Package 'plsdof'

January 31, 2019

Type Package

Title Degrees of Freedom and Statistical Inference for Partial Least Squares Regression

Depends MASS
Version 0.2-9
Date 2019-01-31
Author Nicole Kraemer, Mikio L. Braun
Maintainer Frederic Bertrand frederic.bertrand@math.unistra.fr
Description The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures. Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Encoding UTF-8
Repository CRAN
Date/Publication 2019-01-31 19:00:03 UTC
RoxygenNote 6.1.1
URL https://github.com/fbertran/plsdof

BugReports https://github.com/fbertran/plsdof/issues

R topics documented:

plsdof-package 2
benchmark.pls 4
benchmark.regression 6
coef.plsdof 8
compute.lower.bound 9
dA 10
dnormalize 11
dvvtz 12
first.local.minimum 13
information.criteria 14
kernel.pls.fit 16
krylov 17
linear.pls 18
normalize 19
pcr 20
per.cv 21
pls.cv 23
pls.dof 25
pls.ic 26
pls.model 28
ridge.cv 30
tr 32
vcov.plsdof 32
vvtz 33
Index 35
plsdof-package Degrees of Freedom and Statistical Inference for Partial Least Squares Regression

Description

The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression.

Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on crossvalidation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures.
Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

Details

Package:	plsdof
Type:	Package
Version:	$0.2-7$
Date:	$2014-09-04$
License:	GPL $(>=2)$
LazyLoad:	yes

Author(s)

Nicole Kraemer, Mikio L. Braun
Maintainer: Nicole Kraemer kraemer_r_packages@yahoo.de

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

pls.model, pls.cv, pls.ic

Examples

```
# Boston Housing data
data(Boston)
X<-as.matrix(Boston[,-14])
y<-as.vector(Boston[,14])
    # compute PLS coefficients for the first 5 components and plot Degrees of Freedom
    my.pls1<-pls.model(X,y,m=5,compute.DoF=TRUE)
    plot(0:5,my.pls1$DoF,pch="*",cex=3,xlab="components",ylab="DoF",ylim=c(0,14))
    # add naive estimate
    lines(0:5,1:6,lwd=3)
    # model selection with the Bayesian Information criterion
    mypls2<-pls.ic(X,y,criterion="bic")
```

```
# model selection based on cross-validation.
# returns the estimated covariance matrix of the regression coefficients
mypls3<-pls.cv(X,y,compute.covariance=TRUE)
my.vcov<-vcov(mypls3)
my.sd<-sqrt(diag(my.vcov)) # standard deviation of the regression coefficients
```

benchmark.pls \quad| Comparison of model selection criteria for Partial Least Squares Re- |
| :--- |
| gression. |

Description

This function computes the test error over several runs for different model selection strategies.

Usage

benchmark.pls(X,y,m,R,ratio,verbose, k, ratio.samples, use.kernel, criterion, true.coefficients)

Arguments

X matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
$m \quad$ maximal number of Partial Least Squares components. Default is $m=n c o l(X)$.
R number of runs. Default is 20 .
ratio ratio no of training examples/(no of training examples + no of test examples). Default is 0.8
verbose If TRUE, the functions plots the progress of the function. Default is TRUE.
$\mathrm{k} \quad$ number of cross-validation splits. Default is 10 .
ratio.samples Ratio of (no of training examples + no of test examples)/nrow(X). Default is 1 .
use.kernel Use kernel representation? Default is use.kernel=FALSE.
criterion Choice of the model selection criterion. One of the three options aic, bic, gmdl. Default is "bic".
true.coefficients
The vector of true regression coefficients (without intercept), if available. Default is NULL.

Details

The function estimates the optimal number of PLS components based on four different criteria: (1) cross-validation, (2) information criteria with the naive Degrees of Freedom $\operatorname{DoF}(m)=m+1$, (3) information criteri with the Degrees of Freedom computed via a Lanczos represenation of PLS and (4) information criteri with the Degrees of Freedom computed via a Krylov represenation of PLS. Note that the latter two options only differ with respect to the estimation of the model error.

In addition, the function computes the test error of the "zero model", i.e. mean (y) on the training data is used for prediction.
If true.coefficients are available, the function also computes the model error for the different methods, i.e. the sum of squared differences between the true and the estimated regression coefficients.

Value

MSE data frame of size R x 5. It contains the test error for the five different methods for each of the R runs.
M data frame of size $\mathrm{R} \times 5$. It contains the optimal number of components for the five different methods for each of the R runs.

DoF data frame of size R x 5. It contains the Degrees of Freedom (corresponding to M) for the five different methods for each of the R runs.

