2018),
unemp = c(.017, .036, .048, .040, .028, .025, .020)

)
I want to match the most recent unemployment data I have to each college
Scorecard <- Scorecard %>%

inexact_left_join(unemp_data,
method = "last",
var = year,
jvar = unemp_year

)

Or perhaps I want to find the most recent lagged value (i.e. no exact matches, only recent ones)
data(Scorecard)
Scorecard <- Scorecard %>%

inexact_left_join(unemp_data,
method = "last",
var = year,
jvar = unemp_year,
exact = FALSE

)

Another way to do the same thing would be to specify the range of unemp_years I want exactly
data(Scorecard)
unemp_data$unemp_year2 <- unemp_data$unemp_year + 2
Scorecard <- Scorecard %>%

inexact_left_join(unemp_data,
method = "between",
var = year,
jvar = c(unemp_year, unemp_year2)

)

is_pibble Check whether an object has been declared as panel data

Description

Checks whether a data set (data.frame or tibble) has been assigned panel identifiers in the
pmdplyr format. If so, returns those identifiers.

Usage

is_pibble(.df, .silent = FALSE)

Arguments

.df Data frame or tibble

.silent Set to TRUE to suppress output reporting what the panel identifiers are. Defaults
to FALSE

join.tbl_pb 11

Examples

data(Scorecard)
Scorecard <- as_pibble(Scorecard, .i = "unitid", .t = "year")
is_pibble(Scorecard)

join.tbl_pb Join two pibbles together

Description

These are generic functions that dispatch to individual pibble methods. pibble structure from x will
be maintained. pibble structure from y will be lost. See join for complete documentation.

Usage

S3 method for class 'tbl_pb'
left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

S3 method for class 'tbl_pb'
inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

S3 method for class 'tbl_pb'
right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

S3 method for class 'tbl_pb'
full_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

S3 method for class 'tbl_pb'
semi_join(x, y, by = NULL, copy = FALSE, ...)

S3 method for class 'tbl_pb'
nest_join(x, y, by = NULL, copy = FALSE, keep = FALSE, name = NULL, ...)

S3 method for class 'tbl_pb'
anti_join(x, y, by = NULL, copy = FALSE, ...)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables in
common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

12 mode_order

To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by =
c("a","b") will match x$a to y$a and x$b to y$b. Use a named vector to match
different variables in x and y. For example, by = c("a" = "b","c" = "d") will
match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output? Only applies
to nest_join(), left_join(), right_join(), and full_join().

name The name of the list column nesting joins create. If NULL the name of y is used.

mode_order Calculate the mode, and use original order to break ties

Description

mode_order() calculates the mode of a vector, mostly used as the default .resolve option in
fixed_force()

Usage

mode_order(x)

Arguments

x Vector to calculate the mode of.

Details

In the case of ties, the first-ordered value in the vector wins.

Examples

x <- c(1, 2, 2, NA, 5, 3, 4)
mode_order(x)

Ties are broken by order
x <- c(2, 2, 1, 1)
mode_order(x)

mutate_cascade 13

mutate_cascade Perform mutate one time period at a time (’Cascading mutate’)

Description

This function is a wrapper for dplyr::mutate() which performs mutate one time period at a time,
allowing each period’s calculation to complete before moving on to the next. This allows changes in
one period to ’cascade down’ to later periods. This is (number of time periods) slower than regular
mutate() and, generally, is only used for mutations where an existing variable is being defined in
terms of its own lag() or tlag(). This is similar in concept to (and also slower than) cumsum but is
much more flexible, and works with data that has multiple observations per individual-period using
tlag(). For example, this could be used to calculate the current value of a savings account given
a variable with each period’s deposits, withdrawals, and interest, or could calculate the cumulative
number of credits a student has taken across all classes.

Usage

mutate_cascade(
.df,
...,
.skip = TRUE,
.backwards = FALSE,
.group_i = TRUE,
.i = NULL,
.t = NULL,
.d = NA,
.uniqcheck = FALSE,
.setpanel = TRUE

)

Arguments

.df Data frame or tibble.

... Specification to be passed to mutate().

.skip Set to TRUE to skip the first period present in the data (or present within each
group for grouped data) when applying mutate(). Since most uses of mutate_cascade()
will involve a lag() or tlag(), this avoids creating an NA in the first period that
then cascades down. By default this is TRUE. If you set this to FALSE you
should probably have some method for avoiding a first-period NA in your ...
entry, perhaps using the default option in dplyr::lag or the .default option
in tlag.

.backwards Set to TRUE to run mutate_cascade() from the last period to the first, rather
than from the first to the last.

.group_i By default, if .i is specified or found in the data, mutate_cascade will group
the data by .i, ignoring any grouping already implemented (although the orig-
inal grouping structure will be returned at the end). Set .group_i = FALSE to
avoid this.

14 mutate_cascade

.i Quoted or unquoted variables that identify the individual cases. Note that setting
any one of .i, .t, or .d will override all three already applied to the data, and
will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variables indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

.d Number indicating the gap in .t between one period and the next. For example,
if .t indicates a single day but data is collected once a week, you might set .d=7.
To ignore gap length and assume that "one period ago" is always the most recent
prior observation in the data, set .d=0. The default .d = NA here will become .d
= 1 if either .i or .t are declared.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

.setpanel Logical parameter. TRUE by default, and so if .i, .t, and/or .d are declared,
will return a pibble set in that way.

Details

To apply mutate_cascade() to non-panel data and without any grouping (perhaps to mimic stan-
dard Stata replace functionality), add a variable to your data indicating the order you’d like mutate
performed in (perhaps using dplyr::row_number()) and .t to that new variable.

Examples

if(interactive()){
data(Scorecard)
I'd like to build a decaying function that remembers previous earnings but at a declining rate
Let's only use nonmissing earnings
And let's say we're only interested in four-year colleges in Colorado
(mutate_cascade + tlag can be very slow so we're working with a smaller sample)
Scorecard <- Scorecard %>%

dplyr::filter(
!is.na(earnings_med),
pred_degree_awarded_ipeds == 3,
state_abbr == "CO"

) %>%
And declare the panel structure
as_pibble(.i = unitid, .t = year)

Scorecard <- Scorecard %>%
Almost all instances involve a variable being set to a function of a lag of itself
we don't want to overwrite so let's make another
Note that earnings_med is an integer -
but we're about to make non-integer decay function, so call it a double!
dplyr::mutate(decay_earnings = as.double(earnings_med)) %>%
Now we can cascade

mutate_subset 15

mutate_cascade(
decay_earnings = decay_earnings +

.5 * tlag(decay_earnings, .quick = TRUE)
)
}

mutate_subset Propagate a calculation performed on a subset of data to the rest of
the data

Description

This function performs dplyr::summarize on a .filtered subset of data. Then it applies the
result to all observations (or all observations in the group, if applied to grouped data), filling in
columns of the data with the summarize results, as though dplyr::mutate had been run.

