
Package ‘pkgload’
May 29, 2020

Title Simulate Package Installation and Attach

Version 1.1.0

Description Simulates the process of installing a package
and then attaching it. This is a key part of the 'devtools' package as it
allows you to rapidly iterate while developing a package.

License GPL-3

URL https://github.com/r-lib/pkgload

BugReports https://github.com/r-lib/pkgload/issues

Imports cli, crayon, desc, methods, pkgbuild, rlang, rprojroot,
rstudioapi, utils, withr

Suggests bitops, covr, Rcpp, testthat

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

NeedsCompilation yes

Author Hadley Wickham [aut],
Jim Hester [aut, cre],
Winston Chang [aut],
RStudio [cph],
R Core team [ctb] (Some namespace and vignette code extracted from base
R)

Maintainer Jim Hester <jim.hester@rstudio.com>

Repository CRAN

Date/Publication 2020-05-29 05:10:08 UTC

R topics documented:
dev_example . 2
dev_help . 3
help . 4

1

https://github.com/r-lib/pkgload
https://github.com/r-lib/pkgload/issues

2 dev_example

inst . 5
is_dev_package . 6
load_all . 6
load_code . 8
load_data . 9
load_dll . 9
packages . 9
package_file . 10
system.file . 11
unload . 11

Index 13

dev_example Run a examples for an in-development function.

Description

dev_example is a replacement for example. run_example is a low-level function that takes a path
to an Rd file.

Usage

dev_example(topic, quiet = FALSE)

run_example(
path,
run_donttest = FALSE,
run_dontrun = FALSE,
env = new.env(parent = globalenv()),
quiet = FALSE,
macros = NULL,
run,
test

)

Arguments

topic Name or topic (or name of Rd) file to run examples for

quiet If TRUE, does not echo code to console.

path Path to .Rd file

run_donttest if TRUE, do run \donttest sections in the Rd files. out.

run_dontrun if TRUE, do run \dontrun sections in the Rd files.

env Environment in which code will be run.

macros Custom macros to use to parse the .Rd file. See the macros argument of tools::parse_Rd().
If NULL, then the tools::Rd2ex() (and tools::parse_Rd()) default is used.

run, test Deprecated, see run_dontrun and run_donttest above.

dev_help 3

Examples

Not run:
Runs installed example:
library("ggplot2")
example("ggplot")

Runs develoment example:
dev_example("ggplot")

End(Not run)

dev_help In-development help for package loaded with devtools

Description

dev_help searches for source documentation provided in packages loaded by devtools. To improve
performance, the .Rd files are parsed to create to index once, then cached. Use dev_topic_index_reset
to clear that index.

Usage

dev_help(
topic,
dev_packages = NULL,
stage = "render",
type = getOption("help_type")

)

dev_topic_index_reset(pkg_name)

Arguments

topic name of help to search for.

dev_packages A character vector of package names to search within. If NULL, defaults to all
packages loaded by devtools.

stage at which stage ("build", "install", or "render") should \\Sexpr macros be exe-
cuted? This is only important if you’re using \\Sexpr macro’s in your Rd files.

type of html to produce: "html" or "text". Defaults to your default documentation
type.

pkg_name Name of package.

4 help

Examples

Not run:
library("ggplot2")
help("ggplot") # loads installed documentation for ggplot

load_all("ggplot2")
dev_help("ggplot") # loads development documentation for ggplot

End(Not run)

help Drop-in replacements for help and ? functions

Description

The ? and help functions are replacements for functions of the same name in the utils package.
They are made available when a package is loaded with load_all().

Usage

help(topic, package = NULL, ...)

?e2
e1?e2

Arguments

topic A name or character string specifying the help topic.

package A name or character string specifying the package in which to search for the
help topic. If NULL, search all packages.

... Additional arguments to pass to utils::help().

e1 First argument to pass along to utils::¿‘.

e2 Second argument to pass along to utils::¿‘.

Details

The ? function is a replacement for utils::?() from the utils package. It will search for help in
devtools-loaded packages first, then in regular packages.

The help function is a replacement for utils::help() from the utils package. If package is not
specified, it will search for help in devtools-loaded packages first, then in regular packages. If
package is specified, then it will search for help in devtools-loaded packages or regular packages,
as appropriate.

inst 5

Examples

Not run:
This would load devtools and look at the help for load_all, if currently
in the devtools source directory.
load_all()
?load_all
help("load_all")

End(Not run)

To see the help pages for utils::help and utils::`?`:
help("help", "utils")
help("?", "utils")

Not run:
Examples demonstrating the multiple ways of supplying arguments
NB: you can't do pkg <- "ggplot2"; help("ggplot2", pkg)
help(lm)
help(lm, stats)
help(lm, 'stats')
help('lm')
help('lm', stats)
help('lm', 'stats')
help(package = stats)
help(package = 'stats')
topic <- "lm"
help(topic)
help(topic, stats)
help(topic, 'stats')

End(Not run)

inst Get the installation path of a package

Description

Given the name of a package, this returns a path to the installed copy of the package, which can be
passed to other devtools functions.