TIME data frame of size $\mathrm{R} \times 4$. It contains the runtime for all methods (apart from the zero model) for each of the R runs.
M. CRASH data frame of size $\mathrm{R} x$ 2. It contains the number of components for which the Krylov representation and the Lanczos representation return negative Degrees of Freedom, hereby indicating numerical problems.

ME if true.coefficients are available, this is a data frame of size $\mathrm{R} \times 5$. It contains the model error for the five different methods for each of the R runs.
SIGMAHAT data frame of size $\mathrm{R} \times 5$. It contains the estimation of the noise level provided by the five different methods for each of the R runs.

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

See Also

```
pls.ic, pls.cv
```


Examples

\# generate artificial data
$\mathrm{n}<-50$ \# number of examples
$\mathrm{p}<-5$ \# number of variables
X<-matrix (rnorm(n*p), ncol=p)
true.coefficients<-runif(p,1,3)
y<-X
my.benchmark<-benchmark.pls(X,y,R=10,true.coefficients=true.coefficients)
benchmark.regression Comparison of Partial Least Squares Regression, Principal Components Regression and Ridge Regression.

Description

This function computes the test error over several runs for (a) PLS, (b) PCR (c) Ridge Regression and (d) the null model, that is the mean of y. In the first three cases, the optimal model is selected via cross-validation.

Usage

benchmark.regression(X, y, m, R,ratio, verbose,k, nsamples, use.kernel,supervised)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
$m \quad$ maximal number of components for PLS. Default is $m=n \operatorname{col}(X)$.
R number of runs. Default is 20.
ratio ratio no of training examples/(no of training examples + no of test examples). Default is 0.8
verbose If TRUE, the functions plots the progress of the function. Default is TRUE.
$\mathrm{k} \quad$ number of cross-validation splits. Default is 10.
nsamples number of data points. Default is nrow (X).
use.kernel Use kernel representation for PLS? Default is use.kernel=FALSE.
supervised Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function computes the test error, the cross-validation-optimal model parameters, their corresponding Degrees of Freedom, and the sum-of-squared-residuals (SSR) for PLS and PCR.

Value

MSE data frame of size R x 4 . It contains the test error for the four different methods for each of the R runs.
M data frame of size $R \times 4$. It contains the optimal model parameters for the four different methods for each of the R runs.

DoF data frame of size R x 4. It contains the Degrees of Freedom (corresponding to M) for the four different methods for each of the R runs.
res.pls matrix of size $\mathrm{R} x(\mathrm{ncol}(\mathrm{X}+1))$. It contains the SSR for PLS for each of the R runs.
res.pcr matrix of size $\mathrm{R} x(\mathrm{ncol}(\mathrm{X}+1))$. It contains the SSR for PCR for each of the R runs.
DoF.all matrix of size $\mathrm{R} x(\mathrm{ncol}(\mathrm{X}+1))$. It contains the Degrees of Freedom for PLS for all components for each of the R runs.

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

See Also

```
pls.cv, pcr.cv, benchmark.pls
```


Examples

```
# Boston Housing data
library(MASS)
data(Boston)
X<-as.matrix(Boston[,1:4]) # select the first 3 columns as predictor variables
y<-as.vector(Boston[,14])
my.benchmark<-benchmark.regression(X,y,ratio=0.5,R=10,k=5)
# boxplot of the mean squared error
boxplot(my.benchmark$MSE,outline=FALSE)
# boxplot of the degrees of freedom, without the null model
boxplot(my.benchmark$DoF[,-4])
```

```
coef.plsdof Regression coefficients
```


Description

This function returns the regression coefficients of a plsdof-object.

Usage

\#\# S3 method for class 'plsdof'
coef(object,...)

Arguments

object an object of class "plsdof" that is returned by the functions pls.ic and pls.cv. ... additional parameters

Details

The function returns the regression coefficients (without intercept) for the optimal number of components.

Value

regression coefficients.

