
Analyzing time series data using the ‘permutes’ package
Cesko C. Voeten

17 July 2019

This vignette models EEG data, an example of time series data, using permutation testing (Maris &
Oostenveld, 2007) and generalized additive mixed modeling (Wood, 2006). Since both techniques rely
fundamentally on the linear model of regression, we will first very briefly introduce the relevant mathematical
foundations. The reader familiar with basic statistics can safely skip this section.

The linear model is summarized by the following equation:

Y = Xβ + ε, ε ∼ N (0, σ2I)

where Y is a column vector (or a matrix, in the case of a multivariate model) known as the outcome (or
alternatively, the response), X is the design matrix, β is a vector of regression coefficients, and ε is the
unknown error, which is assumed to be normally distributed. Leaving out the unpredictable error gives us
the modified regression equation below, which estimates the outcome by multiplying the predictors with
estimated regression coefficients:

Ŷ = Xβ̂

By construction, the residuals of this model sum to zero, but squaring them provides the sum of squared
residuals:

r2 = (Ŷ −Xβ̂)2

The objective of linear regression is to find the estimates for β̂ that minimize r2 – in other words, to find the
model that explains the most of the total variance. This is not difficult, because from defining the objective
function as a squared quantity and assuming normal errors, it follows that the range of r2 is convex, i.e. that
there is no maximum and a single minimum. Finding the values for β̂ that minimize the residuals is then
simply a matter of differentiating r2 with respect to β̂ and solving for 0:

r2 = (Ŷ −Xβ̂)2

= (Ŷ −Xβ̂)T(Ŷ −Xβ̂)
= (Ŷ T −XTβ̂T)(Ŷ −Xβ̂)
= Ŷ TŶ − Ŷ TXβ̂ −XTβ̂TŶ +XTXβ̂2

∂r2

∂β̂
= 0− Ŷ TX −XTŶ + 2XTXβ̂

0 = 0− 2XTŶ + 2XTXβ̂

−2XTXβ̂ = −2XTŶ

β̂ = (XTX)−1XTŶ

The covariance matrix is given by:

σ̂(XTX)−1, σ̂ =
√
σ2, σ2 = r2

df

1

The degrees of freedom for calculating the mean squared error are defined as df = n − p, where n is the
number of observations and p is the number of predictors in the model. Subtracting p from n compensates for
inaccuracy in the estimation of β by β̂, which will have inflated the residuals (Y −Xβ̂)2 away from their true
values (Y −Xβ)2 (remember that the residuals are squared, so this bias accumulates rather than canceling
out). Accounting for this bias by artificially inflating the denominator results in s being an unbiased estimator
of the ‘true’ mean squared error. Having the covariance matrix makes it possible to derive t-values by dividing
the β̂ by their standard errors, which are the square roots of the diagonal of the covariance matrix:

ti = β̂i√
Covi,i

Analysis of variance squares these values and reports them as F instead, in the standard case of Type
III (‘marginal’) SS. (For the ‘sequential’ types of SS, ANOVA works by performing the appropriate model
comparison, in which case the difference in r2 between the models is compared to the F distribution with the
appropriate degrees of freedom.)

The model so far only contains fixed effects. The extension with random effects is:

Y = Xβ + Zb+ ε, ε ∼ N (0, σ2I)

where Z is the design matrix for the random effects and b is again an unknown vector of regression coefficients.
The values of these coefficients are estimated using (restricted) maximum likelihood, which is computationally
intractable if we don’t assume some additional structure, namely:

Y = Xβ + ZΛθu+ ε, u ∼ N (0, σ2
1I), ε ∼ N (0, σ2

2I)

where u and ε (and σ2
1I and σ2

2I) are independent of each other. In this formulation b is decomposed into
Λθu. Λθ is the relative covariance matrix for the random effects; it denotes those parts of the (co)variances
that should be attributed to the random effects as opposed to the fixed effects or ε, relative to the overall
model σ̂. This matrix is block-diagonal, and is hence sparse; the non-zero entries are filled with θ-values,
which have to be estimated. Which of the entries are non-zero depends on the parametrization; if we allow
all entries to vary freely, the model will have to estimate n× (n+ 1)/2 parameters (because Covx,y ≡ Covy,x)
per random effect. mgcv, the package for generalized additive modeling that we will use, assumes that the
off-diagonal entries (the correlations) are zero, and that each block in Λθ can be represented as a multiple of
the identity matrix, therefore reducing the number of parameters to be estimated to one per random effect.
The theoretical interpretation of the θ parameters is as the variances of normal distributions with mean zero,
out of which the original bs were random samples.

