Package ‘piggyback’

February 25, 2020
Version 0.0.11
Title Managing Larger Data on a GitHub Repository

Description Because larger (> 50 MB) data files cannot easily be committed to git,
a different approach is required to manage data associated with an analysis in a
GitHub repository. This package provides a simple work-around by allowing larger
(up to 2 GB) data files to piggyback on a repository as assets attached to individual
GitHub releases. These files are not handled by git in any way, but instead are
uploaded, downloaded, or edited directly by calls through the GitHub API. These
data files can be versioned manually by creating different releases. This approach
works equally well with public or private repositories. Data can be uploaded
and downloaded programmatically from scripts. No authentication is required to
download data from public repositories.

URL https://docs.ropensci.org/piggyback,

https://github.com/ropensci/piggyback

BugReports https://github.com/ropensci/piggyback/issues
License GPL-3

Encoding UTF-8

LazyData true

ByteCompile true

Imports gh, httr, jsonlite, git2r, fs, usethis, crayon, clisymbols,
magrittr, lubridate, memoise

Suggests spelling, readr, covr, testthat, datasets, knitr, rmarkdown
VignetteBuilder knitr

RoxygenNote 7.0.2

Language en-US

NeedsCompilation no

Author Carl Boettiger [aut, cre, cph]
(<https://orcid.org/0000-0002-1642-628X>),
Mark Padgham [ctb] (<https://orcid.org/0000-0003-2172-5265>),
Jeffrey O Hanson [ctb] (<https://orcid.org/0000-0002-4716-6134>),
Kevin Kuo [ctb] (<https://orcid.org/0000-0001-7803-7901>)

1

https://docs.ropensci.org/piggyback
https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues

2 piggyback-package

Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2020-02-25 16:20:02 UTC

R topics documented:

piggyback-package 2
pb_delete e e e 3
pb_download L e 4
pb_download_url L 5
Pb_list . . . e 6
pb_new_release 7
pb_track L e e 8
pb_upload e 9
Index 11
piggyback-package piggyback: Managing Larger Data on a GitHub Repository
Description

Because larger (> 50 MB) data files cannot easily be committed to git, a different approach is
required to manage data associated with an analysis in a GitHub repository. This package provides
a simple work-around by allowing larger (up to 2 GB) data files to piggyback on a repository as
assets attached to individual GitHub releases. These files are not handled by git in any way, but
instead are uploaded, downloaded, or edited directly by calls through the GitHub API. These data
files can be versioned manually by creating different releases. This approach works equally well
with public or private repositories. Data can be uploaded and downloaded programmatically from
scripts. No authentication is required to download data from public repositories.

Details

It has two main modes or workflows:

* pb_upload() / pb_download(): Upload and download individual files to/from the desired
release of the specified repository

* pb_track(): Use a git-1f's style tracking of specific file types

Author(s)
Maintainer: Carl Boettiger <cboettig@gmail.com> (ORCID) [copyright holder]

Other contributors:

* Mark Padgham (ORCID) [contributor]
* Jeffrey O Hanson (ORCID) [contributor]
¢ Kevin Kuo (ORCID) [contributor]

https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0003-2172-5265
https://orcid.org/0000-0002-4716-6134
https://orcid.org/0000-0001-7803-7901

pb_delete

See Also
Useful links:
* https://docs.ropensci.org/piggyback

* https://github.com/ropensci/piggyback

* Report bugs at https://github.com/ropensci/piggyback/issues

pb_delete Delete an asset attached to a release

Description

Delete an asset attached to a release

Usage

pb_delete(
file = NULL,
repo = guess_repo(),
tag = "latest”,
.token = get_token()

)
Arguments

file file(s) to be deleted from the release. If NULL (default when argument is omitted),
function will delete all attachments to the release. delete

repo Repository name in format "owner/repo". Will guess the current repo if not
specified.

tag tag for the GitHub release to which this data should be attached.