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https: //www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

```
vcov.plsdof, pls.model,pls.ic, pls.cv
```


Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
pls.object<-pls.ic(X,y,criterion="bic")
mycoef<-coef(pls.object)
```

 compute. lower. bound Lower bound for the Degrees of Freedom

Description

This function computes the lower bound for the the Degrees of Freedom of PLS with 1 component.

Usage

compute.lower. bound (X)

Arguments

$X \quad$ matrix of predictor observations.

Details

If the decay of the eigenvalues of $\operatorname{cor}(X)$ is not too fast, we can lower-bound the Degrees of Freedom of PLS with 1 component. Note that we implicitly assume that we use scaled predictor variables to compute the PLS solution.

Value

bound logical. bound is TRUE if the decay of the eigenvalues is slow enough
lower.bound if bound is TRUE, this is the lower bound, otherwise, it is set to -1

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

See Also

pls.model

Examples

```
# Boston Housing data
library(MASS)
data(Boston)
X<-Boston[,-14]
my.lower<-compute.lower.bound(X)
```

dA Derivative of normalization function

Description

This function computes the derivative of the function

$$
v \mapsto \frac{w}{\|w\|_{A}}
$$

with respect to y.

Usage

$d A(w, A, d w)$

Arguments

w vector of length n.
A square matrix that defines the norm
dw derivative of w with respect to y. As y is a vector of length n, the derivative is a matrix of size nxn.

Details

The first derivative of the normalization operator is

$$
\frac{\partial}{\partial y}\left(w \mapsto \frac{w}{\|w\|_{A}}\right)=\frac{1}{\|w\|}\left(I_{n}-\frac{w w^{\top} A}{w^{\top} w}\right) \frac{\partial w}{\partial y}
$$

Value

the Jacobian matrix of the normalization function. This is a matrix of size nxn.

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

normalize, dnormalize

Examples

w<-rnorm(15)
dw<-diag(15)
A<-diag(1:15)
d. object<-dA(w, A, dw)
dnormalize Derivative of normalization function

Description

This function computes the derivative of the function

$$
v \mapsto \frac{v}{\|v\|}
$$

with respect to y.

Usage

dnormalize(v, dv)

Arguments

v vector of length n.
$d v \quad$ derivative of v with respect to y. As y is a vector of length n, the derivative is a matrix of size nxn.

Details

The first derivative of the normalization operator is

$$
\frac{\partial}{\partial y}\left(v \mapsto \frac{v}{\|v\|}\right)=\frac{1}{\|v\|}\left(I_{n}-\frac{v v^{\top}}{v^{\top} v}\right) \frac{\partial v}{\partial y}
$$

Value

the Jacobian matrix of the normalization function. This is a matrix of size nxn.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

normalize

Examples

v<-rnorm(15)
dv<-diag(15)
d.object<-dnormalize(v,dv)
dvvtz First derivative of the projection operator

Description

This function computes the first derivative of the projection operator

$$
P_{V} z=V V^{\top} z
$$

Usage

dvvtz(v, z, dv, dz)

Arguments

v

Z
$d v$
dz
orthonormal basis of the space on which z is projected. v is either a matrix or a vector.
vector that is projected onto the columns of v
first derivative of the the columns of v with respect to a vector y. If v is a matrix, $d v$ is an array of dimension $n c o l(v)$ xnrow (v)xlength (y). If v is a vector, $d v$ is a matrix of dimension nrow (v)xlength (y).
$\mathrm{dz} \quad$ first derivative of z with respect to a vector y. This is a matrix of dimension nrow(v)xlength (y).

Details

For the computation of the first derivative, we assume that the columns of v are normalized and mutually orthogonal. (Note that the function will not return an error message if these assumptionsa are not fulfilled. If we denote the columns of v by v_{1}, \ldots, v_{l}, the first derivative of the projection operator is

$$
\frac{\partial P}{\partial y}=\sum_{j=1}^{l}\left[\left(v_{j} z^{\top}+v_{j}^{\top} z I_{n}\right) \frac{\partial v_{j}}{\partial y}+v_{j} v_{j}^{\top} \frac{\partial z}{\partial y}\right]
$$

Here, n denotes the length of the vectors v_{j}.

Value

The first derivative of the projection operator with respect to y. This is a matrix of dimension nrow(v)xlength(y).

Note

This is an internal function.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association. 106 (494) https: //www. tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

vvtz

Description

This function computes the index of the first local minimum.

Usage

first.local.minimum(x)

Arguments

X vector.

Value

the index of the first local minimum of x.

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association. ahead of print 106 (494) https://www. tandfonline.com/doi/abs/10.1198/jasa.2011.tm10107

Examples

v<-rnorm(30)
out<-first.local.minimum(v)
information.criteria Information criteria

Description

This function computes the optimal model parameters using three different model selection criteria (aic, bic, gmdl).

Usage

information.criteria(RSS, DoF, yhat, sigmahat, n,criterion="bic")

Arguments

RSS
vector of residual sum of squares.
DoF vector of Degrees of Freedom. The length of DoF is the same as the length of RSS.
yhat vector of squared norm of yhat. The length of yhat is the same as the length of RSS. It is only needed for gmdl. Default value is NULL.
sigmahat Estimated model error. The length of sigmahat is the same as the length of RSS.
n
criterion one of the options "aic", "bic" and "gmdl".

Details

The Akaike information criterion (aic) is defined as

$$
a i c=\frac{R S S}{n}+2 \frac{D o F}{n} \sigma^{2} .
$$

The Bayesian information criterion (bic) is defined as

$$
b i c=\frac{R S S}{n}+\log (n) \frac{D o F}{n} \sigma^{2}
$$

The generalized minimum description length (gmdl) is defined as

$$
g m d l=\frac{n}{2} \log (S)+\frac{D o F}{2} \log (F)+\frac{1}{2} \log (n)
$$

with

$$
S=\hat{\sigma}^{2}
$$

Note that it is also possible to use the function information.criteria for other regression methods than Partial Least Squares.

Value

DoF degrees of freedom
score vector of the model selection criterion
par index of the first local minimum of score

Author(s)

Nicole Kraemer, Mikio Braun

References

Akaikie, H. (1973) "Information Theory and an Extension of the Maximum Likelihood Principle". Second International Symposium on Information Theory, 267-281.
Hansen, M., Yu, B. (2001). "Model Selection and Minimum Descripion Length Principle". Journal of the American Statistical Association, 96, 746-774
Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https: //www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448
Schwartz, G. (1979) "Estimating the Dimension of a Model" Annals of Statistics 26(5), 1651 1686.

See Also

pls.ic

Examples

\#\# This is an internal function called by pls.ic
kernel.pls.fit Kernel Partial Least Squares Fit

Description

This function computes the Partial Least Squares fit. This algorithm scales mainly in the number of observations.

Usage

kernel.pls.fit(X, y, m, compute.jacobian, DoF.max)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
m maximal number of Partial Least Squares components. Default is $\mathrm{m}=\mathrm{ncol}(\mathrm{X})$. compute. jacobian Should the first derivative of the regression coefficients be computed as well? Default is FALSE.
DoF.max upper bound on the Degrees of Freedom. Default is min $(\operatorname{ncol}(X)+1, \operatorname{nrow}(X)-1)$.

Details

We first standardize X to zero mean and unit variance.

Value	
coefficients	matrix of regression coefficients
intercept	vector of regression intercepts
DoF	Degrees of Freedom
sigmahat	vector of estimated model error
Yhat	matrix of fitted values
yhat	vector of squared length of fitted values
RSS	vector of residual sum of error
covariance	NULL object.
TT	matrix of normalized PLS components

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

linear.pls.fit, pls.cv,pls.model, pls.ic

Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
pls.object<-kernel.pls.fit(X,y,m=5, compute.jacobian=TRUE)
```

