
plot3D : Tools for plotting 3-D and 2-D data.

Karline Soetaert

NIOZ-Yerseke
The Netherlands

Abstract

R package plot3D (Soetaert 2013b) contains functions for plotting multi-dimensional
data. Many functions are derived from the persp function, other functions start from the
image or contour function.

Two related packages are:

❼ plot3Drgl (Soetaert 2013c), that plots multidimensional data using openGL graphics
(and using package rgl (Adler and Murdoch 2013)).

❼ OceanView (Soetaert 2013a) that contains functions for visualing oceanographic
data.

A graphical gallery using one of plot3D, plot3Drgl or OceanView is in http://www.

rforscience.com/rpackages/visualisation/oceanview/ and http://www.rforscience.
com/rpackages/visualisation/plot3d/

Keywords: plot, persp, image, 2-D, 3-D, scatter plots, surface plots, slice plots, oceanographic
data, R .

1. Introduction

R package plot3D provides functions for plotting 2-D and 3-D data, and that are either
extensions of R’s persp function or of R’s image and contour function.

The main extensions to these functions are:

❼ In addition to the x, y (and z) values, an additional data dimension can be represented
by a color variable (argument colvar).

❼ A color key (argument colkey) can be written next to the figure. It is possible to
log-transform the color key, rescale it, adjust its position, ...

❼ The resolution of a figure can be increased (argument resfac).

❼ Either the facets can be colored, just the border, or both.

Package plot3D contains:

❼ Functions that are based on the persp function, for visualising 3-D data:

– persp3D: an extended version of the persp function.

http://www.rforscience.com/rpackages/visualisation/oceanview/
http://www.rforscience.com/rpackages/visualisation/oceanview/
http://www.rforscience.com/rpackages/visualisation/plot3d/
http://www.rforscience.com/rpackages/visualisation/plot3d/

2 plot3D : Tools for plotting 3-D and 2-D data.

– ribbon3D: perspective plots as ribbons.

– hist3D: 3-D histograms.

– scatter3D, points3D, lines3D, text3D: scatter plots in 3-D, points, lines, labels.

– surf3D: 3-D shapes (or surfaces).

– slice3D, slicecont3D, isosurf3D, voxel3D: slices, isosurfaces and voxels from a
full 3-D data set.

– arrows3D: arrows in 3D.

– contour3D, image3D: contours and images in 3D.

– segments3D, polygon3D, rect3D, border3D, box3D: line segments, polygons, rect-
angles, boxes in 3D.

❼ Functions defined on the image or contour function:

– image2D, contour2D, for an extended version of these functions to visualise 2-D
(or 3-D) data.

– ImageOcean, for an image of the ocean’s bathymetry.

❼ Other functions

❼ scatter2D: colored points, lines, ... in 2-D.

❼ text2D, arrows2D, segments2D, rect2D, polygon2D for other 2D functions, comparable
to R’s base graphics but that have a color key.

❼ Colors and colorkeys:

– colkey: color legends.

– jet.col, jet2.col, gg.col, ramp.col: suitable color palettes.

❼ Utility functions:

– mesh: generating rectangular (2D) or (3D) meshes.

– plotdev: plotting on the current device.

❼ Data sets:

– Oxsat: a (rather large) 3-D data set with the ocean’s oxygen saturation values.

– Hypsometry: a 2-D data set with the worlds elevation and the ocean’s depth.

This vignette contains some examples; more can be found in the package’s help files. To run
all examples:

example(persp3D)

example(surf3D)

example(slice3D)

example(scatter3D)

example(segments3D)

example(image2D)

Karline Soetaert 3

example(image3D)

example(contour3D)

example(colkey)

example(jet.col)

example(perspbox)

example(mesh)

example(trans3D)

example(plot.plist)

example(ImageOcean)

example(Oxsat)

2. Functions image2D and persp3D

image2D and persp3D are extensions of R’s image and persp functions. The arguments of
persp3D are (see the help file for what they mean):

args(persp3D)

function (x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1,

length.out = ncol(z)), z, ..., colvar = z, phi = 40, theta = 40,

col = NULL, NAcol = "white", border = NA, facets = TRUE,

colkey = NULL, resfac = 1, image = FALSE, contour = FALSE,

panel.first = NULL, clim = NULL, clab = NULL, bty = "b",

lighting = FALSE, shade = NA, ltheta = -135, lphi = 0, inttype = 1,

curtain = FALSE, add = FALSE, plot = TRUE)

NULL

Many examples of the use of image2D and persp3D are in vignette volcano.