Usage

mutate_subset(
.df,
...,
.filter,
.group_i = TRUE,
.i = NULL,
.t = NULL,
.d = NA,
.uniqcheck = FALSE,
.setpanel = TRUE

)

Arguments

.df Data frame or tibble.

... Specification to be passed to dplyr::summarize().

.filter Unquoted logical condition for which observations dplyr::summarize() oper-
ations are to be run on.

.group_i By default, if .i is specified or found in the data, mutate_cascade will group
the data by .i, overwriting any grouping already implemented. Set .group_i =
FALSE to avoid this.

.i Quoted or unquoted variables that identify the individual cases. Note that setting
any one of .i, .t, or .d will override all three already applied to the data, and
will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

16 panel_calculations

.d Number indicating the gap in .t between one period and the next. For example,
if .t indicates a single day but data is collected once a week, you might set .d=7.
To ignore gap length and assume that "one period ago" is always the most recent
prior observation in the data, set .d=0. The default .d = NA here will become .d
= 1 if either .i or .t are declared.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

.setpanel Logical parameter. TRUE by default, and so if .i, .t, and/or .d are declared,
will return a pibble set in that way.

Details

One application of this is to partially widen data. For example, if your analysis uses childhood
height as a control variable in all years, mutate_subset() could be used to easily generate a
height_age10 variable from a height variable.

Examples

data(SPrail)
In preparation for fitting a choice model for how people choose ticket type,
I'd like to know the price of a "Promo" ticket for a given route
So that I can compare each other type of ticket price to that type
SPrail <- SPrail %>%

mutate_subset(
promo_price = mean(price, na.rm = TRUE),
.filter = fare == "Promo",
.i = c(origin, destination)

)

panel_calculations Perform standard panel-data calculations

Description

These functions perform the standard between and within transformations on panel data.

Usage

within_i(
.var,
.df = get(".", envir = parent.frame()),
.fcn = function(x) mean(x, na.rm = TRUE),
.i = NULL,
.t = NULL,
.uniqcheck = FALSE

panel_calculations 17

)

between_i(
.var,
.df = get(".", envir = parent.frame()),
.fcn = function(x) mean(x, na.rm = TRUE),
.i = NULL,
.t = NULL,
.uniqcheck = FALSE

)

Arguments

.var Vector to be transformed

.df Data frame, pibble, or tibble (usually the data frame or tibble that contains .var)
which contains the panel structure variables either listed in .i and .t, or earlier
declared with as_pibble(). If tlag is called inside of a dplyr verb, this can
be omitted and the data will be picked up automatically.

.fcn The function to be passed to dplyr::summarize(). x -.fcn(x) within .i is
the within tranformation. .fcn(x) within .i minus .fcn overall is the between
transformation. This will almost always be the default .fcn = function(x)
mean(x,na.rm=TRUE).

.i Quoted or unquoted variable(s) that identify the individual cases. Note that set-
ting any one of .i, .t, or .d will override all three already applied to the data,
and will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variable with the single variable name indicating the time.
pmdplyr accepts two kinds of time variables: numeric variables where a fixed
distance .d will take you from one observation to the next, or, if .d=0, any
standard variable type with an order. Consider using the time_variable()
function to create the necessary variable if your data uses a Date variable for
time.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

Details

These functions do not take a .d argument because it is irrelevant here.

Examples

data(SPrail)
Calculate within- and between-route variation in price and add it to the data
SPrail <- SPrail %>%

dplyr::mutate(
within_route = within_i(price, .i = c(origin, destination)),

18 panel_convert

between_route = between_i(price, .i = c(origin, destination))
)

panel_convert Convert between panel data types

Description

This function takes panel data objects declared using pmdplyr (pibble/tbl_pb), tsibble (tsibble/tbl_ts),
plm (pdata.frame), and panelr (panel_data) and converts to one of the other three formats for
use with functions in those packages.

Usage

panel_convert(data, to, ...)

Arguments

data Data frame - a pibble, tsibble, pdata.frame, or panel_data object.

to Character variable set to "pmdplyr","pibble","tbl_pb","tsibble","tbl_ts","plm","pdata.frame","panelr"
or "panel_data" indicating the type/package to be converted to.

... Additional arguments to be sent to, respectively, as_pibble(), tsibble::as_tsibble(),
plm::pdata.frame(), or panelr::panel_data().

Details

Any grouping will be lost. You must have the relevant package installed to convert to the type for
that package. Conversions from pdata.frame will be improved if sjlabelled is also installed.

When using panel_convert, be aware of the requirements that each type has:

Feature/Requirement pibble tsibble pdata.frame panel_data

ID .i key index[1] id
Time .t index index[2] wave
Gap control .d regular No No
ID must exist No No Yes Yes
Time must exist No Yes Yes Yes[1]
Only one ID variable[2] No No Yes Yes
Unique identification No Yes No[3] No[3]

[1] pdata.frame does not require that time be provided, but if not provided will create it based
on original ordering of the data. The pdata.frame option to set index equal to an integer for a
balanced panel and have it figure out the rest by itself is not supported.

[2] Use pmdplyr::id_variable() to generate a single ID variable from multiple if one is required.

[3] pdata.frame and panel_data do not require that ID and time uniquely identify the observa-
tions on declaring the data, but functions in these packages may not work correctly without unique

panel_fill 19

identification.

In addition to the above, be aware that the different packages have different requirements on which
variable classes can be Time variables. pmdplyr::time_variable() can build an integer variable
that will work in all packages.

You may run into some trouble if your data contains variables by the names panel_convert_id,
panel_convert_time, pibble_d, or panel_convert_regular.

