Package 'pks'

May 26, 2019
Version 0.4-1
Date 2019-05-24
Title Probabilistic Knowledge Structures
Depends R (>= 3.0.0), stats, sets
Imports graphics
Description Fitting and testing probabilistic knowledge structures, especially the basic local independence model (BLIM, Doignon \& Flamagne, 1999), using the minimum discrepancy maximum likelihood (MDML) method (Heller \& Wickelmaier, 2013 doi:10.1016/j.endm.2013.05.145).

License GPL (>=2)

URL http://www.mathpsy.uni-tuebingen.de/wickelmaier
NeedsCompilation no
Author Florian Wickelmaier [aut, cre], Juergen Heller [aut], Pasquale Anselmi [ctb]

Maintainer Florian Wickelmaier <wickelmaier@web. de>
Repository CRAN
Date/Publication 2019-05-25 22:40:04 UTC

R topics documented:

blim 2
chess 5
conversion 6
delineate 7
DoignonFalmagne7 9
endm 9
gradedness 10
jacobian 11
plot.blim 13
print.blim 14
probability 15
residuals.blim 18
simulate.blim 19
Taagepera 20
Index 22
blim Basic Local Independence Models (BLIMs)

Description

Fits a basic local independence model (BLIM) for probabilistic knowledge structures by minimum discrepancy maximum likelihood estimation.

Usage

blim(K, N.R, method = c("MD", "ML", "MDML"), R = as.binmat(N.R), P.K = rep(1/nstates, nstates), beta $=$ rep(0.1 , nitems), eta $=$ rep(0.1 , nitems), betafix $=\operatorname{rep}(N A$, nitems), etafix $=\operatorname{rep}(N A$, nitems), betaequal $=$ NULL, etaequal $=$ NULL, errtype = c("both", "error", "guessing"), errequal $=$ FALSE, randinit $=$ FALSE, incradius $=0$, tol $=1 \mathrm{e}-07$, maxiter $=10000$, zeropad $=12$)
blimMD(K, N.R, R = as.binmat(N.R), errtype = c("both", "error", "guessing"), incrule = c("minimum", "hypblc1", "hypblc2"), $\mathrm{m}=1$)
\#\# S3 method for class 'blim'
anova(object, ..., test = c("Chisq", "none"))

Arguments

K
N.R a (named) vector of absolute frequencies of response patterns.
method MD for minimum discrepancy estimation, ML for maximum likelihood estimation, MDML for minimum discrepancy maximum likelihood estimation.
R a person-by-problem indicator matrix of unique response patterns. Per default inferred from the names of N.R.
P.K the vector of initial parameter values for probabilities of knowledge states.
beta, eta vectors of initial parameter values for probabilities of a careless error and a lucky guess, respectively.

```
betafix, etafix
```

 vectors of fixed error and guessing parameter values; NA indicates a free param-
 eter.
 betaequal, etaequal
lists of vectors of problem indices; each vector represents an equivalence class:
it contains the indices of problems for which the error or guessing parameters
are constrained to be equal. (See Examples.)
errtype deprecated, use betafix and etafix instead; type of response errors that can
occur: error for careless errors only, guessing for lucky guesses only, and
both for both error types.
errequal deprecated, use betaequal and etaequal instead; logical, if TRUE then items
have identical error rates.
randinit logical, if TRUE then initial parameter values are sampled uniformly with con-
straints. (See Details.)
incradius include knowledge states of distance from the minimum discrepant states less
than or equal to incradius.
tol tolerance, stopping criterion for iteration.
maxiter the maximum number of iterations.
zeropad the maximum number of items for which an incomplete N.R vector is completed
and padded with zeros.
incrule inclusion rule for knowledge states. (See Details.)
$\mathrm{m} \quad$ exponent for hyperbolic inclusion rules.
object an object of class blim, typically the result of a call to blim.
test should the p-values of the chi-square distributions be reported?
additional arguments passed to other methods.