Note that only the θ parameters in Λθ have to be estimated via (restricted) maximum likelihood. Maximum
likelihood is the iterative process of finding numerically the values for, in our case, θ, that maximize the
likelihood of the data. For computational reasons, the packages available for calculating mixed-effects models
do not maximize the likelihood `, but rather minimize the −2log(`), which for linear models with Gaussian
errors is equal to the deviance. It is apparently (Bates & DebRoy, 2004) not difficult to integrate out the
unknown u during this optimization process. After convergence, this will yield the best linear unbiased
estimators for β and θ from which it is only then necessary to calculate coefficients for u.

This is about as much detail as is needed to understand the mgcv analysis provided at the end, with one
important addition. Because the values for θ and hence u are estimated so as to maximize the likelihood of
the data, it is customary to add the squared sum of the estimates ũ as a penalty term so that extreme values
estimated for u artificially inflate the −2log(`) This promotes shrinkage of these coefficients towards zero,
and is the backbone of mgcv’s approach to smooth estimation. This will be further detailed in the paragraph
dedicated to the GAMM analysis.

2

Why time series data are special
The dataset we will be working with is called MMN, which is an excerpt from a passive-oddball task conducted
by Jager (n.d.). A proper method section with more details should eventually be found in that paper,
but a brief and incomplete summary follows here in order to make it easier to work with the data. Jager
(n.d.) presented Dutch learners of English with a stream of isolated vowels from English or from Dutch
created by means of formant synthesis. Each of her six conditions (summarized in the below table; the
package supplies data from two of these conditions) each having used four vowels: three of the same phonetic
category (e.g. three realizations of the DRESS vowel with slightly different formant frequencies) and one of a
different phonetic category (e.g. the TRAP vowel). The first set of vowels, termed ‘standards’, were presented
frequently; the fourth vowel, the ‘deviant’, infrequently interrupted the stream of standards. Participants
were instructed not to pay attention to this stream of sounds, and watched a silent movie to keep them
occupied. EEG recordings of 30 electrodes (T7 and T8 were excluded) were recorded while the participants
were exposed to the vowel stimuli. At the presentation of one of the deviant vowels, we expect to observe a
negative deflection in the EEG signal about 200 milliseconds after stimulus onset, originating from frontal
and central electrode sites. This effect is called the ‘mismatch negativity’. A second effect called the ‘P300’
may also occur, but is ignored here. The vowel pairs tested in Jager (n.d.) are summarized in the below
table; the data supplied with permutes are a subset consisting of S13 vs. S94 (DRESS as a standard vs. as a
deviant) and S16 vs. S95 (ZAT as a standard vs. as a deviant).

Code Corresponding standard Corresponding deviant
S11 or S91 ZET DRESS
S12 or S92 DRESS ZET
S13 or S93 DRESS TRAP
S14 or S94 TRAP DRESS
S15 or S95 ZET ZAT
S16 or S96 ZAT ZET

The first few rows of the data look as follows:
library(permutes)
head(MMN)