Examples

Only run examples if the relevant packages are installed
pkgs <- utils::installed.packages()

data(Scorecard)

The example will turn a pibble to everything else
But starting with another type will of course work!
S_pibble <- as_pibble(Scorecard, .i = unitid, .t = year)

Get a tsibble
if ("tsibble" %in% pkgs) {

head(panel_convert(S_pibble, to = "tsibble"))
}

Now for pdata.frame
if ("plm" %in% pkgs) {

head(panel_convert(S_pibble, to = "plm"))
}

And finally panel_data
if ("panelr" %in% pkgs) {

head(panel_convert(S_pibble, to = "panelr"))
}

panel_fill Fill in gaps in panel data

Description

This function creates new observations to fill in any gaps in panel data. For example, if individual
1 has an observation in periods t = 1 and t = 3 but no others, this function will create an observation
for t = 2. By default, the t = 2 observation will be identical to the t = 1 observation except for the
time variable, but this can be adjusted. This function returns data sorted by .i and .t.

Usage

panel_fill(
.df,

20 panel_fill

.set_NA = FALSE,

.min = NA,

.max = NA,

.backwards = FALSE,

.group_i = TRUE,

.flag = NA,

.i = NULL,

.t = NULL,

.d = 1,

.uniqcheck = FALSE,

.setpanel = TRUE
)

Arguments

.df Tibble or data frame which either has the .t and .d (and perhaps .i) attributes
included by as_pibble(), or the appropriate panel structure is declared in the
function.

.set_NA Should values in newly-created observations be set to adjacent values or to NA?
Set to TRUE to set all new values to NA except for .i and .t. To make only specific
variables NA, list them as a character vector. Defaults to FALSE; all values are
filled in using the most recently available data.

.min Sets the first time period in the data for each individual to be .min, and fills
in gaps between period .min and the actual start of the data. Copies data from
the first period present in the data for each individual (if grouped). Handy for
creating balanced panels.

.max Sets the last time period in the data for each individual to be .max, and fills in
gaps between period .max and the actual start of the data. Copies data from
the flast period present in the data for each individual (if grouped). Handy for
creating balanced panels.

.backwards By default, values of newly-created observations are copied from the most re-
cently available period. Set .backwards = TRUE to instead copy values from the
closest *following* period.

.group_i By default, panel_fill() will fill in gaps within values of .i. If .i is missing,
it won’t do that. If .i is in the data and you still don’t want panel_fill() to
run within .i, set .group_i = FALSE.

.flag The name of a new variable indicating which observations are newly created by
panel_fill().

.i Quoted or unquoted variables that identify the individual cases. Note that setting
any one of .i, .t, or .d will override all three already applied to the data, and
will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

panel_fill 21

.d Number indicating the gap in .t between one period and the next. For example,
if .t indicates a single day but data is collected once a week, you might set
.d=7. To ignore gap length and assume that "one period ago" is always the most
recent prior observation in the data, set .d=0. By default, .d=1.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

.setpanel Logical parameter. TRUE by default, and so if .i, .t, and/or .d are declared,
will return a pibble set in that way.

Details

Note that, in the case where there is more than one observation for a given individual/time period (or
just time period if .group_i = FALSE), panel_fill() will create copies of *every observation* in
the appropriate individual/time period for filling-in purposes. So if there are four t = 1 observations
and nothing in t = 2, panel_fill() will create four new observations with t = 2, copying the
original four in t = 1.

By default, the panel_fill() operation is grouped by .i, although it will return the data in the
original grouping structure. Leave .i blank, or, if .i is already in the data from as_pibble, set
.group_i=FALSE to run the function ungrouped, or with the existing group structure.

This function requires .t and .d to be declared in the function or already established in the data by
as_pibble(). Also, this requires a cardinal .t. It must not be the case that .d=0.

Examples

Examples are too slow to run - this function is slow!
if (interactive()) {

data(Scorecard)
Notice that, in the Scorecard data, the gap between one year and the next is not always constant
table((Scorecard %>% dplyr::arrange(year) %>%

dplyr::group_by(unitid) %>%
dplyr::mutate(diff = year - dplyr::lag(year)))$diff)

And also that not all universities show up for the first or last times in the same year
year_range <- Scorecard %>%

dplyr::group_by(unitid) %>%
dplyr::summarize(first_year = min(year), last_year = max(year))

table(year_range$first_year)
table(year_range$last_year)
rm(year_range)

We can deal with the inconsistent-gaps problem by creating new obs to fill in
this version will fill in the new obs with the most recently observed data, and flag them
Scorecard_filled <- panel_fill(Scorecard,

.i = unitid,

.t = year,

.flag = "new"
)

22 panel_locf

Or maybe we want those observations in there but don't want to treat them as real data
so instead of filling them in, just leave all the data in the new obs blank
(note this sets EVERYTHING not in .i or .t to NA - if you only want some variables NA,
make .set_NA a character vector of those variable names)
Scorecard_filled <- panel_fill(Scorecard,

.i = unitid,

.t = year,

.flag = "new",

.set_NA = TRUE
)

Perhaps we want a perfectly balanced panel. So let's set .max and .min to the start and end
of the data, and it will fill in everything.
Scorecard_filled <- panel_fill(Scorecard,

.i = unitid, .t = year, .flag = "new",

.min = min(Scorecard$year), .max = max(Scorecard$year)
)
how many obs of each college? Should be identical, and equal to the number of years there are
table(table(Scorecard_filled$unitid))
length(unique(Scorecard_filled$year))

}

panel_locf Fill in missing (or other) values of a panel data set using known data

Description

This function looks for a list of values (usually, just NA) in a variable .var and overwrites those
values with the most recent (or next-coming) values that are not from that list ("last observation
carried forward").

Usage

panel_locf(
.var,
.df = get(".", envir = parent.frame()),
.fill = NA,
.backwards = FALSE,
.resolve = "error",
.group_i = TRUE,
.i = NULL,
.t = NULL,
.d = 1,
.uniqcheck = FALSE

)

panel_locf 23

Arguments

.var Vector to be modified.

.df Data frame, pibble, or tibble (usually the one containing .var) that contains
the panel structure variables either listed in .i and .t, or earlier declared with
as_pibble(). If tlag is called inside of a dplyr verb, this can be omitted and
the data will be picked up automatically.

.fill Vector of values to be overwritten. Just NA by default.

.backwards By default, values of newly-created observations are copied from the most re-
cently available period. Set .backwards = TRUE to instead copy values from the
closest *following* period.