Details

See Doignon and Falmagne (1999) for details on the basic local independence model (BLIM) for probabilistic knowledge structures.
Minimum discrepancy (MD) minimizes the number of expected response errors (careless errors or lucky guesses). Maximum likelihood maximizes the likelihood, possibly at the expense of inflating the error and guessing parameters. Minimum discrepancy maximum likelihood (MDML) maximizes the likelihood subject to the constraint of minimum response errors. See Heller and Wickelmaier (2013) for details on the parameter estimation methods.
If randinit is TRUE, initial parameter values are sampled uniformly with the constraint beta + eta <1 (Weisstein, 2013) for the error parameters, and with $\operatorname{sum}($ P.K) $==1$ (Rubin, 1981) for the probabilities of knowledge states. Setting randinit to TRUE overrides any values given in the P.K, beta, and eta arguments.

The degrees of freedom in the goodness-of-fit test are calculated as number of possible response patterns minus one or number of respondents, whichever is smaller, minus number of parameters.
blimMD uses minimum discrepancy estimation only. Apart from the hyperbolic inclusion rules, all of its functionality is also provided by blim. It may be removed in the future.

Value

An object of class blim having the following components:
discrepancy the mean minimum discrepancy between response patterns and knowledge states.
P.K the vector of estimated parameter values for probabilities of knowledge states.
beta the vector of estimated parameter values for probabilities of a careless error.
eta the vector of estimated parameter values for probabilities of a lucky guess.
disc.tab the minimum discrepancy distribution.
K the knowledge structure.
N.R the vector of frequencies of response patterns.
nitems the number of items.
nstates the number of knowledge states.
npatterns the number of response patterns.
ntotal the number of respondents.
nerror the number of response errors.
npar the number of parameters.
method the parameter estimation method.
iter the number of iterations needed.
loglik the log-likelihood.
fitted.values the fitted response frequencies.
goodness.of.fit
the goodness of fit statistic including the likelihood ratio fitted vs. saturated model (G2), the degrees of freedom, and the p-value of the corresponding chisquare distribution. (See Details.)

References

Doignon, J.-P., \& Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.
Heller, J., \& Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 49-56. doi: 10.1016/j.endm.2013.05.145

Rubin, D.B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9, 130-134. doi: 10.1214/ aos/1176345338

Weisstein, E.W. (2013, August 29). Triangle point picking. In MathWorld - A Wolfram Web Resource. Retrieved from http://mathworld.wolfram.com/TrianglePointPicking.html.

See Also

simulate.blim, plot.blim, residuals.blim, logLik.blim, delineate, jacobian, endm, probability, chess.

Examples

```
    data(DoignonFalmagne7)
    K <- DoignonFalmagne7$K # knowledge structure
    N.R <- DoignonFalmagne7$N.R # frequencies of response patterns
    ## Fit basic local independence model (BLIM) by different methods
    blim(K, N.R, method = "MD") # minimum discrepancy estimation
    blim(K, N.R, method = "ML") # maximum likelihood estimation by EM
    blim(K, N.R, method = "MDML") # MDML estimation
    ## Parameter restrictions: beta_a = beta_b = beta_d, beta_c = beta_e
    ## eta_a = eta_b = 0.1
    m1 <- blim(K, N.R, method = "ML",
        betaequal = list(c(1, 2, 4), c(3, 5)),
            etafix = c(0.1, 0.1, NA,NA,NA))
    m2 <- blim(K, N.R, method = "ML")
    anova(m1, m2)
    ## See ?endm, ?probability, and ?chess for further examples.
```

chess Responses to Chess Problems and Knowledge Structures

Description

Held, Schrepp and Fries (1995) derive several knowledge structures for the representation of 92 responses to 16 chess problems. See Schrepp, Held and Albert (1999) for a detailed description of these problems.

Usage

data(chess)

Format

A list consisting of four components:
dst1 a state-by-problem indicator matrix representing the knowledge structure DST1.
dst3 the knowledge structure DST3.
dst4 the knowledge structure DST4.
N.R a named numeric vector. The names denote response patterns, the values denote their frequencies.