. token GitHub authentication token. Typically set from an environmental variable, e.g.
in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

Value

TRUE (invisibly) if a file is found and deleted. Otherwise, returns NULL (invisibly) if no file matching

the name was found.

https://docs.ropensci.org/piggyback
https://github.com/ropensci/piggyback
https://github.com/ropensci/piggyback/issues

4 pb_download
Examples

readr::write_tsv(mtcars, "mtcars.tsv.gz")
Upload
pb_upload("mtcars.tsv.gz",
repo = "cboettig/piggyback-tests”,
overwrite = TRUE)
pb_delete("mtcars.tsv.gz",
repo = "cboettig/piggyback-tests”,
tag = "v0.0.1")

pb_download Download data from an existing release

Description

Download data from an existing release

Usage

pb_download(
file = NULL,
dest = usethis::proj_get(),
repo = guess_repo(),
tag = "latest”,
overwrite = TRUE,
ignore = "manifest.json"”,
use_timestamps = TRUE,
show_progress = TRUE,
.token = get_token()

)
Arguments

file name or vector of names of files to be downloaded. If NULL, all assets attached
to the release will be downloaded.

dest name of vector of names of where file should be downloaded. Should be a
directory or a list of filenames the same length as file vector. Can include
paths to files, but any directories in that path must already exist.

repo Repository name in format "owner/repo”. Will guess the current repo if not
specified.

tag tag for the GitHub release to which this data is attached

overwrite Should any local files of the same name be overwritten? default TRUE.

ignore a list of files to ignore (if downloading "all" because file=NULL).

pb_download_url 5

use_timestamps If TRUE, then files will only be downloaded if timestamp on GitHub is newer
than the local timestamp (if overwrite=TRUE). Defaults to TRUE.

show_progress logical, should we show progress bar for download? Defaults to TRUE.

.token GitHub authentication token. Typically set from an environmental variable, e.g.
in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

Examples

Download a specific file.
(dest can be omitted when run inside and R project)
piggyback: :pb_download("data/iris.tsv.gz",
repo = "choettig/piggyback-tests”,
dest = tempdir())

Not run:

Download all files

piggyback: :pb_download(repo = "cboettig/piggyback-tests”,
dest = tempdir())

End(Not run)

pb_download_url Get the download url of a given file

Description

Returns the URL download for a public file. This can be useful when writing scripts that may want
to download the file directly without introducing any dependency on piggyback or authentication
steps.

Usage

pb_download_url(
file = NULL,
repo = guess_repo(),
tag = "latest”,
.token = get_token()

)
Arguments
file name or vector of names of files to be downloaded. If NULL, all assets attached
to the release will be downloaded.
repo Repository name in format "owner/repo". Will guess the current repo if not

specified.

6 pb_list

tag tag for the GitHub release to which this data is attached

. token GitHub authentication token. Typically set from an environmental variable, e.g.
in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

Value

the URL to download a file

Examples

pb_download_url("data/iris.tsv.xz",
repo = "cboettig/piggyback-tests”,
tag = "v0.0.1")

pb_list List all assets attached to a release

Description

List all assets attached to a release

Usage
pb_list(
repo = guess_repo(),
tag = NULL,
ignore = "manifest.json",
.token = get_token()
)
Arguments
repo Repository name in format "owner/repo". Will guess the current repo if not
specified.
tag which release tag do we want information for? If NULL (default), will return a
table for all available release tags.
ignore a list of files to ignore (if downloading "all" because file=NULL).
.token GitHub authentication token. Typically set from an environmental variable, e.g.

in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

pb_new_release 7

Details

To preserve path information, local path delimiters are converted to .2f when files are uploaded as
assets. Listing will display the local filename, with asset names converting the .2f escape code back
to the system delimiter.

Value
a data.frame of release asset names, (normalized to local paths), release tag, timestamp, owner, and

repo.