Usage

inst(name)

Arguments

name the name of a package.

6 load_all

Details

It searches for the package in .libPaths(). If multiple dirs are found, it will return the first one.

Examples

inst("pkgload")
inst("grid")

is_dev_package Is the package currently under development?

Description

Returns TRUE or FALSE depending on if the package has been loaded by pkgload.

Usage

is_dev_package(name)

Arguments

name the name of a package.

load_all Load complete package.

Description

load_all loads a package. It roughly simulates what happens when a package is installed and
loaded with library().

Usage

load_all(
path = ".",
reset = TRUE,
compile = NA,
export_all = TRUE,
export_imports = export_all,
helpers = TRUE,
attach_testthat = uses_testthat(path),
quiet = FALSE,
recompile = FALSE,
warn_conflicts = TRUE

)

load_all 7

Arguments

path Path to a package, or within a package.

reset clear package environment and reset file cache before loading any pieces of the
package. This is equivalent to running unload() and is the default. Use reset
= FALSE may be faster for large code bases, but is a significantly less accurate
approximation.

compile If TRUE always recompiles the package; if NA recompiles if needed (as deter-
mined by pkgbuild::needs_compile()); if FALSE, never recompiles.

export_all If TRUE (the default), export all objects. If FALSE, export only the objects that
are listed as exports in the NAMESPACE file.

export_imports If TRUE (the default), export all objects that are imported by the package. If
FALSE export only objects defined in the package.

helpers if TRUE loads testthat test helpers.
attach_testthat

If TRUE, attach testthat to the search path, which more closely mimics the envi-
ronment within test files.

quiet if TRUE suppresses output from this function.

recompile DEPRECATED. force a recompile of DLL from source code, if present. This is
equivalent to running pkgbuild::clean_dll() before load_all

warn_conflicts If TRUE, issue a warning if there are conflicts between the exported functions
and functions in the global namespace. This most commonly happens when you
accidently source an R file rather than using load_all(), or define a function
directly in the R console, and can be frustrating to debug.

Details

Currently load_all:

• Loads all data files in data/. See load_data() for more details.

• Sources all R files in the R directory, storing results in environment that behaves like a regular
package namespace. See below and load_code() for more details.

• Compiles any C, C++, or Fortran code in the src/ directory and connects the generated DLL
into R. See compile_dll() for more details.

• Runs .onAttach(), .onLoad() and .onUnload() functions at the correct times.

• If you use testthat, will load all test helpers so you can access them interactively. devtools
sets the DEVTOOLS_LOAD environment variable to "true" to let you check whether the helpers
are run during package loading.

Namespaces

The namespace environment <namespace:pkgname>, is a child of the imports environment, which
has the name attribute imports:pkgname. It is in turn is a child of <namespace:base>, which is a
child of the global environment. (There is also a copy of the base namespace that is a child of the
empty environment.)

8 load_code

The package environment <package:pkgname> is an ancestor of the global environment. Normally
when loading a package, the objects listed as exports in the NAMESPACE file are copied from
the namespace to the package environment. However, load_all by default will copy all objects
(not just the ones listed as exports) to the package environment. This is useful during development
because it makes all objects easy to access.

To export only the objects listed as exports, use export_all=FALSE. This more closely simulates
behavior when loading an installed package with library(), and can be useful for checking for
missing exports.

Shim files

load_all also inserts shim functions into the imports environment of the loaded package. It
presently adds a replacement version of system.file which returns different paths from base::system.file.
This is needed because installed and uninstalled package sources have different directory structures.
Note that this is not a perfect replacement for base::system.file.

Examples

Not run:
Load the package in the current directory
load_all("./")

Running again loads changed files
load_all("./")

With reset=TRUE, unload and reload the package for a clean start
load_all("./", TRUE)

With export_all=FALSE, only objects listed as exports in NAMESPACE
are exported
load_all("./", export_all = FALSE)

End(Not run)

load_code Load R code.

Description

Load all R code in the R directory. The first time the code is loaded, .onLoad will be run if it exists.

Usage

load_code(path = ".")

Arguments

path Path to a package, or within a package.

load_data 9

load_data Load data.