.resolve If there is more than one observation per individal/period, and the value of .var
is identical for all of them, that’s no problem. But what should panel_locf()
do if they’re not identical? Set .resolve = 'error' (or, really, any string) to
throw an error in this circumstance. Or, set .resolve to a function that can be
used within dplyr::summarize() to select a single value per individual/period.
For example, .resolve = function(x) mean(x) to get the mean value of all
observations present for that individual/period. .resolve will also be used to
fill in values if some values in a given individual/period are to be overwritten
and others aren’t. Using a function will be quicker than .resolve = 'error',
so if you’re certain there’s no issue, you can speed up execution by setting, say,
.resolve = dplyr::first.

.group_i By default, if .i is specified or found in the data, panel_locf() will group the
data by .i, ignoring any grouping already implemented. Set .group_i = FALSE
to avoid this.

.i Quoted or unquoted variables that identify the individual cases. Note that setting
any one of .i, .t, or .d will override all three already applied to the data, and
will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

.d Number indicating the gap in .t between one period and the next. For example,
if .t indicates a single day but data is collected once a week, you might set
.d=7. To ignore gap length and assume that "one period ago" is always the most
recent prior observation in the data, set .d=0. By default, .d=1.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

Details

panel_locf() is unusual among last-observation-carried-forward functions (like zoo::na.locf())
in that it is usable even if observations are not uniquely identified by .t (and .i, if defined).

24 pibble

Examples

The SPrail data has some missing price values.
Let's fill them in!
Note .d=0 tells it to ignore how big the gaps are
between one period and the next, just look for the most recent insert_date
.resolve tells it what value to pick if there are multiple
observed prices for that route/insert_date
(.resolve is not necessary if .i and .t uniquely identify obs,
or if .var is either NA or constant within them)
Also note - this will fill in using CURRENT-period
data first (if available) before looking for lagged data.
data(SPrail)
sum(is.na(SPrail$price))
SPrail <- SPrail %>%

dplyr::mutate(price = panel_locf(price,
.i = c(origin, destination), .t = insert_date, .d = 0,
.resolve = function(x) mean(x, na.rm = TRUE)

))

The spec is a little easier with data like Scorecard where
.i and .t uniquely identify observations
so .resolve isn't needed.
data(Scorecard)
sum(is.na(Scorecard$earnings_med))
Scorecard <- Scorecard %>%

Let's speed this up by just doing four-year colleges in Colorado
dplyr::filter(

pred_degree_awarded_ipeds == 3,
state_abbr == "CO"

) %>%
Now let's fill in NAs and also in case there are any erroneous 0s
dplyr::mutate(earnings_med = panel_locf(earnings_med,

.fill = c(NA, 0),

.i = unitid, .t = year
))

Note that there are still some missings - these are missings that come before the first
non-missing value in that unitid, so there's nothing to pull from.
sum(is.na(Scorecard$earnings_med))

pibble Create a pibble panel data set object

Description

This function declares a pibble tibble with the attributes .i, .t, and .d.

Usage

pibble(..., .i = NULL, .t = NULL, .d = 1, .uniqcheck = FALSE)

pibble 25

Arguments

... A set of name-value pairs to make up the variables of a pibble.

.i Quoted or unquoted variable(s) that identify the individual cases. If this is omit-
ted, pibble will assume the data set is a single time series.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

.d Number indicating the gap in t between one period and the next. For example, if
.t indicates a single day but data is collected once a week, you might set .d=7.
To ignore gap length and assume that "one period ago" is always the most recent
prior observation in the data, set .d=0. By default, .d=1.

.uniqcheck Logical parameter. Set to TRUE to perform a check of whether .i and .t
uniquely identify observations, and present a message if not. By default this
is set to FALSE and the warning message occurs only once per session.

Details

• .i, Quoted or unquoted variable(s) indicating the individual-level panel identifier

• .t, Quoted or unquoted variable indicating the time variable

• .d, a number indicating the gap

The pibble() function is for the purpose of creating pibble objects from scratch. You probably
want as_pibble.

Note that pibble does not require that .i and .t uniquely identify the observations in your data,
but it will give a warning message (a maximum of once per session, unless .uniqcheck=TRUE) if
they do not.

Examples

Creating a pibble from scratch
pd <- pibble(

i = c(1, 1, 1, 2, 2, 2),
t = c(1, 2, 3, 1, 2, 2),
x = rnorm(6),
.i = i,
.t = t

)
is_pibble(pd)
I set .d=0 here to indicate that I don't care how large the gap between one period and the next is
If I want to use 'seconds' for t.
See time_variable() to turn unruly variables into well-behaved integers, as well
pd2 <- pibble(

i = c(1, 1, 1, 2, 2, 2),
seconds = c(123, 456, 789, 103, 234, 238),
.i = i,
.t = seconds,

26 pibble_methods

.d = 0
)
is_pibble(pd2)

pibble_methods pibble methods

Description

These are variants of existing functions that are designed to retain the pibble status of the object,
as well as its .i, .t, and .d attributes.

Usage

S3 method for class 'tbl_pb'
mutate(.data, ...)

S3 method for class 'tbl_pb'
distinct(.data, ..., .keep_all = FALSE)

S3 method for class 'tbl_pb'
group_by(.data, ...)

S3 method for class 'tbl_pb'
ungroup(x, ...)

S3 method for class 'tbl_pb'
select(.data, ...)

S3 method for class 'tbl_pb'
rename(.data, ...)

S3 method for class 'tbl_pb'
summarize(.data, ...)

S3 method for class 'tbl_pb'
summarise(.data, ...)

S3 method for class 'tbl_pb'
transmute(.data, ...)

Arguments

.data, x These functions take a tbl_pb (i.e. pibble) object as input

.keep_all, ... Other parameters to be passed to the relevant functions

pmdplyr 27

Details

Some functions that already preserve pibble status and so don’t need special methods include:

dplyr::add_row(),tibble:add_column(),dplyr::arrange(),dplyr::bind_cols(),dplyr::filter(),dplyr::sample_frac(),dplyr::sample_n(),dplyr::slice(),dplyr::top_n

as well as all scoped variants (_all, _if, _at) of dplyr functions.

dplyr::bind_rows() is currently not supported. If you use dplyr::bind_rows() you should pipe
it to as_pibble().