The Hypsometry data set is depicted first as an image, with 0 m contour lines added. Slight
shading gives the plot a perspective view. The zoomed region (used in next figure) is then
added.

image2D(Hypsometry, xlab = "longitude", ylab = "latitude",

contour = list(levels = 0, col = "black", lwd = 2),

shade = 0.1, main = "Hypsometry data set", clab = "m")

rect(-50, 10, -20, 40, lwd = 3)

ii <- which(Hypsometry$x > -50 & Hypsometry$x < -20)

jj <- which(Hypsometry$y > 10 & Hypsometry$y < 40)

zlim <- c(-10000, 0)

The perspective figure is made with black side-panels (bty). Grey contour lines are added
on the bottom panel ("zmin") and on the persp plot itself ("z"). The resolution is increased
(resfac) to make smoother images. A color key (colkey) is added on the first margin (side)

4 plot3D : Tools for plotting 3-D and 2-D data.

Figure 1: Hypsometry data set

par(mfrow = c(1, 1))

Actual bathymetry, 4 times increased resolution, with contours

persp3D(z = Hypsometry$z[ii,jj], xlab = "longitude", bty = "bl2",

ylab = "latitude", zlab = "depth", clab = "depth, m",

expand = 0.5, d = 2, phi = 20, theta = 30, resfac = 2,

contour = list(col = "grey", side = c("zmin", "z")),

zlim = zlim, colkey = list(side = 1, length = 0.5))

3. slices and isosurfaces

Function slice3D draws slices from volumetric (3D) data, function isosurf3D creates and
plots isosurfaces. It makes use of a function from package misc3d (Feng and Tierney 2008).

args(slice3D)

function (x, y, z, colvar, ..., phi = 40, theta = 40, xs = min(x),

ys = max(y), zs = min(z), col = jet.col(100), NAcol = "white",

border = NA, facets = TRUE, colkey = NULL, panel.first = NULL,

clim = NULL, clab = NULL, bty = "b", lighting = FALSE, shade = NA,

ltheta = -135, lphi = 0, add = FALSE, plot = TRUE)

NULL

Karline Soetaert 5

Figure 2: Bathymetry of a part of the ocean

Function mesh is used to generate a full rectangular 3-D mesh. This is used to generate the
volumetric data (p) that defines the coloration. The data are visualised by one slice in x (xs)
and 3 slices in y direction (ys). Function isosurf3D plots the data for p-values that are equal
to 0.

par(mfrow = c(1, 2))

x <- y <- z <- seq(-4, 4, by = 0.2)

M <- mesh(x, y, z)

R <- with (M, sqrt(x^2 + y^2 +z^2))

p <- sin(2*R)/(R+1e-3)

slice3D(x, y, z, colvar = p,

xs = 0, ys = c(-4, 0, 4), zs = NULL)

isosurf3D(x, y, z, colvar = p, level = 0, col = "red")

4. surf3D

Function surf3D creates 3-D surface plots.

args(surf3D)

function (x, y, z, ..., colvar = z, phi = 40, theta = 40, col = jet.col(100),

NAcol = "white", border = NA, facets = TRUE, colkey = NULL,

6 plot3D : Tools for plotting 3-D and 2-D data.