Source

Held, T., Schrepp, M., \& Fries, S. (1995). Methoden zur Bestimmung von Wissensstrukturen - eine Vergleichsstudie. Zeitschrift fuer Experimentelle Psychologie, 42, 205-236.

References

Schrepp, M., Held, T., \& Albert, D. (1999). Component-based construction of surmise relations for chess problems. In D. Albert \& J. Lukas (Eds.), Knowledge spaces: Theories, empirical research, and applications (pp. 41-66). Mahwah, NJ: Erlbaum.

Examples

```
data(chess)
chess$dst1 # knowledge structure DST1
chess$dst3 # knowledge structure DST3
chess$dst4 # knowledge structure DST4
chess$N.R # response patterns
## Precedence relation (Held et al., 1995, p. 215) and knowledge space
B <- as.binmat(c("1000000000000000", # s
    "1100000011000110", # gs
    "1110000011000110", # egs
    "1001000011000110", # eegs
    "0000100010000000", # cs
    "1110110011000111", # gcs
    "0000001010000100", # ts
    "1110000111000110", # ges
    "0000000010000000", # f
    "1000000011000110", # gf
    "1000000011100110", # gff
    "1110001011010110", # ggff
    "1111001011101111", # ggf
    "0000000000000100", # ff
    "0000000000000010", # tf
    "1000000010000111")) # tff
K <- as.binmat(closure(as.pattern(B, as.set = TRUE)) + set(set()))
all(sort(as.pattern(chess$dst3)) == sort(as.pattern(K)))
```


Description

Converts between binary matrix and pattern representations of response patterns or knowledge states.

Usage

as. pattern(R, freq = FALSE, as.letters = FALSE, as.set $=$ FALSE $)$
as.binmat(N.R, uniq = TRUE, col.names = NULL)

Arguments

R an indicator matrix of response patterns or knowledge states.
N.R either a (named) vector of absolute frequencies of response patterns; or a character vector of response patterns or knowledge states; or a set of sets representing the knowledge structure.
freq logical, should the frequencies of response patterns be reported?
uniq logical, if TRUE, only the unique response patterns are returned.
as.letters logical, return response patterns as combinations of letters.
as.set logical, return response patterns as set of sets.
col.names column names for the state or response matrix.

Value

as.pattern returns a vector of integers named by the response patterns if freq is TRUE, else a character vector. If as. set is TRUE, the return value is of class set.
as.binmat returns an indicator matrix.

See Also

blim, set in package sets.

Examples

```
data(DoignonFalmagne7)
as.pattern(DoignonFalmagne7$K)
as.pattern(DoignonFalmagne7$K, freq = TRUE)
as.pattern(DoignonFalmagne7$K, as.letters = TRUE)
as.pattern(DoignonFalmagne7$K, as.set = TRUE)
dim(as.binmat(DoignonFalmagne7$N.R))
dim(as.binmat(DoignonFalmagne7$N.R, uniq = FALSE))
## Knowledge structure as binary matrix
as.binmat(c("000", "100", "101", "111"))
as.binmat(set(set(), set("a"), set("a", "c"), set("a", "b", "c")))
```

delineate

Delineate a Knowledge Structure by a Skill Function

Description

Computes the knowledge structure delineated by a skill function.

Usage

delineate(skillfun, itemID = 1)

Arguments

skillfun a data frame or a matrix representing the skill function. It consists of an item indicator and a problem-by-skill indicator matrix.
itemID index of the column in skillfun that holds the item indicator.

Details

The skill function (Q, S, μ) indicates for each item in Q which subsets of skills in S are required to solve the item. Thus, $\mu(q)$ is a set containing sets of skills. An item may have multiple entries in skillfun, each in a separate row identified by the same itemID.

See Doignon and Falmagne (1999, Chap. 4).

Value

A list of two components:
K the knowledge structure delineated by the skill function.
classes a list of equivalence classes of competence states; the members of these classes are mapped onto the same knowledge state by the problem function induced by the skill function μ.