Fp1 AF3 F7 F3 FC1 FC5 C3 CP1 CP5
769 -1.8819 0.2637 -0.6339 -0.5369 0.3605 0.6546 -0.1360 -0.3824 -0.2467
770 -1.5811 0.2429 -0.5817 -0.5476 0.3723 0.4233 -0.2799 -0.3673 -0.3039
771 -1.2132 0.1748 -0.5282 -0.5543 0.3645 0.2103 -0.4002 -0.3030 -0.3402
772 -0.8486 0.0609 -0.4839 -0.5335 0.3388 0.0170 -0.4797 -0.2047 -0.3537
773 -0.5375 -0.0973 -0.4516 -0.4804 0.2994 -0.1490 -0.5150 -0.0923 -0.3529
774 -0.2892 -0.2683 -0.4246 -0.4078 0.2580 -0.2589 -0.5064 0.0189 -0.3474
P7 P3 Pz PO3 O1 Oz O2 PO4
769 -0.3253 -0.6873 -0.8139 -0.6393 -0.9595 -1.4620 -1.2554 -1.6028
770 -0.3180 -0.5955 -0.8088 -0.6527 -0.9664 -1.4524 -1.1569 -1.4998
771 -0.2925 -0.4985 -0.7544 -0.6393 -0.9325 -1.4179 -1.0198 -1.3673
772 -0.2459 -0.4092 -0.6773 -0.6126 -0.8756 -1.3698 -0.8718 -1.2345
773 -0.1823 -0.3422 -0.6095 -0.5931 -0.8252 -1.3267 -0.7427 -1.1249
774 -0.1128 -0.3093 -0.5731 -0.6006 -0.8122 -1.3060 -0.6530 -1.0477
P4 P8 CP6 CP2 C4 FC6 FC2 F4 F8
769 -0.9905 -0.3362 -0.0847 -0.6391 0.4028 2.3192 0.6892 1.4870 0.6433
770 -0.8125 -0.1618 0.1654 -0.4452 0.6595 2.6499 0.8777 1.3410 0.6399
771 -0.6238 0.0271 0.3529 -0.2325 0.8683 2.7869 1.0239 1.1184 0.6470
772 -0.4587 0.1942 0.4282 -0.0461 0.9820 2.7140 1.0996 0.8637 0.6663
773 -0.3384 0.3129 0.3924 0.0821 0.9904 2.4648 1.0976 0.6197 0.6986
774 -0.2608 0.3788 0.3083 0.1503 0.9329 2.1185 1.0392 0.4281 0.7312

3

AF4 Fp2 Fz Cz time ppn session cond dev
769 -0.4083 -1.0715 0.7902 0.4035 1.171875 1 0 S13 1
770 -0.2220 -0.5532 0.8840 0.4983 3.125000 1 0 S13 1
771 -0.0992 0.1172 0.9133 0.5953 5.078125 1 0 S13 1
772 -0.0532 0.8056 0.8751 0.6761 7.031250 1 0 S13 1
773 -0.0520 1.3555 0.7887 0.7273 8.984375 1 0 S13 1
774 -0.0574 1.6360 0.6891 0.7515 10.937500 1 0 S13 1
nrow(MMN) #how many observations?

[1] 44814
length(unique(MMN$time)) #how many timepoints?

[1] 231

The first 30 columns are the 30 sampled EEG electrodes. The time column denotes the moment from
stimulus onset, in milliseconds, of each measurement type. ppn is the participant, and session is the session
of the experiment minus one, to make it a proper dummy indicating whether the datapoint is from the
first (0) or the second session (1). cond indicates the condition code, which can be decoded from the table.
Finally, dev is a dummy indicating whether the stimulus was a standard (0) or a deviant (1), explained in the
next paragraph. Note that, contrary to the results and recommendations in Brysbaert (2007), Jager (n.d.)
averaged over all her items belonging to the same condition in this experiment.

Time series data such as these are special because the data consist of multiple, strongly correlated, measurements
of the same signal. This generates two problems. The first is a research problem: which portion of this
time series do we want to analyze? The permutes package was designed to help researchers answer precisely
this question. The second problem is of a statistical nature: how do we handle the strong autocorrelation
present throughout this sampled window? Note that in the case of EEG data, these same two problems are
additionally encountered in the spatial domain: what combination of electrodes (‘region of interest’) do we
want to analyze, and how do we deal with the spatial correlation present in data measured from neighboring
sites? This issue is dealt with in the permutes package by running separate analyses for each site, as is shown
below.

Determining the window and ROI
The first problem equates to what is known in the EEG literature as determining the window. The normal
way to do this is to run a MANOVA (with the 30 electrodes as the dependent variables) on every individual
timepoint, and take as the window the point where a large sequence of significant p-values occurs. If we plot
time horizontally and the electrode site vertically, we can use this approach to select both a time window and
an ROI at the same time.

It should be noted that this approach suffers from an extreme multiple-comparisons problem: we will be
running 30×231 ANOVAs! When compared to an asymptotic null distribution, the p-values will be spuriously
significant in, expectedly, 347 random combinations. The permutation testing approach to time series data
helps with this problem in two ways. Firstly, and most importantly, the results from a permutation analysis
are never interpreted as actual findings; rather, they only serve as a guideline to empirically determine the
analysis window and ROI. Secondly, the null distribution is not taken as the asymptotic F distribution, but
is rather inferred from the data itself by permutation testing: the null distribution is obtained by randomly
permuting the entries of Y and assessing how badly this perturbs the model fit; if a permutation incurs a large
deterioration of the fit, then the portions of the design matrix associated with that permutation apparently
contributed rather significantly to obtaining the proper fit. It should be noted that this is certainly not the
best way to derive an empirical null distribution: permutation testing could be considered nothing more than
a poor man’s approach to bootstrapping. Bootstrapping approaches, however, are not feasible when dealing
with large datasets such as the MMN data. While bootstrapping 2310 ANOVAs on, on average, 58 rows of data
each will be too slow for the average user, permutation testing will be much faster, by virtue of not having to
generate a large number of random draws from a posterior distribution.

