
Special features of phangorn (Version 2.5.5)

Klaus P. Schliep∗

June 18, 2019

Introduction

This document illustrates some of the phangorn [4] specialised features which are useful
but maybe not as well-known or just not (yet) described elsewhere. This is mainly
interesting for someone who wants to explore different models or set up some simulation
studies. We show how to construct data objects for different character states other than
nucleotides or amino acids or how to set up different models to estimate transition rate.

The vignette Trees describes in detail how to estimate phylogenies from nucleotide
or amino acids.

1 User defined data formats

To better understand how to define our own data type it is useful to know a bit more
about the internal representation of phyDat objects. The internal representation of
phyDat object is very similar to factor objects.

As an example we will show here several possibilities to define nucleotide data with
gaps defined as a fifth state. Ignoring gaps or coding them as ambiguous sites - as
it is done in most programs, also in phangorn as default - may be misleading (see
Warnow(2012)[6]). When the number of gaps is low and the gaps are missing at random
coding gaps as separate state may be not important.

Let assume we have given a matrix where each row contains a character vector of a
taxonomical unit:

> library(phangorn)

> data = matrix(c("r","a","y","g","g","a","c","-","c","t","c","g",

+ "a","a","t","g","g","a","t","-","c","t","c","a",

+ "a","a","t","-","g","a","c","c","c","t","?","g"),

+ dimnames = list(c("t1", "t2", "t3"),NULL), nrow=3, byrow=TRUE)

> data

∗mailto:klaus.schliep@gmail.com

1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

t1 "r" "a" "y" "g" "g" "a" "c" "-" "c" "t" "c" "g"

t2 "a" "a" "t" "g" "g" "a" "t" "-" "c" "t" "c" "a"

t3 "a" "a" "t" "-" "g" "a" "c" "c" "c" "t" "?" "g"

Normally we would transform this matrix into an phyDat object and gaps are handled
as ambiguous character like ”?”.

> gapsdata1 = phyDat(data)

> gapsdata1

3 sequences with 12 character and 11 different site patterns.

The states are a c g t

Now we will define a ”USER” defined object and have to supply a vector levels of the
character states for the new data, in our case the for nucleotide states and the gap.
Additional we can define ambiguous states which can be any of the states.

> gapsdata2 = phyDat(data, type="USER", levels=c("a","c","g","t","-"),

+ ambiguity = c("?", "n"))

> gapsdata2

3 sequences with 10 character and 9 different site patterns.

The states are a c g t -

This is not yet what we wanted as two sites of our alignment, which contain the am-
biguous characters ”r” and ”y”, got deleted. To define ambiguous characters like ”r” and
”y” explicitly we have to supply a contrast matrix similar to contrasts for factors.

> contrast = matrix(data = c(1,0,0,0,0,

+ 0,1,0,0,0,

+ 0,0,1,0,0,

+ 0,0,0,1,0,

+ 1,0,1,0,0,

+ 0,1,0,1,0,

+ 0,0,0,0,1,

+ 1,1,1,1,0,

+ 1,1,1,1,1),

+ ncol = 5, byrow = TRUE)

> dimnames(contrast) = list(c("a","c","g","t","r","y","-","n","?"),

+ c("a", "c", "g", "t", "-"))

> contrast

a c g t -

a 1 0 0 0 0

c 0 1 0 0 0

2

g 0 0 1 0 0

t 0 0 0 1 0

r 1 0 1 0 0

y 0 1 0 1 0

- 0 0 0 0 1

n 1 1 1 1 0

? 1 1 1 1 1

> gapsdata3 = phyDat(data, type="USER", contrast=contrast)

> gapsdata3

3 sequences with 12 character and 11 different site patterns.

The states are a c g t -

Here we defined ”n” as a state which can be any nucleotide but not a gap ”-” and ”?” can
be any state including a gap.

These data can be used in all functions available in phangorn to compute distance
matrices or perform parsimony and maximum likelihood analysis.

2 Markov models of character evolution

To model nucleotide substitutions across the edges of a tree T we can assign a transition
matrix. In the case of nucleotides, with four character states, each 4 × 4 transition
matrix has, at most, 12 free parameters.