References

Doignon, J.-P., \& Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.

See Also

blim.

Examples

```
# Skill function
# mu(e) = {{s, t}, {s, u}}, mu(f) = {{u}}
# mu(g) = {{s}, {t}}, mu(h) = {{t}}
sf <- read.table(header = TRUE, text = "
    item s t u
        e 1 1 0
        e 1 0 1
        f 0 0 1
        g 1 0 0
        g 0 1 0
        h010
")
delineate(sf)
## See ?probability for further examples.
```


Description

Fictitious data set from Doignon and Falmagne (1999, chap. 7). Response patterns of 1000 respondents to five problems. Each respondent is assumed to be in one of nine possible states of the knowledge structure K .

Usage

data(DoignonFalmagne7)

Format

A list consisting of two components:
K a state-by-problem indicator matrix representing the hypothetical knowledge structure. An element is one if the problem is contained in the state, and else zero.
N.R a named numeric vector. The names denote response patterns, the values denote their frequencies.

Source

Doignon, J.-P., \& Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.

Examples

```
data(DoignonFalmagne7)
DoignonFalmagne7$K # knowledge structure
DoignonFalmagne7$N.R # response patterns
```

endm Responses and Knowledge Structures from Heller and Wickelmaier (2013)

Description

Knowledge structures and 200 artificial responses to four problems are used to illustrate parameter estimation in Heller and Wickelmaier (2013).

Usage

data(endm)

Format

A list consisting of three components:
K a state-by-problem indicator matrix representing the true knowledge structure that underlies the model that generated the data.
K2 a slightly misspecified knowledge structure.
N.R a named numeric vector. The names denote response patterns, the values denote their frequencies.

Source

Heller, J., \& Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 49-56. doi: 10.1016/j.endm.2013.05.145

Examples

```
data(endm)
endm$K # true knowledge structure
endm$K2 # misspecified knowledge structure
endm$N.R # response patterns
## Generate data from BLIM based on K
blim0 <- list(
        P.K = setNames(c(.1, .15, .15, .2, .2, .1, .1), as.pattern(endm$K)),
        beta = rep(.1, 4),
            eta = rep(.1, 4),
                K = endm$K,
        ntotal = 200)
class(blim0) <- "blim"
simulate(blim0)
## Fit BLIM based on K2
blim1 <- blim(endm$K2, endm$N.R, "MD")
```

gradedness Forward- or Backward-Gradedness of a Knowledge Structure

Description

Checks if a knowledge structure is forward- or backward-graded in any item.

Usage

is.forward.graded(K)
is.backward.graded(K)

Arguments

K
a state-by-problem indicator matrix representing the knowledge structure. An element is one if the problem is contained in the state, and else zero. K should have non-empty colnames.

Details

A knowledge structure K is forward-graded in item q, if $S \cup\{q\}$ is in K for every state $S \in K$.
A knowledge structure K is backward-graded in item q, if $S-\{q\}$ is in K for every state $S \in K$.
See Spoto, Stefanutti, and Vidotto (2012).

Value

A named logical vector with as many elements as columns in K .

References

Spoto, A., Stefanutti, L., \& Vidotto, G. (2012). On the unidentifiability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56, 248255. doi: 10.1016/j.jmp.2012.05.001

See Also

blim, jacobian.

Examples

```
K <- as.binmat(c("0000", "1000", "1100", "1010", "0110", "1110", "1111"))
is.forward.graded(K) # forward-graded in a
is.backward.graded(K) # not backward-graded in a
```

jacobian
Jacobian Matrix for Basic Local Independence Model

Description

Computes the Jacobian matrix for a basic local independence model (BLIM).

Usage

```
jacobian(object, P.K = rep(1/nstates, nstates),
    beta = rep(0.1, nitems), eta = rep(0.1, nitems),
    errtype = c("both", "error", "guessing"))
```


Arguments

object an object of class blim, typically the result of a call to blim.
P.K the vector of parameter values for probabilities of knowledge states.
beta the vector of parameter values for probabilities of a careless error.
eta the vector of parameter values for probabilities of a lucky guess.
errtype type of response errors that can occur: error for careless errors only, guessing for lucky guesses only, and both for both error types.