4

The below code runs a permutation test series on the MMN data and plots the results as a heatmap. Note that
permutation testing is not deterministic (the permutations are chosen randomly), so your results may be
slightly different from mine.
perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,Oz,O2,PO4,

P4,P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ dev | time,data=MMN)
(output not shown)

This takes a few seconds to run. We can speed it up by parallelizing the testing of the individual timepoints:
library(doParallel)
cl <- makeCluster(2) #or more
registerDoParallel(cl)
perms <- permu.test(cbind(Fp1,AF3,F7,F3,FC1,FC5,C3,CP1,CP5,P7,P3,Pz,PO3,O1,Oz,O2,PO4,

P4,P8,CP6,CP2,C4,FC6,FC2,F4,F8,AF4,Fp2,Fz,Cz) ~ dev | time,data=MMN,parallel=TRUE)

We can then plot the results:
plot(perms)

AF3
AF4
C3
C4

CP1
CP2
CP5
CP6

Cz
F3
F4
F7
F8

FC1
FC2
FC5
FC6
Fp1
Fp2

Fz
O1
O2
Oz
P3
P4
P7
P8

PO3
PO4

Pz

100 200 300 400
time

m
ea

su
re

10

20

30

40

F

Following Maris & Oostenveld (2007), the plot method from permutes by default plots F -values. Maris
& Oostenveld (2007) then compute a cluster statistic over a range of temporally and/or spatially adjacent
F -values that all match an inclusion criterion (e.g. p < .05). This cluster statistic is not explicitly calculated
by permutes (in the general case, permutes does not know which responses in any multivariate design should
be considered adjacent), but the clusters can be identified by the researcher based on visual inspection, and
the researcher can then run any test they want on the subset of data falling within the cluster. If we want to
stick to Maris & Oostenveld (2007), this test should be another permutation ANOVA over the whole window,
but we will see below that generalized additive models offer a much better option than ANOVA, by virtue of
being able to take into account the temporal and spatial correlations present in the data.

5

Based on visual inspection, the plot suggests two windows: one window located around 200 ms post-stimulus-
onset, and a second window located around 330 ms post-stimulus-onset. The first window corresponds to the
expected mismatch-negativity effect; the second window is likely a P300, which we will ignore here. The
region of interest can be tentatively estimated as frontal and central (which is good news for Jager (n.d.),
as this is in line with prior literature on the MMN component), but we would like some formal verification.
One option is to follow Maris & Oostenveld (2007) in discarding those results that have failed to achieve
significance; we can then check again for contiguous bands that achieve large effect sizes, and base our ROI
on their positions. Because permutes objects are also normal data frames, it is straightforward to gray out
non-significant effects:
head(perms) #take a look at the data structure

measure time factor F p w2
1 Fp1 1.171875 dev 0.09178628 1.0000000 0
2 AF3 1.171875 dev 0.05385531 1.0000000 0
3 F7 1.171875 dev 0.71211641 0.3194444 0
4 F3 1.171875 dev 0.03319517 1.0000000 0
5 FC1 1.171875 dev 0.46076980 0.6333333 0
6 FC5 1.171875 dev 0.52581697 0.7647059 0
perms[perms$p >= .05,'F'] <- NA
plot(perms)

AF3
AF4
C3
C4

CP1
CP2
CP5
CP6

Cz
F3
F4
F7
F8

FC1
FC2
FC5
FC6
Fp1
Fp2

Fz
O1
O2
Oz
P3
P4
P7
P8

PO3
PO4

Pz

100 200 300 400
time

m
ea

su
re

10

20

30

40

F

From this plot, the effects look to be relatively robust at, indeed, the frontal and central regions. As a next
step, we should determine the temporal window with more precision. A naive possibility would be to take
the mean of the F values at frontal and central sites, and to define the window as the interval where these
values exceed a certain threshold. This, however, falls exactly into the trap of the Multiple Comparisons
Problem discussed in Maris & Oostenveld (2007). Instead, we should consider the permutation p-values,