Any function that takes two data frames/tibbles as inputs will retain the panel structure of the first
argument.

If a function is not on the above list or elsewhere in this help file, then you may need to re-as_pibble
your object after using the function.

pmdplyr pmdplyr package

Description

Suite of tools extending the dplyr package to perform data manipulation. These tools are geared
towards use in panel data and hierarchical data.

Details

Unlike other suites dealing with panel data, all functions in pmdplyr are designed to work even
when considering a set of variables that do not uniquely identify rows. This is handy when working
with any kind of hierarchical data, or panel data where there are multiple observations per individual
per time period, like student/term/class education data.

pmdplyr contains the following functions:

• between_i and within_i Standard between and within panel calculations.

• fixed_check Checks a list of variables for consistency within a panel structure.

• fixed_force Forces a list of variables to be constant within a panel structure.

• id_variable Takes a list of variables that make up an individual identifier and turns it into a
single variable.

• time_variable Takes a time variable, or set of time variables, and turns them into a single
well-behaved integer time variable of the kind required by most panel functions.

• inexact_join Wrapper for the dplyr join functions which allows for a variable to be
matched inexactly, for example joining a time variable in x to the most recent previous value
in y.

• safe_join Set of wrappers for the dplyr::join and pmdplyr::inexact_join functions
which checks before merging whether each data set is uniquely identified as expected.

• pibble, as_pibble, and is_pibble Set the panel structure for a data set, or check if it is
already set.

28 safe_join

• panel_convert Converts between the panel data types pmdplyr::pibble, tsibble::tsibble,
plm::pdata.frame, and panelr::panel_data.

• mutate_cascade A wrapper for dplyr mutate which runs one period at a time, allowing
changes in one period to finalize before the next period is calculated.

• mutate_subset A wrapper for dplyr mutate that performs a calculation on a subset of data,
and then applies the result to all the observations (within group).

• panel_fill Fills in gaps in the panel. Can also fill in at the beginning or end of the data to
create a perfectly balanced panel.

• panel_locf A last-observation-carried-forward function for panels. Fills in NAs with recent
nonmissing observations.

• tlag Lags a variable in time.

safe_join Join two data frames safely

Description

This function is a wrapper for the standard dplyr join functions and the pmdplyr inexact_join
functions.

Usage

safe_join(x, y, expect = NULL, join = NULL, ...)

Arguments

x, y The left and right data sets to join.

expect Either "1:m" (or "x"), "m:1" (or "y"), or "1:1" (or c("x","y") or "xy") - the
match you expect to perform. You can specify this as the kind of match you
expect to be performing (one-to-many, many-to-one, or one-to-one), or as the
data set(s) you expect to be uniquely identified by the joining variables ("x",
"y", or c("x","y")/"xy"). Alternately, set to expect = "no m:m" if you don’t
care what join you’re doing as long as it isn’t many-to-many.

join A join or inexact_join function to run if safe_join determines your join is
safe. By default, simply returns TRUE instead of running the join.

... Other arguments to be passed to the function specified in join. If performing
an inexact_join, put the var and jvar arguments in as quoted variables.

Details

When performing a join, we generally expect that one or both of the joined data sets is uniquely
identified by the set of joining variables.

If this is not true, the results of the join will often not be what you expect. Unfortunately, join does
not warn you that you may have just done something strange.

Scorecard 29

This issue is especially likely to arise with panel data, where you may have multiple different data
sets at different observation levels.

safe_join forces you to specify which of your data sets you think are uniquely identified by the
joining variables. If you are wrong, it will return an error. If you are right, it will pass you on to
your preferred join function, given in join. If join is not specified, it will just return TRUE.

Examples

left is panel data and i does not uniquely identify observations
left <- data.frame(

i = c(1, 1, 2, 2),
t = c(1, 2, 1, 2),
a = 1:4

)
right is individual-level data uniquely identified by i
right <- data.frame(

i = c(1, 2),
b = 1:2

)

I think that I can do a one-to-one merge on i
Forgetting that left is identified by i and t together
So, this produces an error
Not run:
safe_join(left, right, expect = "1:1", join = left_join)

End(Not run)

If I realize I'm doing a many-to-one merge, that is correct,
so safe_join will perform it for us
safe_join(left, right, expect = "m:1", join = left_join)

Scorecard Earnings and Loan Repayment in US Four-Year Colleges

Description

From the College Scorecard, this data set contains by-college-by-year data on how students who
attended those colleges are doing.

Usage

Scorecard

Format

A data frame with 48,445 rows and 8 variables:

unitid College identifiers.

30 setops

inst_name Name of the college or university.

state_abbr Two-letter abbreviation for the state the college is in.

pred_degree_awarded_ipeds Predominant degree awarded. 1 = less-than-two-year, 2 = two-year,
3 = four-year+

year Year in which outcomes are measured.

earnings_med Median earnings among students (a) who received federal financial aid, (b) who
began as undergraduates at the institution ten years prior, (c) with positive yearly earnings.

count_not_working Number of students who are (a) not working (not necessarily unemployed),
(b) received federal financial aid, and (c) who began as undergraduates at the institution ten
years prior.

count_working Number of students who are (a) working, (b) who received federal financial aid,
and (c) who began as undergraduates at the institution ten years prior.

repay_rate Proportion of students who (a) received federal loans as an undergraduate at this in-
stitution, (b) entered repayment seven years ago, (c) are not in default, (d) have paid off all
accrued interest, and (e) are still making progress on payment. Only available 2013-2016.

Details

This data is not just limited to four-year colleges and includes a very wide variety of institutions.

Note that the labor market (earnings, working) and repayment rate data do not refer to the same
cohort of students, but rather are matched on the year in which outcomes are recorded. Labor
market data refers to cohorts beginning college as undergraduates ten years prior, repayment rate
data refers to cohorts entering repayment seven years prior.

Data was downloaded using the Urban Institute’s educationdata package.

Source

Education Data Portal (Version 0.4.0 - Beta), Urban Institute, Center on Education Data and Policy,
accessed June 28, 2019. https://educationdata.urban.org/documentation/, Scorecard.

setops Set operations

Description

These functions overwrite the set functions provided in base to make them generic to be used to
join pibbles. See setops for details.

Usage

S3 method for class 'tbl_pb'
intersect(x, y, ...)

S3 method for class 'tbl_pb'
union(x, y, ...)