Description

Loads all .RData files in the data subdirectory.

Usage

load_data(path = ".")

Arguments

path Path to a package, or within a package.

load_dll Load a compiled DLL

Description

Load a compiled DLL

Usage

load_dll(path = ".")

Arguments

path Path to a package, or within a package.

packages Helper functions for working with development packages.

Description

All functions search recursively up the directory tree from the input path until they find a DESCRIP-
TION file.

10 package_file

Usage

pkg_path(path = ".")

pkg_name(path = ".")

pkg_desc(path = ".")

pkg_version(path = ".")

pkg_ns(path = ".")

Arguments

path Path to a package, or within a package.

Functions

• pkg_path: Return the normalized package path.
• pkg_name: Return the package name.
• pkg_desc: Return the package DESCRIPTION as a desc::desc() object.
• pkg_version: Return the package version.
• pkg_ns: Return the package namespace.

package_file Find file in a package.

Description

It always starts by finding by walking up the path until it finds the root directory, i.e. a directory
containing DESCRIPTION. If it cannot find the root directory, or it can’t find the specified path, it
will throw an error.

Usage

package_file(..., path = ".")

Arguments

... Components of the path.
path Place to start search for package directory.

Examples

Not run:
package_file("figures", "figure_1")

End(Not run)

system.file 11

system.file Replacement version of system.file

Description

This function is meant to intercept calls to base::system.file(), so that it behaves well with
packages loaded by devtools. It is made available when a package is loaded with load_all().

Usage

shim_system.file(..., package = "base", lib.loc = NULL, mustWork = FALSE)

Arguments

... character vectors, specifying subdirectory and file(s) within some package. The
default, none, returns the root of the package. Wildcards are not supported.

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries. See ‘Details’ for the meaning
of the default value of NULL.

mustWork logical. If TRUE, an error is given if there are no matching files.

Details

When system.file is called from the R console (the global environment), this function detects if
the target package was loaded with load_all(), and if so, it uses a customized method of searching
for the file. This is necessary because the directory structure of a source package is different from
the directory structure of an installed package.

When a package is loaded with load_all, this function is also inserted into the package’s imports
environment, so that calls to system.file from within the package namespace will use this modi-
fied version. If this function were not inserted into the imports environment, then the package would
end up calling base::system.file instead.

unload Unload a package

Description

This function attempts to cleanly unload a package, including unloading its namespace, deleting
S4 class definitions and unloading any loaded DLLs. Unfortunately S4 classes are not really de-
signed to be cleanly unloaded, and so we have to manually modify the class dependency graph
in order for it to work - this works on the cases for which we have tested but there may be oth-
ers. Similarly, automated DLL unloading is best tested for simple scenarios (particularly with
useDynLib(pkgname) and may fail in other cases. If you do encounter a failure, please file a
bug report at http://github.com/r-lib/pkgload/issues.

http://github.com/r-lib/pkgload/issues

12 unload

Usage

unload(package = pkg_name(), quiet = FALSE)

Arguments

package package name.

quiet if TRUE suppresses output from this function.

Examples

Not run:
Unload package that is in current directory
unload()

Unload package that is in ./ggplot2/
unload(pkg_name("ggplot2/"))

library(ggplot2)
unload the ggplot2 package directly by name
unload("ggplot2")

End(Not run)

Index

∗Topic programming
load_all, 6
load_code, 8
load_data, 9
load_dll, 9

.libPaths(), 6
? (help), 4

base::system.file(), 11

compile_dll(), 7

desc::desc(), 10
dev_example, 2
dev_help, 3
dev_topic_index_reset (dev_help), 3

help, 4

inst, 5
is_dev_package, 6

library(), 6, 8
load_all, 6
load_all(), 4, 11
load_code, 8
load_code(), 7
load_data, 9
load_data(), 7
load_dll, 9

package_file, 10
packages, 9
pkg_desc (packages), 9
pkg_name (packages), 9
pkg_ns (packages), 9
pkg_path (packages), 9
pkg_version (packages), 9
pkgbuild::clean_dll(), 7
pkgbuild::needs_compile(), 7

run_example (dev_example), 2

shim_help (help), 4
shim_question (help), 4
shim_system.file (system.file), 11
system.file, 11

tools::parse_Rd(), 2
tools::Rd2ex(), 2

unload, 11
unload(), 7
utils::?(), 4
utils::help(), 4

13

	dev_example
	dev_help
	help
	inst
	is_dev_package
	load_all
	load_code
	load_data
	load_dll
	packages
	package_file
	system.file
	unload
	Index