6

which importantly do not have a direct relationship with the F values obtained from the repeated ANOVAs.
Thus, our cluster statistic will be an aggregate p-value obtained from the frontal and central electrodes. We
can visualize the temporal distribution of this cluster statistic by plotting it as a function of time, and follow
Maris & Oostenveld (2007) in determining a sensible cut-off point to determine our window.
perms2 <- perms[perms$measure %in% c('Fp1','AF3','F7','F3','FC1','FC5','C3','CP1',

'CP5','CP6','CP2','C4','FC6','FC2','F4','F8','AF4','Fp2','Fz'),]
perms2$measure <- 'Aggregate'
perms2 <- aggregate(. ~ measure + time + factor,perms2,mean)
plot(perms2$time,perms2$p)
abline(h=.01)

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

perms2$time

pe
rm

s2
$p

Keep in mind that our aggregating of p-values is statistically completely nonsensical, so we cannot use p < .05
as an a-priori sensible cut-off point. Based on the plot, the author would suggest picking a value of .01. The
included abline(h=.01) shows that this looks quite reasonable. Let’s see what time window corresponds to
this value:
unique(perms2[perms2$p < .01,'time'])

[1] 22.65625 40.23438 151.56250 155.46875 157.42188 159.37500 161.32812
[8] 163.28125 165.23438 167.18750 169.14062 171.09375 173.04688 175.00000
[15] 176.95312 178.90625 180.85938 182.81250 184.76562 186.71875 188.67188
[22] 190.62500 192.57812 194.53125 196.48438 198.43750 200.39062 202.34375
[29] 204.29688 206.25000 208.20312 210.15625 212.10938 214.06250 216.01562
[36] 217.96875 219.92188 221.87500 223.82812 225.78125 227.73438 229.68750
[43] 231.64062 233.59375 235.54688 237.50000 239.45312 241.40625 243.35938
[50] 245.31250 247.26562 249.21875 251.17188 253.12500 255.07812 257.03125
[57] 258.98438 260.93750 262.89062 280.46875 294.14062 301.95312 303.90625
[64] 305.85938 307.81250 309.76562 311.71875 313.67188 315.62500 317.57812
[71] 319.53125 321.48438 323.43750 325.39062 327.34375 329.29688 331.25000
[78] 333.20312 335.15625 337.10938 339.06250 341.01562 342.96875 344.92188
[85] 346.87500 348.82812 350.78125 360.54688 380.07812 385.93750 417.18750
[92] 423.04688 426.95312 428.90625 430.85938 444.53125 446.48438

7

Based on this output combined with (common?) sense, the author would recommend a window ranging from
151 to 263 milliseconds. If the analyst trained in the NHST framework is afraid of the large degree of personal
judgement in this approach, it is possible to coerce our perms2 object – which became a data.frame after the
aggregate call – back into a permutes-class object, so that the more familiar (and colorful) plot provided
by permutes can be used to make the same decision. We pass type='p' to plot the aggregated p-values as
opposed the F -values, and we use the ‘breaks’ option to provide an x-axis tick for every 20 ms.
class(perms2) <- c('permutes','data.frame')
plot(perms2,type='p',breaks=20*1:(450/20)) #x-axis labeling

Aggregate

20 40 60 80 100120140160180200220240260280300320340360380400420440
time

m
ea

su
re

0.01

0.02

0.03

0.04

p

Having determined a window and an ROI, we can now proceed to the actual modeling step.

Modeling EEG data using generalized additive mixed modeling
As stated in the beginning, generalized additive mixed models are capable of dealing with the temporal
correlation and the spatial correlation that are both still present in our data. We need to slightly modify our
data to incorporate the necessary information, which we will achieve using a dplyr pipeline; we will also
need tidyr for its gather command. Install these packages if you do not have them yet. The pipeline works
as follows. First, we subset our data corresponding to our chosen temporal window. Next, we center our
timepoint predictor, a step which is not strictly necessary due to implementation details in mgcv, but which
is recommended standard practice when working with continuous predictors in general. We then reshape
our dataset from wide into long format: the columns from Fp1 to Cz will become rows of observations, as
is necessary for the spatial smooth which we will use later. The mutate command that follows creates two
new columns representing the latitude and longitude of our EEG electrodes on the subject’s head (the polar
coordinates were obtained directly from Biosemi). Finally, we extract our chosen ROI and drop missing
observations.