Figure 3: Slices and isosurfaces from volumetric data

panel.first = NULL, clim = NULL, clab = NULL, bty = "n",

lighting = FALSE, shade = NA, ltheta = -135, lphi = 0, inttype = 1,

add = FALSE, plot = TRUE)

NULL

Here are 4 applications, showing the different options of coloration.

par(mfrow = c(2, 2), mar = c(0, 0, 0, 0))

Shape 1

M <- mesh(seq(0, 6*pi, length.out = 80),

seq(pi/3, pi, length.out = 80))

u <- M$x ; v <- M$y

x <- u/2 * sin(v) * cos(u)

y <- u/2 * sin(v) * sin(u)

z <- u/2 * cos(v)

surf3D(x, y, z, colvar = z, colkey = FALSE, box = FALSE)

Shape 2: add border

M <- mesh(seq(0, 2*pi, length.out = 80),

seq(0, 2*pi, length.out = 80))

u <- M$x ; v <- M$y

x <- sin(u)

y <- sin(v)

z <- sin(u + v)

surf3D(x, y, z, colvar = z, border = "black", colkey = FALSE)

shape 3: uses same mesh, white facets

x <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*cos(v)

y <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*sin(v)

Karline Soetaert 7

Figure 4: Surface plots

z <- sin(v/2)*sin(u) + cos(v/2)*sin(2*u)

surf3D(x, y, z, colvar = z, colkey = FALSE, facets = FALSE)

shape 4: more complex colvar

M <- mesh(seq(-13.2, 13.2, length.out = 50),

seq(-37.4, 37.4, length.out = 50))

u <- M$x ; v <- M$y

b <- 0.4; r <- 1 - b^2; w <- sqrt(r)

D <- b*((w*cosh(b*u))^2 + (b*sin(w*v))^2)

x <- -u + (2*r*cosh(b*u)*sinh(b*u)) / D

y <- (2*w*cosh(b*u)*(-(w*cos(v)*cos(w*v)) - sin(v)*sin(w*v))) / D

z <- (2*w*cosh(b*u)*(-(w*sin(v)*cos(w*v)) + cos(v)*sin(w*v))) / D

surf3D(x, y, z, colvar = sqrt(x + 8.3), colkey = FALSE,

border = "black", box = FALSE)

8 plot3D : Tools for plotting 3-D and 2-D data.

4.1. scatter2D and scatter3D

Functions scatter2D and scatter3D draw scatterplots.

args(scatter2D)

function (x, y, ..., colvar = NULL, col = NULL, NAcol = "white",

colkey = NULL, clim = NULL, clab = NULL, CI = NULL, add = FALSE,

plot = TRUE)

NULL

args(scatter3D)

function (x, y, z, ..., colvar = z, phi = 40, theta = 40, col = NULL,

NAcol = "white", colkey = NULL, panel.first = NULL, clim = NULL,

clab = NULL, bty = "b", CI = NULL, surf = NULL, add = FALSE,

plot = TRUE)

NULL

The dataset quakes is plotted using function scatter3D. Before the 3-D quakes data are
drawn, small dots are added on the bottom and on the depth plane (panelfirst).

par(mfrow = c(1, 1))

panelfirst <- function(pmat) {

zmin <- min(-quakes$depth)

XY <- trans3D(quakes$long, quakes$lat,

z = rep(zmin, nrow(quakes)), pmat = pmat)

scatter2D(XYx, XYy, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)

xmin <- min(quakes$long)

XY <- trans3D(x = rep(xmin, nrow(quakes)), y = quakes$lat,

z = -quakes$depth, pmat = pmat)

scatter2D(XYx, XYy, colvar = quakes$mag, pch = ".",

cex = 2, add = TRUE, colkey = FALSE)

}

with(quakes, scatter3D(x = long, y = lat, z = -depth, colvar = mag,

pch = 16, cex = 1.5, xlab = "longitude", ylab = "latitude",

zlab = "depth, km", clab = c("Richter","Magnitude"),

main = "Earthquakes off Fiji", ticktype = "detailed",

panel.first = panelfirst, theta = 10, d = 2,

colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75))

)

4.2. arrows3D, arrows2D

Functions arrows2D and arrows3D extend R function arrows with a color variable.

Karline Soetaert 9

Figure 5: Scatter plot

10 plot3D : Tools for plotting 3-D and 2-D data.