krylov Krylov sequence

Description

This function computes the Krylov sequence of a matrix and a vector.

Usage

krylov(A,b,m)

Arguments

A
b vector of length p
m length of the Krylov sequence

Value

A matrix of size $p x m$ containing the sequence $b, A b, \ldots, A^{\wedge}(m-1) b$.

Author(s)

Nicole Kraemer

Examples

```
A<-matrix(rnorm(8*8),ncol=8)
b<-rnorm(8)
K<-krylov(A,b,4)
```

linear.pls Linear Partial Least Squares Fit

Description

This function computes the Partial Least Squares solution and the first derivative of the regression coefficients. This implementation scales mostly in the number of variables

Usage

linear.pls.fit(X, y, m, compute.jacobian,DoF.max)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
m maximal number of Partial Least Squares components. Default is $m=n c o l(X)$.
compute. jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE.

DoF.max upper bound on the Degrees of Freedom. Default is min $(\operatorname{ncol}(X)+1, \operatorname{nrow}(X)-1)$.

Details

We first standardize X to zero mean and unit variance.

Value

coefficients	matrix of regression coefficients
intercept	vector of regression intercepts
DoF	Degrees of Freedom
sigmahat	vector of estimated model error
Yhat	matrix of fitted values
yhat	vector of squared length of fitted values

RSS vector of residual sum of error
covarianceif compute. jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.