Details

This is a draft version. It may change in future releases.

Value

The Jacobian matrix. The number of rows equals 2^{\wedge} (number of items) - 1 , the number of columns equals the number of independent parameters in the model.

References

Heller, J. (2017). Identifiability in probabilistic knowledge structures. Journal of Mathematical Psychology, 77, 46-57. doi: 10.1016/j.jmp.2016.07.008

Stefanutti, L., Heller, J., Anselmi, P., \& Robusto, E. (2012). Assessing the local identifiability of probabilistic knowledge structures. Behavior Research Methods, 44, 1197-1211. doi: 10.3758/ s134280120187z

See Also

blim, simulate.blim, gradedness.

Examples

```
data(endm)
blim1 <- blim(endm$K2, endm$N.R)
## Test of identifiability
J <- jacobian(blim1)
dim(J)
qr(J)$rank
```


Description

Plots BLIM residuals against fitted values.

Usage

```
## S3 method for class 'blim'
plot(x, xlab = "Predicted response probabilities",
            ylab = "Deviance residuals", ...)
```


Arguments

$x \quad$ an object of class blim, typically the result of a call to blim.
xlab, ylab, ...
graphical parameters passed to plot.

Details

The deviance residuals are plotted against the predicted response probabilities for each response pattern.

See Also

blim, residuals.blim.

Examples

```
## Compare MD and MDML estimation
data(DoignonFalmagne7)
blim1 <- blim(DoignonFalmagne7$K, DoignonFalmagne7$N.R, method="MD")
blim2 <- blim(DoignonFalmagne7$K, DoignonFalmagne7$N.R, method="MDML")
par(mfrow = 1:2) # residuals versus fitted values
plot(blim1, main = "MD estimation", ylim = c(-4, 4))
plot(blim2, main = "MDML estimation", ylim = c(-4, 4))
```

```
print.blim Print a blim Object
```


Description

Prints the output of a blim model object.

Usage

```
## S3 method for class 'blim'
print(x, P.Kshow = FALSE, errshow = TRUE,
    digits=max(3, getOption("digits") - 2), ...)
```


Arguments

x
P.Kshow logical, should the estimated distribution of knowledge states be printed?
errshow logical, should the estimates of careless error and lucky guess parameters be printed?
digits a non-null value for digits specifies the minimum number of significant digits to be printed in values.
... further arguments passed to or from other methods. None are used in this method.

Value

Returns the blim object invisibly.

See Also

blim.

Examples

```
data(DoignonFalmagne7)
blim1 <- blim(DoignonFalmagne7$K, DoignonFalmagne7$N.R)
print(blim1, showP.K = TRUE)
```

probability Problems in Elementary Probability Theory

Description

This data set contains responses to problems in elementary probability theory observed before and after some instructions (the so-called learning object) were given. Data were collected both in the lab and via an online questionnaire. Of the 1127 participants eligible in the online study, 649 were excluded because they did not complete the first set of problems ($\mathrm{p} 101, \ldots, \mathrm{p} 112$) or they responded too quickly or too slowly. Based on similar criteria, further participants were excluded for the second set of problems, indicated by missing values in the variables b201, ..., b212. Problems were presented in random order.
Participants were randomized to two conditions: an enhanced learning object including instructions with examples and a basic learning object without examples. Instructions were given on four concepts: how to calculate the classic probability of an event (pb), the probability of the complement of an event (cp), of the union of two disjoint events (un), and of two independent events (id).

The questionnaire was organized as follows:
Page 1 Welcome page.
Page 2 Demographic data.
Page 3 First set of problems.
Page 4 to 8 Instructions (learning object).
Page 9 Second set of problems.
Page 10 Feedback about number of correctly solved problems.