8

library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
library(tidyr)
part <- MMN %>%

filter(time > 151, time < 263) %>%
mutate(time = time - mean(time)) %>%
gather('electrode','amplitude',Fp1:Cz) %>%
mutate(lat = recode(electrode,Fp1=6,AF3=5,F7=6,F3=3,FC1=1,FC5=4,T7=6,C3=2,CP1=1,CP5=4,

P7=6,P3=3,Pz=9,PO3=5,O1=6,Oz=13,O2=13,PO4=12,P4=10,P8=13,CP6=11,CP2=8,C4=9,T8=13,
FC6=11,FC2=8,F4=10,F8=13,AF4=12,Fp2=13,Fz=9,Cz=7), lon = recode(electrode,Fp1=6,
AF3=5,F7=2,F3=4,FC1=3,FC5=1,T7=8,C3=8,CP1=11,CP5=9,P7=10,P3=12,Pz=7,PO3=13,O1=14,
Oz=7,O2=6,PO4=5,P4=4,P8=2,CP6=1,CP2=3,C4=8,T8=8,FC6=9,FC2=11,F4=12,F8=10,AF4=13,
Fp2=14,Fz=15,Cz=8)) %>%

filter(electrode %in% c('Fp1','AF3','F7','F3','FC1','FC5','C3','CP1','CP5','CP6','CP2',
'C4','FC6','FC2','F4','F8','AF4',' Fp2','Fz'), complete.cases(.))

Generalized additive mixed models work by assuming that a user-specified set of predictors can be modeled
by a user-specified smooth type. As a simple (and rather pointless) example, consider a one-dimensional
linear smooth of a hypothetical independent variable x whose values x1...10 are the numbers one to ten and
whose true effect on the response is to increase it by N (3x, 1). The generalized additive mixed model would
fit this effect in two places. First of all, it will perform a smooth-specific transformation to the data points
x1...10 and store the result as a predictor in X. In our example, the smooth is linear (and is hence not really
a smooth at all), so this will just result in a column containing the numbers one to ten. This models the
fixed part of the smooth; in our example, this effect will be fitted as β̂ = 3. It will also add the same column
to Z, modeling the wiggly part of the smooth; for our example, its variance should be estimated as 1.

Of course, a linear smooth is exactly the same as the ordinary combination of a fixed effect and random
slope over a dummy grouping factor, by definition. In our analysis of Jager’s (in prep.) EEG data, we will
use three different smooths that are much more useful. The first smooth type is known in mgcv as re (for
‘random effect’). This smooth is a little different from the general case described in the previous paragraph,
because it only operates on Z, and does not actually add its parameters to X at all. It is discussed first
because this is also the only type of smooth (to the author’s knowledge) that, like our linear-smooth example,
does not impose a non-linear link function onto the data. These two properties mean that this smooth is
exactly equivalent to a simple random effect. This smooth is used four times in our analysis: once to denote
a random intercept by participants (in which case the effect’s block in Z will consist of a column of ones
for each participant), and three times to denote a random slope by participants (in which case it will be
represented by an actual part of the MMN dataset).

We will also use two ‘real’ smooths. The simplest to explain is a spline on the sphere, which is used to model
spatial correlation among datapoints coming from a spherical object. This smooth is of dimension 2 (because
it will smooth over the 〈x, y〉 coordinates of the electrodes on the cap) and is fitted using nineteen knots
(i.e. nineteen columns in X and in Z). This number was not chosen arbitrarily: it is the number of unique
combinations of 〈x, y〉 pairs present in the data. As we will see below, this number is probably a fair bit too
high, but the only consequence of that is that the model will take much longer to fit than if a more optimal
number had been chosen.

9

The second smooth is a thin plate regression spline, which will smooth over the ‘time’ predictor. The number
of knots is arbitrarily but reasonably (given the already closely-specified temporal interval) chosen as 5. Note
that in the case of the thin plate regression spline these ‘knots’ are actually basis functions; for practical
purposes, this distinction is not currently critical. Given the order-2 spline on the sphere and the order-1 thin
plate regression spline, we will instruct the model to calculate the tensor product of these two splines: this
is conceptually (but not mathemathically) similar to an interaction. Mathematically, interactions between
two smooths are impossible, hence the name ‘generalized additive model’, but the tensor product combines
the two smooths together into a single large smooth matrix. Because we use te() rather than ti(), this
matrix contains both the ‘main effects’ of the two splines, as well as their combination (i.e. how the spatial
distribution of the EEG activity changes over time).