TT matrix of normalized PLS components

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

See Also

kernel.pls.fit, pls.cv,pls.model, pls.ic

Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
```

```
pls.object<-linear.pls.fit(X,y,m=5,compute.jacobian=TRUE)
```

normalize Normalization of vectors

Description

Normalization of vectors.

Usage

normalize(v, w = NULL)

Arguments

v
vector
w
optional vector

Details

The vector v is normalized to length 1 . If w is given, it is normalized by the length of v.

Value

```
v normalized v
w normalized w
```


Author(s)

Nicole Kraemer, Mikio L. Braun

Examples

$\mathrm{v}<-$ rnorm(5)
w<-rnorm(10)
dummy<-normalize(v,w)

pcr Principal Components Regression

Description

This function computes the Principal Components Regression (PCR) fit.

Usage

$\operatorname{pcr}(X, y$, scale, m,eps, supervised)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
scale \quad Should the predictor variables be scaled to unit variance? Default is TRUE.
$m \quad$ maximal number of principal components. Default is $m=m i n(n \operatorname{col}(X), \operatorname{nrow}(X)-1)$.
eps precision. Eigenvalues of the correlation matrix of X that are smaller than eps are set to 0 . The default value is eps $=10^{\wedge}\{-6\}$.
supervised Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function first scales all predictor variables to unit variance, and then computes the PCR fit for all components. Is supervised=TRUE, we sort the principal correlation according to the squared correlation to the response.

Value

coefficients matrix of regression coefficients, including the coefficients of the null model, i.e. the constant model mean (y).
intercept vector of intercepts, including the intercept of the null model, i.e. the constant model mean (y).

Author(s)

Nicole Kraemer

See Also

pcr.cv, pls.cv

Examples

```
n<-50 # number of observations
p<-15 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
my.pcr<-\operatorname{pcr}(X,y,m=10)
```

pcr.cv

Model selection for Princinpal Components regression based on crossvalidation

Description

This function computes the optimal model parameter using cross-validation. Mdel selection is based on mean squared error and correlation to the response, respectively.

Usage

pcr.cv(X,y,k=10,m,groups=NULL, scale=TRUE, eps=0.000001, plot.it=FALSE, compute.jackknife, method.cor,supervised)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
$\mathrm{k} \quad$ number of cross-validation splits. Default is 10 .
$m \quad$ maximal number of principal components. Default is $m=\min (n \operatorname{col}(X), n r o w(X)-1)$.

```
groups an optional vector with the same length as y. It encodes a partitioning of the
                        data into distinct subgroups. If groups is provided, k=10 is ignored and instead,
                            cross-validation is performed based on the partioning. Default is NULL.
scale Should the predictor variables be scaled to unit variance? Default is TRUE.
eps precision. Eigenvalues of the correlation matrix of X that are smaller than eps
    are set to 0. The default value is eps=10^{-6}.
plot.it Logical. If TRUE, the function plots the cross-validation-error as a function of
        the number of components. Default is FALSE.
compute.jackknife
    Logical. If TRUE, the regression coefficients on each of the cross-validation splits
    is stored. Default is TRUE.
method.cor How should the correlation to the response be computed? Default is "pearson".
supervised Should the principal components be sorted by decreasing squared correlation to
    the response? Default is FALSE.
```


Details

The function computes the principal components on the scaled predictors. Based on the regression coefficients coefficients.jackknife computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

```
    cv.error.matrix
```

 matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
 cv.error vector of cross-validated errors based on mean squared error
 m.opt optimal number of components based on mean squared error
 intercept intercept of the optimal model, based on mean squared error
 coefficients vector of regression coefficients of the optimal model, based on mean squared
 error
 cor.error.matrix
 matrix of cross-validated errors based on correlation. A row corresponds to one
 cross-validation split.
 cor.error vector of cross-validated errors based on correlation
 m.opt.cor optimal number of components based on correlation
 intercept.cor intercept of the optimal model, based on correlation
 coefficients.cor
 vector of regression coefficients of the optimal model, based on correlation
 coefficients.jackknife
 Array of the regression coefficients on each of the cross-validation splits, if
 compute. jackknife \(=\) TRUE. In this case, the dimension is \(n \operatorname{col}(X) \times(m+1) \times k\).

Author(s)

Nicole Kraemer, Mikio L. Braun

See Also

pls.model, pls.ic

Examples