Usage

data(probability)

Format

A data frame with 504 cases and 68 variables:

- case a factor giving the case id, a five-digits code the fist digit denoting lab or online branch of the study, the last four digits being the case number.
- lastpage Which page of the questionnaire was reached before quitting? The questionnaire consisted of ten pages.
- mode a factor; lab or online branch of study.
- started a timestamp of class POSIXlt. When did participant start working on the questionnaire?
- sex a factor coding sex of participant.
- age age of participant.
- educat education as a factor with three levels: 1 secondary school or below; 2 higher education entrance qualification; 3 university degree.
- fos field of study. Factor with eight levels: ecla economics, business, law; else miscellaneous; hipo history, politics; lang languages; mabi mathematics, physics, biology; medi medical science; phth philosophy, theology; psco psychology, computer science, cognitive science.
- semester ordered factor. What semester are you in?
- learnobj a factor with two levels: enhan learning object enhanced with examples; basic learning object without examples.

The twelve problems of the first part (before the learning object):

- p101 A box contains 30 marbles in the following colors: 8 red, 10 black, 12 yellow. What is the probability that a randomly drawn marble is yellow? (Correct: 0.40)
- p102 A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5 -cent coin is 0.35 , that of drawing a 10 -cent coin is 0.25 , and that of drawing a 20-cent coin is 0.40 . What is the probability that the coin randomly drawn is not a 5-cent coin? (0.65)
- p103 A bag contains 5-cent, 10 -cent, and 20 -cent coins. The probability of drawing a 5 -cent coin is 0.20 , that of drawing a 10 -cent coin is 0.45 , and that of drawing a 20-cent coin is 0.35 . What is the probability that the coin randomly drawn is a 5 -cent coin or a 20 -cent coin? (0.55)
- p104 In a school, 40% of the pupils are boys and 80% of the pupils are right-handed. Suppose that gender and handedness are independent. What is the probability of randomly selecting a right-handed boy? (0.32)
- p105 Given a standard deck containing 32 different cards, what is the probability of not drawing a heart? (0.75)
- p106 A box contains 20 marbles in the following colors: 4 white, 14 green, 2 red. What is the probability that a randomly drawn marble is not white? (0.80)
- p107 A box contains 10 marbles in the following colors: 2 yellow, 5 blue, 3 red. What is the probability that a randomly drawn marble is yellow or blue? (0.70)
- p108 What is the probability of obtaining an even number by throwing a dice? (0.50)
- p109 Given a standard deck containing 32 different cards, what is the probability of drawing a 4 in a black suit? (Responses that round to 0.06 were considered correct.)
- p110 A box contains marbles that are red or yellow, small or large. The probability of drawing a red marble is 0.70 (lab: 0.30), the probability of drawing a small marble is 0.40 . Suppose that the color of the marbles is independent of their size. What is the probability of randomly drawing a small marble that is not red? (0.12 , lab: 0.28)
- p111 In a garage there are 50 cars. 20 are black and 10 are diesel powered. Suppose that the color of the cars is independent of the kind of fuel. What is the probability that a randomly selected car is not black and it is diesel powered? (0.12)
- p112 A box contains 20 marbles. 10 marbles are red, 6 are yellow and 4 are black. 12 marbles are small and 8 are large. Suppose that the color of the marbles is independent of their size. What is the probability of randomly drawing a small marble that is yellow or red? (0.48)

The twelve problems of the second part (after the learning object):