Time-reversible Markov models are used to describe how characters change over time,
and use fewer parameters. Time-reversible means that these models need not be directed
in time, and the Markov property states that these models depend only on the current
state. These models are used in analysis of phylogenies using maximum likelihood and
MCMC, computing pairwise distances, as well in simulating sequence evolution.

We will now describe the General Time-Reversible (GTR) model [5]. The parameters
of the GTR model are the equilibrium frequencies π = (πA, πC , πG, πT) and a rate matrix
Q which has the form

Q =









∗ απC βπG γπT

απA ∗ δπG ǫπT

βπA δπC ∗ ηπT

γπA ǫπC ηπG ∗









(1)

where we need to assign 6 paramters α, . . . , η. The elements on the diagonal are chosen
so that the rows sum to zero. The Jukes-Cantor (JC) [1] model can be derived as special
case from the GTR model, for equal equilibrium frequencies πA = πC = πG = πT = 0.25
and equal rates set to α = β = γ = δ = η. Table 2 lists all built-in nucleotide models
in phangorn. The transition probabilities which describe the probabilities of change
from character i to j in time t, are given by the corresponding entries of the matrix

3

exponential

P (t) = (pij(t)) = eQt,
∑

j

pij = 1

where P (t) is the transition matrix spanning a period of time t.

3 Estimation of non-standard transition rate matri-

ces

In the last section 1 we described how to set up user defined data formats. Now we
describe how to estimate transition matrices with pml.

Again for nucleotide data the most common models can be called directly in the
optim.pml function (e.g. ”JC69”, ”HKY”, ”GTR” to name a few). Table 2 lists all the
available nucleotide models, which can estimated directly in optim.pml. For amino acids
several transition matrices are available (”WAG”, ”JTT”, ”LG”, ”Dayhoff”, ”cpREV”, ”mt-
mam”, ”mtArt”, ”MtZoa”, ”mtREV24”, ”VT”,”RtREV”, ”HIVw”, ”HIVb”, ”FLU”, ”Blos-
sum62”, ”Dayhoff DCMut” and ”JTT-DCMut”) or can be estimated with optim.pml.
For example Mathews et al. (2010) [2] used this function to estimate a phytochrome
amino acid transition matrix.

We will now show how to estimate a rate matrix with different transition (α) and
transversion ratio (β) and a fixed rate to the gap state (γ) - a kind of Kimura two-
parameter model (K81) for nucleotide data with gaps as fifth state (see table 1).

a c g t -
a
c β
g α β
t β α β
- γ γ γ γ

Table 1: Rate matrix K to optimise.

If we want to fit a non-standard transition rate matrices, we have to tell optim.pml,
which transitions in Q get the same rate. The parameter vector subs accepts a vector
of consecutive integers and at least one element has to be zero (these gets the reference
rate of 1). Negative values indicate that there is no direct transition is possible and the
rate is set to zero.

> library(ape)

> tree = unroot(rtree(3))

> fit = pml(tree, gapsdata3)

> fit = optim.pml(fit, optQ=TRUE, subs=c(1,0,1,2,1,0,2,1,2,2),

4

+ control=pml.control(trace=0))

> fit

loglikelihood: -33.00773

unconstrained loglikelihood: -28.43259

Rate matrix:

a c g t -

a 0.000000e+00 2.584351e-06 1.000000e+00 2.584351e-06 0.6911908

c 2.584351e-06 0.000000e+00 2.584351e-06 1.000000e+00 0.6911908

g 1.000000e+00 2.584351e-06 0.000000e+00 2.584351e-06 0.6911908

t 2.584351e-06 1.000000e+00 2.584351e-06 0.000000e+00 0.6911908

- 6.911908e-01 6.911908e-01 6.911908e-01 6.911908e-01 0.0000000

Base frequencies:

0.2 0.2 0.2 0.2 0.2

Here are some conventions how the models are estimated:

If a model is supplied the base frequencies bf and rate matrix Q are optimised accord-
ing to the model (nucleotides) or the adequate rate matrix and frequencies are chosen
(for amino acids). If optQ=TRUE and neither a model or subs are supplied than a
symmetric (optBf=FALSE) or reversible model (optBf=TRUE, i.e. the GTR for nu-
cleotides) is estimated. This can be slow if the there are many character states, e.g. for
amino acids.