Examples

Not run:
pb_list("cboettig/piggyback-tests")

End(Not run)

pb_new_release Create a new release on GitHub repo

Description

Create a new release on GitHub repo

Usage

pb_new_release(
repo = guess_repo(),

tag,

commit = "master”,
name = tag,

body = "Data release”,

draft = FALSE,
prerelease = FALSE,
.token = get_token()

)
Arguments
repo Repository name in format "owner/repo"”. Will guess the current repo if not
specified.
tag tag to create for this release
commit Specifies the commit-ish value that determines where the Git tag is created from.

Can be any branch or commit SHA. Unused if the git tag already exists. Default:
the repository’s default branch (usually master).

name The name of the release. Defaults to tag.

8 pb_track

body Text describing the contents of the tag. default text is "Data release".

draft default FALSE. Set to TRUE to create a draft (unpublished) release.

prerelease default FALSE. Set to TRUE to identify the release as a pre-release.

.token GitHub authentication token. Typically set from an environmental variable, e.g.

in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

Examples

Not run:
pb_new_release("cboettig/piggyback-tests”, "v0.0.5")

End(Not run)

pb_track Track data files of a given pattern or location

Description

Track data files of a given pattern or location

Usage

pb_track(glob = NULL, repo_root = usethis::proj_get())

Arguments
glob vector of file names and/or glob pattern (e.g. *.csv, data/*.csv) which will be
tracked by piggyback. Omit (default NULL) to just return a list of files currently
tracked.
repo_root repository root, will be guessed by usethis otherwise.
Details

Note: tracked patterns are simply written to .pbattributes (analogous to .gitattributes in
git-1fs.) You can also edit this file manually. You will probably want to check in .psattributes
to as to version control., with git add .psattributes. Note that tracked file patterns will also be added
to .gitignore.

Value

list of tracked files (invisibly)

pb_upload

Examples

Not run:

Track all .csv and .tsv files
pb_track(c("*.tsv", "x.tsv.gz"))

End(Not run)

pb_upload

Upload data to an existing release

Description

NOTE: you must first create a release if one does not already exists.

Usage

pb_upload(
file,

repo = guess_repo(),
tag = "latest”,

name = NULL,

overwrite = "use_timestamps”,
use_timestamps = NULL,
show_progress = TRUE,
.token = get_token(),

n o n

dir =

Arguments

file

repo

tag
name

overwrite

use_timestamps
show_progress
. token

dir

path to file to be uploaded

Repository name in format "owner/repo". Will guess the current repo if not
specified.

tag for the GitHub release to which this data should be attached.

name for uploaded file. If not provided will use the basename of file (i.e.
filename without directory)

overwrite any existing file with the same name already attached to the on re-
lease? Defaults to use_timestamps, only overwriting those files which are
older. Set to TRUE to always overwrite, or FALSE to never overwrite existing
files.

DEPRECATED. please use overwrite="use_timestamps”

logical, show a progress bar be shown for uploading? Defaults to TRUE.

GitHub authentication token. Typically set from an environmental variable, e.g.
in a .Renviron file or with Sys.setenv(GITHUB_TOKEN = "xxxxx"), which
helps prevent accidental disclosure of a secret token when sharing scripts.

directory relative to which file names should be based.

10 pb_upload

Examples

Not run:
Needs your real token to run

readr::write_tsv(mtcars, "mtcars.tsv.xz")
pb_upload("mtcars.tsv.xz", "cboettig/piggyback-tests")

End(Not run)

Index

pb_delete, 3
pb_download, 4
pb_download(), 2
pb_download_url, 5
pb_list, 6
pb_new_release, 7
pb_track, 8
pb_track(), 2
pb_upload, 9
pb_upload(), 2
piggyback (piggyback-package), 2
piggyback-package, 2

11

	piggyback-package
	pb_delete
	pb_download
	pb_download_url
	pb_list
	pb_new_release
	pb_track
	pb_upload
	Index