SPrail 31

S3 method for class 'tbl_pb'
union_all(x, y, ...)

S3 method for class 'tbl_pb'
setdiff(x, y, ...)

Arguments

x objects to perform set function on (ignoring order)

y objects to perform set function on (ignoring order)

... other arguments passed on to methods

SPrail 2,000 Spanish train trips

Description

This data set is a random subsample of a much larger database of trips taken on the Spanish High
Speed Train Service (Renfe AVE).

Usage

SPrail

Format

A data frame with 2,000 rows and 9 variables:

insert_date Date and time when ticket was paid for.

origin Origin City

destination Destination City

start_date Date and time for train departure.

end_date Date and time for train arrival.

train_type Train service name.

price Price of ticket in Euros.

train_class Class of ticket: tourist, business, etc.. Variable in Spanish.

fare Type of ticket fare.

Details

All dates and times are European Central Time.

The larger data set from which SPrail was sampled was compiled and released under GPL-2 public
license by Pedro Muñoz and David Cañones.

32 time_variable

Source

https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-system-ticket-pricing

time_variable Create a single integer time period index variable

Description

This function takes either multiple time variables, or a single Date-class variable, and creates a
single integer time variable easily usable with functions in pmdplyr and other packages like plm
and panelr.

Usage

time_variable(
...,
.method = "present",
.datepos = NA,
.start = 1,
.skip = NA,
.breaks = NA,
.turnover = NA,
.turnover_start = NA

)

Arguments

... variables (vectors) to be used to generate the time variable, in order of in-
creasing specificity. So if you have a variable each for year, month, and day
(with the names year, month, and day), you would use year,month,day (if a
data set containing those variables has been attached using with or dplyr) or
data$year,data$month,data$day (if not).

.method The approach that will be taken to create your variable. See below for the op-
tions. By default, this is .method = "present".

.datepos A numeric vector containing the character/digit positions, in order, of the YY or
YYYY year (or year/month in YYMM or YYYYMM format, or year/month/day
in YYMMDD or YYYYMMDD) for the .method="year", .method="month",
or .method="day" options, respectively. Give it only the data it needs - if
you give .method="year" YYMM information, it will assume you’re giving
it YYYY and mess up. For example, if dates are stored as a character vari-
able in the format ’2013-07-21’ and you want the year and month, you might
specify .datepos=c(1:4,6:7). If two-digit year is given, .datepos uses the
lubridate package to determine century.

.start A numeric variable indicating the day of the week/month that begins a new
week/month, if .method="week" or .method="month" is used. By default, 1,
where for .method=week 1 is Monday, 7 Sunday. If used with .method="month",
the time data should include day as well.

https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-system-ticket-pricing

time_variable 33

.skip A numeric vector containing the values of year, month, or day-of-week (where
Monday = 1, Sunday = 7, no matter what value .start takes) you’d like to skip
over (for .method="year","month","week","day", respectively). For exam-
ple, with .method="month" and .skip=12, an observation in January would
be determined to come one period after November. Commonly this might be
.skip=c(6,7) with .method="day" to skip weekends so that Monday immedi-
ately follows Friday. If .breaks is also specified, select the values of .breaks
you would like to skip, but do be aware that combining .skip and .breaks can
be tricky.

.breaks A numeric vector containing the starting breakpoints of year or month you’d like
to clump together (for .method="year','month", respectively). Commonly,
this might be .breaks=c(1,4,7,10) with .method="month" to go by quarter-
year. The first element of .breaks should usually be 1.

.turnover A numeric vector the same length as the number of variables included indicating
the maximum value that the corresponding variable in the list of variables takes,
where NA indicates no maximum value, for use with .method="turnover" and
required for that method. For example, if the variable list is year,month then
you might have .turnover=c(NA,12). Or if the variable list is days-since-jan1-1970,hour,minute,second
you might have .turnover=c(NA,23,59,59). Defaults to the maximum ob-
served value of each variable if not specified, and NA for the first variable. Note
that in almost all cases, the first element of .turnover should be NA, and all
others should be non-NA.

.turnover_start

A numeric vector the same length as the number of variables included indicating
the minimum value that the corresponding variable in the list of variables takes,
where NA indicates no minimum value, for use with method="turnover". For
example, if the variable list is year,month then you might have .turnover=c(NA,1).
Or if the variable list is days-since-jan1-1970,hour,minute,second you
might have .turnover=c(NA,0,0,0). By default this is a vector of 1s the same
length as the number of variables, except for the first element, which is NA.
Note that in almost all cases, the first element of .turnover_start should be
NA, and all others should be non-NA.

Details

The pmdplyr library accepts only two kinds of time variables:

1. Ordinal time variables: Variables of any ordered type (numeric, Date, character) where the
size of the gap between one value and the next does not matter. So if someone has two observations
- one in period 3 and one in period 1, the period immediately before 3 is period 1, and two periods
before 3 is missing. Set .d=0 in your data to use this.

2. Cardinal time variables: Numeric variables with a fixed gap between one observation and the
next, where the size of that gap is given by .d. So if .d=1 and someone has two observations - one
in period 3 and one in period 1, the period immediately before 3 is missing, and two periods before
3 is period 1.

If you would like to have a cardinal time variable but your data is not currently in that format,
time_variable() will help you create a new variable that works with a setting of .d=1, the default.

34 time_variable

If you have a date variable that is not in Date format (perhaps it’s a string) and would like to use one
of the Date-reliant methods below, I recommend converting it to Date using the convenient ymd(),
mdy(), etc. functions from the lubridate package. If you only have partial date information (i.e.
only year and month) and so converting to a Date doesn’t work, see the .datepos option below.

Methods available include:

• .method="present" will assume that, even if each individual may have some missing peri-
ods, each period is present in your data *somewhere*, and so simply numbers, in order, all the
time periods observed in the data.

• .method="year" can be used with a single Date/POSIX/etc.-type variable (anything that al-
lows lubridate::date()) and will extract the year from it. Or, use it with a character or
numeric variable and indicate with .datepos the character/digit positions that hold the year
in YY or YYYY format. If combined with .breaks or .skip, will instead set the earliest year
in the data to 1 rather than returning the actual year.