4 Codon substitution models

A special case of the transition rates are codon models. phangorn now offers the pos-
sibility to estimate the dN/dS ratio (sometimes called ka/ks), for an overview see [7].
These functions extend the option to estimates the dN/dS ratio for pairwise sequence
comparison as it is available through the function kaks in seqinr . The transition rate
between between codon i and j is defined as follows:

qij =























0 if i and j differ in more than one position
πj for synonymous transversion
πjκ for synonymous transition
πjω for non-synonymous transversion
πjωκ for non synonymous transition

where ω is the dN/dS ratio, κ the transition transversion ratio and πj is the the equi-
librium frequencies of codon j. For ω ∼ 1 the an amino acid change is neutral, for

5

model optQ optBf subs df
JC FALSE FALSE c(0, 0, 0, 0, 0, 0) 0
F81 FALSE TRUE c(0, 0, 0, 0, 0, 0) 3
K80 TRUE FALSE c(0, 1, 0, 0, 1, 0) 1
HKY TRUE TRUE c(0, 1, 0, 0, 1, 0) 4
TrNe TRUE FALSE c(0, 1, 0, 0, 2, 0) 2
TrN TRUE TRUE c(0, 1, 0, 0, 2, 0) 5
TPM1 TRUE FALSE c(0, 1, 2, 2, 1, 0) 2
K81 TRUE FALSE c(0, 1, 2, 2, 1, 0) 2
TPM1u TRUE TRUE c(0, 1, 2, 2, 1, 0) 5
TPM2 TRUE FALSE c(1, 2, 1, 0, 2, 0) 2
TPM2u TRUE TRUE c(1, 2, 1, 0, 2, 0) 5
TPM3 TRUE FALSE c(1, 2, 0, 1, 2, 0) 2
TPM3u TRUE TRUE c(1, 2, 0, 1, 2, 0) 5
TIM1e TRUE FALSE c(0, 1, 2, 2, 3, 0) 3
TIM1 TRUE TRUE c(0, 1, 2, 2, 3, 0) 6
TIM2e TRUE FALSE c(1, 2, 1, 0, 3, 0) 3
TIM2 TRUE TRUE c(1, 2, 1, 0, 3, 0) 6
TIM3e TRUE FALSE c(1, 2, 0, 1, 3, 0) 3
TIM3 TRUE TRUE c(1, 2, 0, 1, 3, 0) 6
TVMe TRUE FALSE c(1, 2, 3, 4, 2, 0) 4
TVM TRUE TRUE c(1, 2, 3, 4, 2, 0) 7
SYM TRUE FALSE c(1, 2, 3, 4, 5, 0) 5
GTR TRUE TRUE c(1, 2, 3, 4, 5, 0) 8

Table 2: DNA models available in phangorn, how they are defined and number of pa-
rameters to estimate. The elements of the vector subs correspond to α, . . . , η in equation
(1)

6

ω < 1 purifying selection and ω > 1 positive selection. There are four models available:
”codon0”, where both parameter κ and ω are fixed to 1, ”codon1”where both parameters
are estimated and ”codon2” or ”codon3” where κ or ω is fixed to 1.

We compute the dN/dS for some sequences given a tree using the ML functions pml
and optim.pml. First we have to transform the the nucleotide sequences into codons (so
far the algorithms always takes triplets).