Figure 6: arrows

par (mfrow = c(1, 2))

arrows2D(x0 = runif(10), y0 = runif(10),

x1 = runif(10), y1 = runif(10), colvar = 1:10,

code = 3, main = "arrows2D")

arrows3D(x0 = runif(10), y0 = runif(10), z0 = runif(10),

x1 = runif(10), y1 = runif(10), z1 = runif(10),

colvar = 1:10, code = 1:3, main = "arrows3D", colkey = FALSE)

5. Functions based on image

The image2D function is an extended version of image. It has two S3 methods:

image2D(z =, ...)

image2D.matrix(z, x = NULL, y = NULL, ...,

col = jet.col(100), NAcol = "white", facets = TRUE,

contour = FALSE, colkey = NULL, resfac = 1,

clab = NULL, theta = 0, border = NA)

image2D.array(z, margin = c(1, 2), subset, ask = NULL, ...)

The data set Oxsat has oxygen saturation values in the ocean, at 2dg horizontal resolution,
and for 33 depth intervals.

Karline Soetaert 11

names(Oxsat)

[1] "lon" "lat" "depth" "val" "name" "units"

dim(Oxsat$val)

[1] 180 90 33

Function image2D.array plots several depth intervals at once, looping over the first and
second margin. The color key is added in a separate figure.

sub <- c(1, 5, 9)

image2D(z = Oxsat$val, subset = sub,

x = Oxsat$lon, y = Oxsat$lat,

margin = c(1, 2), NAcol = "black", colkey = FALSE,

xlab = "longitude", ylab = "latitude",

main = paste("depth ", Oxsat$depth[sub], " m"),

clim = c(0, 115), mfrow = c(2, 2))

colkey(clim = c(0, 115), clab = c("O2 saturation", "percent"))

6. Composite figures

It is also possible to make a composite figure combining several functions.

persp3D(z = volcano, zlim = c(-60, 200), phi = 20,

colkey = list(length = 0.2, width = 0.4, shift = 0.15,

cex.axis = 0.8, cex.clab = 0.85), lighting = TRUE, lphi = 90,

clab = c("","height","m"), bty = "f", plot = FALSE)

create gradient in x-direction

Vx <- volcano[-1,] - volcano[-nrow(volcano),]

add as image with own color key, at bottom

image3D(z = -60, colvar = Vx/10, add = TRUE,

colkey = list(length = 0.2, width = 0.4, shift = -0.15,

cex.axis = 0.8, cex.clab = 0.85),

clab = c("","gradient","m/m"), plot = FALSE)

add contour

contour3D(z = -60+0.01, colvar = Vx/10, add = TRUE,

col = "black", plot = TRUE)

7. Finally

This vignette was made with Sweave (Leisch 2002).

12 plot3D : Tools for plotting 3-D and 2-D data.

Figure 7: image2D function

Karline Soetaert 13

Figure 8: Several color keys in composite figure

14 plot3D : Tools for plotting 3-D and 2-D data.

References

Adler D, Murdoch D (2013). rgl: 3D visualization device system (OpenGL). R package version
0.93.945, URL http://CRAN.R-project.org/package=rgl.

Feng D, Tierney L (2008). “Computing and Displaying Isosurfaces in R.” Journal of Statistical
Software, 28(1). URL http://www.jstatsoft.org/v28/i01/.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), “Compstat 2002 - Proceedings in Computational
Statistics,” pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http:

//www.stat.uni-muenchen.de/~leisch/Sweave.

Soetaert K (2013a). OceanView: Visualisation of Oceanographic Data and Model Output. R
package version 1.0.

Soetaert K (2013b). plot3D: Plotting multi-dimensional data. R package version 1.0.

Soetaert K (2013c). plot3Drgl: Plotting multi-dimensional data - using rgl. R package version
1.0.

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: http://http://www.nioz.nl/

http://CRAN.R-project.org/package=rgl
http://www.jstatsoft.org/v28/i01/
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
mailto:karline.soetaert@nioz.nl
http://http://www.nioz.nl/

	Introduction
	Functions image2D and persp3D
	slices and isosurfaces
	surf3D
	scatter2D and scatter3D
	arrows3D, arrows2D

	Functions based on image
	Composite figures
	Finally