```
n<-500 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
# compute PCR
pcr.object<-pcr.cv(X,y,scale=FALSE,m=3)
pcr.object1<-pcr.cv(X,y,groups=sample(c(1,2,3),n,replace=TRUE),m=3)
```

pls.cv Model selection for Partial Least Squares based on cross-validation

Description

This function computes the optimal model parameter using cross-validation.

Usage

pls.cv(X, y, k, groups,m,use.kernel=FALSE,compute.covariance=FALSE,method.cor)

Arguments

$X \quad$ matrix of predictor observations.
y vector of response observations. The length of y is the same as the number of rows of X.
$\mathrm{k} \quad$ number of cross-validation splits. Default is 10 .
groups an optional vector with the same length as y. It encodes a partitioning of the data into distinct subgroups. If groups is provided, $\mathrm{k}=10$ is ignored and instead, cross-validation is performed based on the partioning. Default is NULL.
$m \quad$ maximal number of Partial Least Squares components. Default is $m=n c o l(X)$.
use.kernel Use kernel representation? Default is use. kernel=FALSE.
compute. covariance
If TRUE, the function computes the covariance for the cv-optimal regression coefficients.
method.cor How should the correlation to the response be computed? Default is "pearson".

Details

The data are centered and scaled to unit variance prior to the PLS algorithm. It is possible to estimate the covariance matrix of the cv-optimal regression coefficients (compute. covariance=TRUE). Currently, this is only implemented if use.kernel=FALSE.

Value

cv.error.matrix
matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
cv.error vector of cross-validated errors based on mean squared error
m.opt optimal number of components based on mean squared error
intercept intercept of the optimal model, based on mean squared error
coefficients vector of regression coefficients of the optimal model, based on mean squared error
cor.error.matrix
matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
cor.error vector of cross-validated errors based on correlation
m.opt.cor optimal number of components based on correlation
intercept.cor intercept of the optimal model, based on correlation
coefficients.cor
vector of regression coefficients of the optimal model, based on mean squared error
covariance If TRUE and use.kernel=FALSE, the covariance of the cv-optimal regression coefficients (based on mean squared error) is returned.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

See Also

pls.model, pls.ic

Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
# compute linear PLS
pls.object<-pls.cv(X,y,m=ncol(X))
# define random partioning
groups<-sample(c("a", "b", "c"),n,replace=TRUE)
pls.object1<-pls.cv(X,y,groups=groups)
```

pls.dof Computation of the Degrees of Freedom

Description

This function computes the Degrees of Freedom using the Krylov representation of PLS.

Usage

pls.dof(pls.object, n, y, K, m, DoF.max)

Arguments

pls.object	object returned by linear.pls.fit or by kernel.pls.fit
n	number of observations
y	vector of response observations.
K	kernel matrix $\mathrm{XX}^{\wedge} \mathrm{t}$.
m	number of components.
DoF.max	upper bound on the Degrees of Freedom.

Details

This computation of the Degrees of Freedom is based on the equivalence of PLS regression and the projection of the response vector y onto the Krylov space spanned by

$$
K y, K^{2} y, \ldots, K^{m} y
$$

Details can be found in Kraemer and Sugiyama (2011).

Value

coefficients	matrix of regression coefficients
intercept	vector of regression intercepts
DoF	Degrees of Freedom
sigmahat	vector of estimated model error
Yhat	matrix of fitted values
yhat	vector of squared length of fitted values
RSS	vector of residual sum of error
TT	matrix of normalized PLS components

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107

Kraemer, N., Sugiyama M., Braun, M.L. (2009) "Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression." Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), p. 272-279

See Also

pls.model, pls.ic

Examples

\# this is an internal function

pls.ic	Model selection for Partial Least Squares based on information crite- ria

Description

This function computes the optimal model parameters using one of three different model selection criteria (aic, bic, gmdl) and based on two different Degrees of Freedom estimates for PLS.

Usage

pls.ic(X, y, m,criterion="bic", naive, use.kernel, compute.jacobian, verbose)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
m maximal number of Partial Least Squares components. Default is $m=n c o l(X)$.
criterion Choice of the model selection criterion. One of the three options aic, bic, gmdl.
naive Use the naive estimate for the Degrees of Freedom? Default is FALSE.
use.kernel Use kernel representation? Default is use.kernel=FALSE.
compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE
verbose If TRUE, the function prints a warning if the algorithms produce negative Degrees of Freedom. Default is TRUE.

Details

There are two options to estimate the Degrees of Freedom of PLS: naive=TRUE defines the Degrees of Freedom as the number of components +1 , and naive=FALSE uses the generalized notion of Degrees of Freedom. If compute. jacobian=TRUE, the function uses the Lanczos decomposition to derive the Degrees of Freedom, otherwise, it uses the Krylov representation. (See Kraemer and Sugiyama (2011) for details.) The latter two methods only differ with respect to the estimation of the noise level.