• .method="month" can be used with a single Date/POSIX/etc.-type variable (anything that al-
lows lubridate::date()). It will give the earliest-observed month in the data set a value
of 1, and will increment from there. Or, use it with a character or numeric variable and indi-
cate with .datepos the character/digit positions that hold the year and month in YYMM or
YYYYMM format (note that if your variable is in MMYYYY format, for example, you can
just give a .datepos argument like c(3:6,1:2)). Months turn over on the .start day of the
month, which is by default 1.

• .method="week" can be used with a single Date/POSIX/etc.-type variable (anything that al-
lows lubridate::date()). It will give the earliest-observed week in the data set a value of
1, and will increment from there. Weeks turn over on the .start day, which is by default 1
(Monday). Note that this method always starts weeks on the same day of the week, which is
different from standard lubridate procedure of counting sets of 7 days starting from January
1.

• .method="day" can be used with a single Date/POSIX/etc.-type variable (anything that al-
lows lubridate::date()). It will give the earliest-observed day in the data set a value of
1, and increment from there. Or, use it with a character or numeric variable and indicate
with .datepos the character/digit positions that hold the year and month in YYMMDD or
YYYYMMDD format. To skip certain days of the week, such as weekends, use the .skip
option.

• .method="turnover" can be used when you have more than one variable in variable and they
are all numeric nonnegative integers. Set the .turnover option to indicate the highest value
each variable takes before it starts over, and set .turnover_start to indicate what value it
takes when it starts over. Cannot be combined with .skip or .breaks. Doesn’t work with any
variable for which the turnover values change, i.e. it doesn’t play well with days-in-month - if
you’d like to do something like year-month-day-hour, I recommend running .method="day"
once with just the year-month-day variable, and then taking the result and combining *that*
with hour in .method="turnover".

Examples

data(SPrail)

time_variable 35

Since we have a date variable, we can easily create integers that increment for each
year, or for each month, etc.
Likely we'd only really need one of these four, depending on our purposes
SPrail <- SPrail %>%

dplyr::mutate(
year_time_id = time_variable(insert_date, .method = "year"),
month_time_id = time_variable(insert_date, .method = "month"),
week_time_id = time_variable(insert_date, .method = "week"),
day_time_id = time_variable(insert_date, .method = "day")

)

Perhaps I'd like quarterly data
(although in this case there are only two months, not much variation there)
SPrail <- SPrail %>%

dplyr::mutate(quarter_time_id = time_variable(insert_date,
.method = "month",
.breaks = c(1, 4, 7, 10)

))
table(SPrail$month_time_id, SPrail$quarter_time_id)

Maybe I'd like Monday to come immediately after Friday!
SPrail <- SPrail %>%

dplyr::mutate(weekday_id = time_variable(insert_date,
.method = "day",
.skip = c(6, 7)

))

Perhaps I'm interested in ANY time period in the data and just want to enumerate them in order
SPrail <- SPrail %>%

dplyr::mutate(any_present_time_id = time_variable(insert_date,
.method = "present"

))

Maybe instead of being given a nice time variable, I was given it in string form
SPrail <- SPrail %>% dplyr::mutate(time_string = as.character(insert_date))
As long as the character positions are consistent we can still use it
SPrail <- SPrail %>%

dplyr::mutate(day_from_string_id = time_variable(time_string,
.method = "day",
.datepos = c(3, 4, 6, 7, 9, 10)

))
Results are identical
cor(SPrail$day_time_id, SPrail$day_from_string_id)

Or, maybe instead of being given a nice time variable, we have separate year and month variables
SPrail <- SPrail %>%

dplyr::mutate(
year = lubridate::year(insert_date),
month = lubridate::month(insert_date)

)
We can use the turnover method to tell it that there are 12 months in a year,

36 tlag

and get an integer year-month variable
SPrail <- SPrail %>%

dplyr::mutate(month_from_two_vars_id = time_variable(year, month,
.method = "turnover",
.turnover = c(NA, 12)

))
Results are identical
cor(SPrail$month_time_id, SPrail$month_from_two_vars_id)

I could also use turnover to make the data hourly.
Note that I'm using the day variable from earlier to avoid having
to specify when day turns over (since that could be 28, 30, or 31)
SPrail <- SPrail %>%

dplyr::mutate(hour_id = time_variable(day_time_id, lubridate::hour(insert_date),
.method = "turnover",
.turnover = c(NA, 23),
.turnover_start = c(NA, 0)

))
This could be easily extended to make the data by-minute, by-second, etc.

tlag Time-lag a variable

Description

This function retrieves the time-lagged values of a variable, using the time variable defined in .t in
the function or by as_pibble(). tlag() is highly unusual among time-lag functions in that it is
usable even if observations are not uniquely identified by .t (and .i, if defined).

Usage

tlag(
.var,
.df = get(".", envir = parent.frame()),
.n = 1,
.default = NA,
.quick = FALSE,
.resolve = "error",
.group_i = TRUE,
.i = NULL,
.t = NULL,
.d = NA,
.uniqcheck = FALSE

)

Arguments

.var Unquoted variable from .df to be lagged.

tlag 37

.df Data frame, pibble, or tibble (usually the object that contains .var) that contains
the panel structure variables either listed in .i and .t, or earlier declared with
as_pibble(). If tlag is called inside of a dplyr verb, this can be omitted and
the data will be picked up automatically.

.n Number of periods to lag by. 1 by default. Note that this is automatically scaled
by .d. If .d = 2 and .n = 1, then the lag of .t = 3 will be .t = 1. Allows negative
values, equivalent to tlead() with the same value but positive. Note that .n is
ignored if .d = 0.

.default Fill-in value used when lagged observation is not present. Defaults to NA.

.quick If .i and .t uniquely identify observations in your data, **and** there either
.d = 0 or there are no time gaps for any individuals (perhaps use panel_fill()
first), set .quick = TRUE to improve speed. tlag() will not check if either
of these things are true (except unique identification, which will be checked
if .uniqcheck = 1 or if .i or .t are specified in-function), so make sure they
are or you will get strange results.

.resolve If there is more than one observation per individal/period, and the value of .var
is identical for all of them, that’s no problem. But what should tlag() do if
they’re not identical? Set .resolve = 'error' (or, really, any string) to throw
an error in this circumstance. Or, set .resolve to a function (ideally, a vector-
ized one) that can be used within dplyr::summarize() to select a single value
per individual/period. For example, .resolve = mean to get the mean value of
all observations present for that individual/period.