> library(phangorn)

> fdir <- system.file("extdata/trees", package = "phangorn")

> primates <- read.phyDat(file.path(fdir, "primates.dna"),

+ format = "interleaved")

> tree <- NJ(dist.ml(primates))

> dat <- dna2codon(primates)

> fit <- pml(tree, dat, bf="F3x4")

> fit0 <- optim.pml(fit, model="codon0", control=pml.control(trace=0))

> fit1 <- optim.pml(fit, model="codon1", control=pml.control(trace=0))

> fit2 <- optim.pml(fit, model="codon2", control=pml.control(trace=0))

> fit3 <- optim.pml(fit, model="codon3", control=pml.control(trace=0))

> anova(fit0, fit2, fit3, fit1)

Likelihood Ratio Test Table

Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -2867.0 34

2 -2865.9 35 1 2.14 0.1440

3 -2526.0 35 0 679.92 <2e-16

4 -2525.2 36 1 1.64 0.2002

There are several ways to estimate the codon frequencies πj. The simplest model is
to assume they have equal frequencies (=1/61). A second is to use the empirical codon
frequencies, either computed using baseFreq or using the argument bf="empirical" in
pml. Last but not least the frequencies can be derived from the base frequencies at each
codon position, the F3x4 model is set by the argument bf="F3x4". One can estimate the
codon frequencies setting the option to optBf=TRUE in optim.pml. As the convergence
of the 60 parameters the convergence is likely slow set the maximal iterations to a higher
value than the default (e.g. control = pml.control(maxit=50)). Similar parameters
of the F3x4 can also estmated using ML optF3x4=TRUE instead.

The ”YN98” model [?] is similar to the ”codon1”, but addional optimises the codon
frequencies.

5 Generating trees

phangorn has several functions to generate tree topologies, which may are interesting
for simulation studies. allTrees computes all possible bifurcating tree topologies either

7

t1

t2

t3

t4

t5

t1

t2

t3 t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3 t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

Figure 1: all (15) unrooted trees with 5 taxa

rooted or unrooted for up to 10 taxa. One has to keep in mind that the number of trees
is growing exponentially, use (howmanytrees) from ape as a reminder.

> trees <- allTrees(5)

> par(mfrow=c(3,5), mar=rep(0,4))

> for(i in 1:15)plot(trees[[i]], cex=1, type="u")

nni returns a list of all trees which are one nearest neighbor interchange away.

> trees = nni(trees[[1]])

rNNI and rSPR generate trees which are a defined number of NNI (nearest neighbor
interchange) or SPR (subtree pruning and regrafting) away.

8

References

[1] Thomas H. Jukes and Charles R. Cantor. {CHAPTER} 24 - evolution of protein
molecules. In H.N. Munro, editor, Mammalian Protein Metabolism, pages 21–132.
Academic Press, 1969.

[2] S. Mathews, M.D. Clements, and M.A. Beilstein. A duplicate gene rooting of seed
plants and the phylogenetic position of flowering plants. Phil. Trans. R. Soc. B,
365:383–395, 2010.

[3] Emmanuel Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New
York, second edition, 2012.

[4] Klaus Peter Schliep. phangorn: Phylogenetic analysis in R. Bioinformatics,
27(4):592–593, 2011.

[5] Simon Tavaré. Some probabilistic and statistical problems in the analysis of dna
sequences. Lectures on Mathematics in the Life Sciences, (17):57–86, 1986.

[6] Tandy Warnow. Standard maximum likelihood analyses of alignments with gaps can
be statistically inconsistent. PLOS Currents Tree of Life, 2012.

[7] Ziheng Yang. Molecular Evolution: A Statistical Approach. Oxford University Press,
Oxford, 2014.

6 Session Information

The version number of R and packages loaded for generating the vignette were:

• R version 3.6.0 (2019-04-26), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 18.04.2 LTS

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3

• LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: ape 5.3, phangorn 2.5.5, xtable 1.8-4

9

• Loaded via a namespace (and not attached): Matrix 1.2-17, Rcpp 1.0.1,
compiler 3.6.0, fastmatch 1.1-0, grid 3.6.0, igraph 1.2.4.1, knitr 1.23,
lattice 0.20-38, magrittr 1.5, nlme 3.1-140, parallel 3.6.0, pkgconfig 2.0.2,
quadprog 1.5-7, tools 3.6.0, xfun 0.7

10

	User defined data formats
	Markov models of character evolution
	Estimation of non-standard transition rate matrices
	Codon substitution models
	Generating trees
	Session Information