Value

The function returns an object of class "plsdof".
DoF Degrees of Freedom
m.opt optimal number of components
sigmahat vector of estimated model errors
intercept intercept
coefficients vector of regression coefficients
covariance if compute.jacobian=TRUE and use.kernel=FALSE, the function returns the covariance matrix of the optimal regression coefficients.
m.crash the number of components for which the algorithm returns negative Degrees of Freedom

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Akaikie, H. (1973) "Information Theory and an Extension of the Maximum Likelihood Principle". Second International Symposium on Information Theory, 267-281.
Hansen, M., Yu, B. (2001). "Model Selection and Minimum Descripion Length Principle". Journal of the American Statistical Association, 96, 746-774
Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441-448

Schwartz, G. (1979) "Estimating the Dimension of a Model" Annals of Statistics 26(5), 1651 1686.

See Also

```
pls.model, pls.cv
```


Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
# compute linear PLS
pls.object<-pls.ic(X,y,m=ncol(X))
```


pls.model Partial Least Squares

Description

This function computes the Partial Least Squares fit.

Usage

pls.model(X,y,m,Xtest=NULL, ytest=NULL, compute.DoF, compute.jacobian, use.kernel, method.cor)

Arguments

$X \quad$ matrix of predictor observations.
$y \quad$ vector of response observations. The length of y is the same as the number of rows of X.
m maximal number of Partial Least Squares components. Default is $m=m i n(n \operatorname{col}(X), n r o w(X)-1)$.

Xtest optional matrix of test observations. Default is Xtest=NULL.
ytest optional vector of test observations. Default is ytest=NULL.
compute.DoF Logical variable. If compute.DoF=TRUE, the Degrees of Freedom of Partial Least Squares are computed. Default is compute. DoF=FALSE.
compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE
use.kernel Should the kernel representation be used to compute the solution. Default is FALSE.
method.cor How should the correlation to the response be computed? Default is "pearson".

Details

This function computes the Partial Least Squares fit and its Degrees of Freedom. Further, it returns the regression coefficients and various quantities that are needed for model selection in combination with information.criteria.

Value

coefficients matrix of regression coefficients
intercept vector of intercepts
DoF vector of Degrees of Freedom
RSS vector of residual sum of error
sigmahat vector of estimated model error
Yhat matrix of fitted values
yhat vector of squared length of fitted values
covariance if compute. jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.
predictionif Xtest is provided, the predicted y-values for Xtest. mseif Xtest and ytest are provided, the mean squared error on the test data. corif Xtest and ytest are provided, the correlation to the response on the test data.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Sugiyama, M., Braun, M.L. (2009) "Lanczos Approximations for the Speedup of Partial Least Squares Regression", Proceedings of the 12th International Conference on Artificial Intelligence and Stastistics, 272-279

See Also

```
pls.ic,pls.cv
```


Examples

```
n<-50 # number of observations
p<-15 # number of variables
X<-matrix(rnorm(n*p), ncol=p)
y<-rnorm(n)
ntest<-200 #
Xtest<-matrix(rnorm(ntest*p),ncol=p) # test data
ytest<-rnorm(ntest) # test data
# compute PLS + degrees of freedom + prediction on Xtest
first.object<-pls.model(X,y, compute.DoF=TRUE,Xtest=Xtest,ytest=NULL)
# compute PLS + test error
second.object=pls.model(X, y,m=10,Xtest=Xtest,ytest=ytest)
```

ridge.cv Ridge Regression.

Description

This function computes the optimal ridge regression model based on cross-validation.

Usage

```
ridge.cv(X, y, lambda, scale = TRUE, k = 10, plot.it = FALSE,
    groups=NULL,method.cor="pearson",compute.jackknife)
```


Arguments

$X \quad$ matrix of input observations. The rows of X contain the samples, the columns of X contain the observed variables
$y \quad$ vector of responses. The length of y must equal the number of rows of X
lambda Vector of penalty terms.
scale Scale the columns of X? Default is scale=TRUE.
$\mathrm{k} \quad$ Number of splits in k -fold cross-validation. Default value is $\mathrm{k}=10$.
plot.it Plot the cross-validation error as a function of lambda? Default is FALSE.
groups an optional vector with the same length as y. It encodes a partitioning of the data into distinct subgroups. If groups is provided, $\mathrm{k}=10$ is ignored and instead, cross-validation is performed based on the partioning. Default is NULL.
method.cor How should the correlation to the response be computed? Default is "pearson". compute.jackknife

Logical. If TRUE, the regression coefficients on each of the cross-validation splits is stored. Default is TRUE.

Details

Based on the regression coefficients coefficients.jackknife computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

cv.error.matrix
matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
cv.error vector of cross-validated errors based on mean squared error
lambda.opt optimal value of lambda, based on mean squared error
intercept intercept of the optimal model, based on mean squared error
coefficients vector of regression coefficients of the optimal model, based on mean squared error
cor.error.matrix
matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
cor.error vector of cross-validated errors based on correlation
lambda.opt.cor optimal value of lambda, based on correlation
intercept.cor intercept of the optimal model, based on correlation
coefficients.cor
vector of regression coefficients of the optimal model, based on mean squared error
coefficients.jackknife
Array of the regression coefficients on each of the cross-validation splits. The dimension is $n \operatorname{col}(X) \times$ length (lambda) $\times \mathrm{k}$.

Author(s)

Nicole Kraemer

See Also

pls.cv, pcr.cv, benchmark.regression

Examples