.group_i By default, if .i is specified or found in the data, tlag() will group the data
by .i, ignoring any grouping already implemented. Set .group_i = FALSE to
avoid this.

.i Quoted or unquotes variable(s) that identify the individual cases. Note that set-
ting any one of .i, .t, or .d will override all three already applied to the data,
and will return data that is as_pibble()d with all three, unless .setpanel=FALSE.

.t Quoted or unquoted variable indicating the time. pmdplyr accepts two kinds of
time variables: numeric variables where a fixed distance .d will take you from
one observation to the next, or, if .d=0, any standard variable type with an order.
Consider using the time_variable() function to create the necessary variable
if your data uses a Date variable for time.

.d Number indicating the gap in .t between one period and the next. For example,
if .t indicates a single day but data is collected once a week, you might set .d=7.
To ignore gap length and assume that "one period ago" is always the most recent
prior observation in the data, set .d = 0. The default .d = NA here will become
.d = 1 if either .i or .t are declared.

.uniqcheck Logical parameter. Set to TRUE to always check whether .i and .t uniquely
identify observations in the data. By default this is set to FALSE and the check
is only performed once per session, and only if at least one of .i, .t, or .d is
set.

Examples

38 tlag

data(Scorecard)

The Scorecard data is uniquely identified by unitid and year.
However, there are sometimes gaps between years.
In cases like this, using dplyr::lag() will still use the row before,
whereas tlag() will respect the gap and give a NA, much like plm::lag()
(although tlag is slower than either, sorry)
Scorecard <- Scorecard %>%

dplyr::mutate(pmdplyr_tlag = tlag(earnings_med,
.i = unitid,
.t = year

))
Scorecard <- Scorecard %>%

dplyr::arrange(year) %>%
dplyr::group_by(unitid) %>%
dplyr::mutate(dplyr_lag = dplyr::lag(earnings_med)) %>%
dplyr::ungroup()

more NAs in the pmdplyr version - observations with a gap and thus no real lag present in data
sum(is.na(Scorecard$pmdplyr_tlag))
sum(is.na(Scorecard$dplyr_lag))

If we want to ignore gaps, or have .d = 0, and .i and .t uniquely identify observations,
we can use the .quick option to match dplyr::lag()
Scorecard <- Scorecard %>%

dplyr::mutate(pmdplyr_quick_tlag = tlag(earnings_med,
.i = unitid,
.t = year,
.d = 0,
.quick = TRUE

))
sum(Scorecard$dplyr_lag != Scorecard$pmdplyr_quick_tlag, na.rm = TRUE)

Where tlag shines is when you have multiple observations per .i/.t
If the value of .var is constant within .i/.t, it will work just as you expect.
If it's not, it will throw an error, or you can set
.resolve to tell tlag how to select a single value from the many
Maybe we want to get the lagged average earnings within degree award type
Scorecard <- Scorecard %>%

dplyr::mutate(
last_year_earnings_by_category =

tlag(earnings_med,
.i = pred_degree_awarded_ipeds, .t = year,
.resolve = function(x) mean(x, na.rm = TRUE)

)
)

Or maybe I want the lagged earnings across all types - .i isn't necessary!
Scorecard <- Scorecard %>%

dplyr::mutate(last_year_earnings_all = tlag(earnings_med,
.t = "year",
.resolve = function(x) mean(x, na.rm = TRUE)

))
Curious why the first nonmissing obs show up in 2012?

tlag 39

It's because there's no 2008 or 2010 in the data, so when 2009 or 2011 look back
a year, they find nothing!
We could get around this by setting .d = 0 to ignore gap length
Note this can be a little slow.
Scorecard <- Scorecard %>%

dplyr::mutate(last_year_earnings_all = tlag(earnings_med,
.t = year, .d = 0,
.resolve = function(x) mean(x, na.rm = TRUE)

))

Index

∗Topic datasets
Scorecard, 29
SPrail, 31

anti_join.tbl_pb (join.tbl_pb), 11
as_pibble, 2, 27

between_i, 27
between_i (panel_calculations), 16

distinct.tbl_pb (pibble_methods), 26

fixed_check, 4, 27
fixed_force, 5, 27
full_join.tbl_pb (join.tbl_pb), 11

group_by.tbl_pb (pibble_methods), 26

id_variable, 6, 27
inexact_anti_join (inexact_join), 7
inexact_full_join (inexact_join), 7
inexact_inner_join (inexact_join), 7
inexact_join, 7, 27
inexact_left_join (inexact_join), 7
inexact_nest_join (inexact_join), 7
inexact_right_join (inexact_join), 7
inexact_semi_join (inexact_join), 7
inner_join.tbl_pb (join.tbl_pb), 11
intersect.tbl_pb (setops), 30
is_pibble, 10, 27

join, 11, 27
join.tbl_pb, 11

left_join.tbl_pb (join.tbl_pb), 11

mode_order, 12
mutate, 28
mutate.tbl_pb (pibble_methods), 26
mutate_cascade, 13, 28
mutate_subset, 15, 28

nest_join.tbl_pb (join.tbl_pb), 11

panel_calculations, 16
panel_convert, 18, 28
panel_fill, 19, 28
panel_locf, 22, 28
pibble, 24, 27
pibble_methods, 26
pmdplyr, 27

rename.tbl_pb (pibble_methods), 26
right_join.tbl_pb (join.tbl_pb), 11

safe_join, 27, 28
Scorecard, 29
select.tbl_pb (pibble_methods), 26
semi_join.tbl_pb (join.tbl_pb), 11
setdiff.tbl_pb (setops), 30
setops, 30, 30
SPrail, 31
summarise.tbl_pb (pibble_methods), 26
summarize.tbl_pb (pibble_methods), 26

time_variable, 27, 32
tlag, 28, 36
transmute.tbl_pb (pibble_methods), 26

ungroup.tbl_pb (pibble_methods), 26
union.tbl_pb (setops), 30
union_all.tbl_pb (setops), 30

within_i, 27
within_i (panel_calculations), 16

40

	as_pibble
	fixed_check
	fixed_force
	id_variable
	inexact_join
	is_pibble
	join.tbl_pb
	mode_order
	mutate_cascade
	mutate_subset
	panel_calculations
	panel_convert
	panel_fill
	panel_locf
	pibble
	pibble_methods
	pmdplyr
	safe_join
	Scorecard
	setops
	SPrail
	time_variable
	tlag
	Index