- p201 A box contains 30 marbles in the following colors: 10 red, 14 yellow, 6 green. What is the probability that a randomly drawn marble is green? (0.20)
- p202 A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent coin is 0.25 , that of drawing a 10 -cent coin is 0.60 , and that of drawing a 20 -cent coin is 0.15 . What is the probability that the coin randomly drawn is not a 5-cent coin? (0.75)
- p203 A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent coin is 0.35 , that of drawing a 10 -cent coin is 0.20 , and that of drawing a 20-cent coin is 0.45 . What is the probability that the coin randomly drawn is a 5 -cent coin or a 20 -cent coin? (0.80)
- p204 In a school, 70% of the pupils are girls and 10% of the pupils are left-handed. Suppose that gender and handedness are independent. What is the probability of randomly selecting a left-handed girl? (0.07)
- p205 Given a standard deck containing 32 different cards, what is the probability of not drawing a club? (0.75)
- p206 A box contains 20 marbles in the following colors: 6 yellow, 10 red, 4 green. What is the probability that a randomly drawn marble is not yellow? (0.70)
- p207 A box contains 10 marbles in the following colors: 5 blue, 3 red, 2 green. What is the probability that a randomly drawn marble is blue or red? (0.80)
- p208 What is the probability of obtaining an odd number by throwing a dice? (0.50)
- p209 Given a standard deck containing 32 different cards, what is the probability of drawing a 10 in a red suit? (Responses that round to 0.06 were considered correct.)
- p210 A box contains marbles that are green or red, large or small The probability of drawing a green marble is 0.40 , the probability of drawing a large marble is 0.20 . Suppose that the color of the marbles is independent of their size. What is the probability of randomly drawing a large marble that is not green? (0.12)
- p211 In a garage there are 50 cars. 15 are white and 20 are diesel powered. Suppose that the color of the cars is independent of the kind of fuel. What is the probability that a randomly selected car is not white and it is diesel powered? (0.28)
- p212 A box contains 20 marbles. 8 marbles are white, 4 are green and 8 are red. 15 marbles are small and 5 are large. Suppose that the color of the marbles is independent of their size. What is the probability of randomly drawing a large marble that is white or green? (0.15)

Further variables:

- time01, ..., time10 the time (in s) spent on each page of the questionnaire. In the lab branch of the study, participants started directly on Page 2.
- b101, ..., b112 the twelve problems of the first part coded as correct (1) or error (0).
- b201, \ldots, b212 the twelve problems of the second part coded as correct (1) or error (0).

Source

Data were collected by Pasquale Anselmi and Florian Wickelmaier at the Department of Psychology, University of Tuebingen, in February and March 2010.

Examples

data(probability)
\#\# "Completer" sample

```
    pb <- probability[!is.na(probability$b201), ]
    ## Response frequencies for first and second part
    N.R1 <- as.pattern(pb[, sprintf("b1%.2i", 1:12)], freq = TRUE)
    N.R2 <- as.pattern(pb[, sprintf("b2%.2i", 1:12)], freq = TRUE)
    ## Conjunctive skill function, one-to-one problem function
    sf1 <- read.table(header = TRUE, text = "
        item cp id pb un
            1 0 0 1 0
            2 1 0 0 0
            3}00<0000
            4
            5}10<0<10
            6
            7
            8}00<0<11%
            9}0
            10}10110
            11
            12
    ")
## Extended skill function
sf2 <- rbind(sf1, read.table(header = TRUE, text = "
    item cp id pb un
            2 0 0 0 1
            3}10000
            6
            7}10<0<1
            12 1 1 1 1 0
"))
## Delineated knowledge structures
K1 <- delineate(sf1)$K
K2 <- delineate(sf2)$K
## After instructions, fit of knowledge structures improves
sapply(list(N.R1, N.R2), function(n) blim(K1, n)$discrepancy)
sapply(list(N.R1, N.R2), function(n) blim(K2, n)$discrepancy)
```


Description

Computes deviance and Pearson residuals for blim objects.

Usage

```
## S3 method for class 'blim'
residuals(object, type = c("deviance", "pearson"), ...)
```


Arguments

object an object of class blim, typically the result of a call to blim.
type the type of residuals which should be returned; the alternatives are: "deviance" (default) and "pearson".
... further arguments passed to or from other methods. None are used in this method.

Details

See residuals.glm for details.

Value

A named vector of residuals having as many elements as response patterns.

See Also

blim, residuals.glm, plot.blim.