```
n<-100 # number of observations
p<-60 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
ridge.object<-ridge.cv(X,y)
```


Description

This function computes the trace of a matrix.

Usage

$\operatorname{tr}(\mathrm{M})$

Arguments

M
square matrix

Value

The trace of the matrix M.

Author(s)

Nicole Kraemer

Examples

M<-matrix(rnorm(8*8), ncol=8)
tr. M<-tr (M)
vcov.plsdof Variance-covariance matrix

Description

This function returns the variance-covariance matrix of a plsdof-object.

Usage

\#\# S3 method for class 'plsdof'
vcov(object,...)

Arguments

$\begin{array}{ll}\text { object } & \text { an object of class "plsdof" that is returned by the function linear.pls } \\ \ldots & \text { additional parameters }\end{array}$

Details

The function returns the variance-covariance matrix for the optimal number of components. It can be applied to objects returned by pls.ic and pls.cv.

Value

variance-covariance matrix

Author(s)

Nicole Kraemer

References

Kraemer, N., Sugiyama M. (2011). "The Degrees of Freedom of Partial Least Squares Regression". Journal of the American Statistical Association 106 (494) https://www.tandfonline.com/doi/ abs/10.1198/jasa.2011.tm10107
Kraemer, N., Sugiyama M., Braun, M.L. (2009) "Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression." Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), p. 272-279

See Also

```
coef.plsdof,pls.ic, pls.cv
```


Examples

```
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
pls.object<-pls.ic(X,y,m=5,criterion="bic")
my.vcov<-vcov(pls.object)
my.sd<-sqrt(diag(my.vcov)) # standard deviation of regression coefficients
```

 vvtz Projectin operator

Description

This function computes the projection operator

$$
P_{V} z=V V^{\top} z
$$

Usage

vvtz(v, z)

Arguments

v
orthonormal basis of the space on which z is projected. v is either a matrix or a vector.
z vector that is projected onto the columns of v

Details

The above formula is only valid if the columns of v are normalized and mutually orthogonal.

Value

value of the projection operator

Author(s)

Nicole Kraemer

See Also

dvvtz

Examples

```
# generate random orthogonal vectors
X<-matrix(rnorm(10*100),ncol=10) # random data
S<-cor(X) # correlation matrix of data
v<-eigen(S)$vectors[,1:3] # first three eigenvectors of correlation matrix
z<-rnorm(10) # random vector z
projection.z<-vvtz(v,z)
```


Index

*Topic math

compute.lower. bound, 9 dA, 10
dnormalize, 11
dvvtz, 12
first.local.minimum, 13
krylov, 17
normalize, 19
tr, 32
vvtz, 33
*Topic models
coef.plsdof, 8
vcov.plsdof, 32
*Topic model
information.criteria, 14
*Topic multivariate
benchmark.pls, 4
benchmark.regression, 6
kernel.pls.fit, 16
linear.pls, 18
pcr, 20
pcr.cv, 21
pls.cv, 23
pls.dof, 25
pls.ic, 26
pls.model, 28
ridge.cv, 30
*Topic package
plsdof-package, 2
benchmark.pls, 4, 7
benchmark.regression, 6,31
coef.plsdof, 8,33
compute. lower. bound, 9
dA, 10
dnormalize, 11, 11
dvvtz, 12, 34
first.local.minimum, 13
information.criteria, 14
kernel.pls.fit, 16, 19
krylov, 17
linear.pls, 18
linear.pls.fit, 17
normalize, 11, 12, 19
pcr, 20
pcr.cv, 7, 21, 21, 31
pls.cv, 3, 5, 7, 8, 17, 19, 21, 23, 28, 30, 31, 33
pls.dof, 25
pls.ic, $3,5,8,15,17,19,23,24,26,26,30$,
33
pls.model, $3,8,10,17,19,23,24,26,28,28$
plsdof (plsdof-package), 2
plsdof-package, 2
ridge.cv, 30
tr, 32
vcov.plsdof, 8, 32
vvtz, 13, 33