Examples

```
data(DoignonFalmagne7)
blim1 <- blim(DoignonFalmagne7$K, DoignonFalmagne7$N.R)
sum( resid(blim1)^2 ) # likelihood ratio G2
sum( resid(blim1, "pearson")^2 ) # Pearson X2
```

simulate.blim
Simulate Responses from Basic Local Independence Models (BLIMs)

Description

Simulates responses from the distribution corresponding to a fitted blim model object.

```
Usage
\#\# S3 method for class 'blim'
simulate(object, nsim \(=1\), seed \(=\) NULL, ...)
```


Arguments

object an object of class blim, typically the result of a call to blim.
nsim currently not used.
seed currently not used.
... further arguments passed to or from other methods. None are used in this method.

Details

Responses are simulated in two steps: First, a knowledge state is drawn with probability P.K. Second, responses are generated by applying rbinom with probabilities computed from the model object's beta and eta components.

Value

A named vector of frequencies of response patterns.

See Also

blim, endm.

Examples

```
data(DoignonFalmagne7)
blim1 <- blim(DoignonFalmagne7$K, DoignonFalmagne7$N.R)
simulate(blim1)
## Parametric bootstrap
disc <- replicate(200, blim(blim1$K, simulate(blim1))$discrepancy)
hist(disc, col = "lightgray", border = "white", freq = FALSE, breaks = 20,
    main = "Parametric bootstrap", xlim = c(.05, .3))
abline(v = blim1$discrepancy, lty = 2)
```


Description

Taagepera et al. (1997) applied knowledge space theory to specific science problems. The density test was administered to 2060 students, the conservation of matter test to 1620 students. A subtest of five items each is included here. The response frequencies were reconstructed from histograms in the paper.

Usage

data(Taagepera)

Format

Two lists, each consisting of two components:
density 97 a list with components K and N.R for the density test.
matter97 a list with components K and N.R for the conservation of matter test.
K a state-by-problem indicator matrix representing the hypothetical knowledge structure. An element is one if the problem is contained in the state, and else zero.
N.R a named numeric vector. The names denote response patterns, the values denote their frequencies.

Source

Taagepera, M., Potter, F., Miller, G.E., \& Lakshminarayan, K. (1997). Mapping students' thinking patterns by the use of knowledge space theory. International Journal of Science Education, 19, 283-302. doi: 10.1080/0950069970190303

Examples

```
data(Taagepera)
density97$K # density test knowledge structure
density97$N.R # density test response patterns
matter97$K # conservation of matter knowledge structure
matter97$N.R # conservation of matter response patterns
```


Index

```
*Topic datasets
    chess,5
    DoignonFalmagne7, }
    endm, }
    probability,15
    Taagepera,20
*Topic models
    blim, 2
    conversion, }
    delineate, }
    gradedness, 10
    jacobian, 11
    plot.blim, 13
    print.blim,14
    residuals.blim,18
    simulate.blim,19
anova.blim(blim), 2
as.binmat (conversion), 6
as.pattern(conversion),6
blim, 2, 7, 8, 11-14, 19, 20
blimMD (blim), 2
chess, 4, 5
coef.blim(blim), 2
conversion,6
delineate, 4,7
density97 (Taagepera), 20
deviance.blim(blim), 2
DoignonFalmagne7,9
endm, 4, 9, 20
gradedness, 10,12
is.backward.graded (gradedness), 10
is.forward.graded (gradedness), 10
jacobian, 4, 11, 11
```

```
logLik.blim,4
```

logLik.blim,4
logLik.blim(blim), 2
logLik.blim(blim), 2
matter97 (Taagepera), 20
matter97 (Taagepera), 20
nobs.blim(blim), 2
nobs.blim(blim), 2
plot.blim, 4, 13,19
plot.blim, 4, 13,19
print.blim,14
print.blim,14
probability,4,15
probability,4,15
rbinom,20
rbinom,20
residuals.blim, 4, 13,18
residuals.blim, 4, 13,18
residuals.glm,19
residuals.glm,19
simulate.blim, 4, 12,19
simulate.blim, 4, 12,19
Taagepera,20

```
Taagepera,20
```