In addition to this tensor product of two smooths, we include the same tensor product combined with a
random effect by participants (modeling how the smooths differ across individuals). Our use of t2 and
full=TRUE make this tensor product coincide with what for simplex random smooths is called a ‘factor
smooth’, and we pass m=1 to penalize the first-order derivatives of the smooths (when m is a single number, it
is applied to all smooths inside a tensor product). This is a stricter penalty than, for instance, enforcing
smoothness of the second-order derivatives, which would allow the smooth itself to vary freely in slope, as
long as the changes in the slopes are relatively small; for non-random smooth terms, this would be sensible
to obtain effective smoothing, but for a random smooth it is better to enforce a stronger penalty. This
causes the estimated slopes to shrink towards zero, which penalizes overfitting in a similar way to how linear
mixed-effects regression penalizes larger values of u. For the spline on the sphere and the thin plate regression
spline, we pass the same number of knots as we did before (which, we will see below, is gravely suboptimal in
terms of computational efficiency), and for the random effect we pass a nonsensical number of 5 (the default
value for k for 1-dimensional smooths), which is ignored anyway because a random effect has no knots.

It is important to keep in mind that none of these smooth terms are of actual interest. They only serve to
compensate for the random differences between participants and for the autocorrelated space and time that
are inherent to EEG data. The real predictors of interest are the parametric terms dev, session, and their
interaction. To ease interpretability, we run a separate analysis for both of the two conditions included in the
supplied dataset. We then expect significant MMN effects in only some of the conditions and not in others,
for theoretical reasons beyond the scope of this vignette. The code used to fit the models is presented below
part$both <- part$dev * part$session #construct interaction term
clusterExport(cl,'part')
pairs <- list(c('S13','S94'),c('S16','S95'))
fun <- function (C) {

library(mgcv)
data <- part[part$cond %in% C,]

form <- amplitude ~ dev*session + s(ppn,bs='re') + s(ppn,by=dev,bs='re') +
s(ppn,by=session,bs='re') + s(ppn,by=both,bs='re') +
te(lat,lon,time,bs=c('sos','tp'),d=c(2,1),k=c(19,5)) +
t2(lat,lon,time,ppn,bs=c('sos','tp','re'),d=c(2,1,1),k=c(19,5,5),m=1,full=TRUE)

model <- bam(form,data=data,nthreads=8)

Figure out the autocorrelation in the residuals. We cannot use acf(resid(m)),
because that will not take into account event boundaries (the whole dataset will be
treated as a single huge EEG signal)
AR.start <- data$time == min(data$time)
res <- resid(model)
bins <- findInterval(1:length(res),which(AR.start))
res.binned <- split(res,bins)
rhos <- sapply(res.binned,function (x) acf(x,plot=FALSE)$acf[2])

bam(form,data=data,nthreads=8,AR.start=AR.start,rho=mean(rhos))

10

}
models <- parLapply(cl,pairs,fun)

A few bits of this code require some explanation. First, we make a list of data combinations that are of
interest to us; it is by this list that we subset the data into our two comparisons. This is not the most
straightforward way to segment the data into our two bins of interest, but this is how Jager (n.d.) formatted
her data. Then, for each of our two comparisons (which will be run in parallel), we subset our data and then
formulate and fit our model, affording it 8 CPU threads. On the computer cluster administrated by the
Radboud University Nijmegen, this takes about 5 GiB of RAM per model and about an hour of wall time.

It is very important to mention that by default, bam uses (a fast approximation of) the REML criterion
(i.e. restricted maximum likelihood), rather than the conventional maximum likelihood, to estimate the
smooth parameters. This means that it is illegitimate to perform model comparisons between models differing
in X. Without going into too much detail, the REML criterion can be defined as:

`REML(θ, σ|Y) =
∞∫
−∞

`(β, θ, σ)dβ

where ` is the likelihood of the data given the current parameter estimates for the model (but in practice, ` is
always replaced by the −2log`). The innovation over the traditional likelihood is that the β parameter is
integrated out just like u was earlier (see the final paragraph of the introduction). This compensates for bias
inherent to regular maximum likelihood estimation, which is the same problem we saw in the first paragraph
when we formed σ̂ by dividing the r2 by n− p rather than by n. Maximum likelihood finds the values for
θ that maximize the likelihood of the data given β, θ and σ, but it fails to take into account that we have
estimated β by β̂, which will have introduced error (that again accumulates when squared and takes away
variance from the residual error σ). This is something that should again be compensated just like it is when
calculating σ̂ (or rather s) as an unbiased estimator of σ. This is done by maximizing not the likelihood, but
the restricted likelihood. As shown above, this REML criterion is calculated by integrating out the fixed
effects. In other words, the model maximizes the likelihood of observing the data for all values of β, rather
than only the estimated β̂. Crucially, this means that if two models do not have the same structure for X,
and hence have different βs, integrating with respect to β amounts to adding a different constant to the
likelihood function. It is then no longer valid to perform model comparisons by comparing the change in
−2log` to a χ2 distribution, since the change in the log-likelihood between the two models will also include
the change in this integrated constant. If we wanted to do model comparisons (we see no reason to, although
a scrutinous linguist might consider the dev:session term for exclusion), we would have to refit the models
with method='ML'.

There is one part of this code that still needs explanation. We actually fit the model not once, but twice.
This is because EEG data is often temporally autocorrelated in the residuals, even after including a temporal
smooth (De Cat, Klepousniotou, & Baayen, 2015). The first time we fit the model, we only use the resulting
fit to determine how large this autocorrelation is. We extract the lag-1 autocorrelation present in the model’s
residuals, and then fit the model again, this time informing bam that it should take an autocorrelation of
that size into account. Note that the true autocorrelation is likely to be much more complex than an AR(1)
process, and might be better modeled using an ARMA process instead; however, currently bam is only able
to fit lag-1 autocorrelated models. It is possible to fit more complex correlation structures using gamm, but
this routine is much slower, less numerically stable, and, at least when run on these data, often produces
singular fits during the optimization process, which is a fatal error in nlme. (This is because Pinheiro & Bates
(2000) parameterize Λθ not in terms of relative covariance, but rather in terms of its reciprocal, viz. relative
precision. A singular fit then corresponds to infinite parameter values, from which numerical calculation
cannot continue.)

The results of the two (corrected) fits – which are not distributed along with the package due to the large
size of the models object (the .RData file is 2GiB in size) – are shown below:

11

for (i in 1:2) {
cat('\n---',pairs[[i]],'---\n')
print(summary(models[[i]]))

}

##
--- S13 S94 ---
##
Family: gaussian
Link function: identity
##
Formula:
amplitude ~ dev * session + s(ppn, bs = "re") + s(ppn, by = dev,
bs = "re") + s(ppn, by = session, bs = "re") + s(ppn, by = both,
bs = "re") + te(lat, lon, time, bs = c("sos", "tp"), d = c(2,
1), k = c(19, 5)) + t2(lat, lon, time, ppn, bs = c("sos",
"tp", "re"), d = c(2, 1, 1), k = c(19, 5, 5), m = 1, full = TRUE)
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7964 0.1742 4.573 4.81e-06 ***
dev -0.8847 0.2258 -3.917 8.95e-05 ***
session -0.3645 0.1607 -2.268 0.0233 *
dev:session -0.1791 0.3444 -0.520 0.6031

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(ppn) 4.59 26.00 0.311 7.01e-09 ***
s(ppn):dev 25.87 26.00 17915.461 < 2e-16 ***
s(ppn):session 18.91 20.00 13891.178 < 2e-16 ***
s(ppn):both 19.71 20.00 18452.996 < 2e-16 ***
te(lat,lon,time) 74.64 79.84 25.534 < 2e-16 ***
t2(lat,lon,time,ppn) 1678.87 2538.00 4723.986 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
R-sq.(adj) = 0.773 Deviance explained = 77.6%
fREML = -65336 Scale est. = 0.17323 n = 111325
##
--- S16 S95 ---
##
Family: gaussian
Link function: identity
##
Formula:
amplitude ~ dev * session + s(ppn, bs = "re") + s(ppn, by = dev,
bs = "re") + s(ppn, by = session, bs = "re") + s(ppn, by = both,
bs = "re") + te(lat, lon, time, bs = c("sos", "tp"), d = c(2,
1), k = c(19, 5)) + t2(lat, lon, time, ppn, bs = c("sos",
"tp", "re"), d = c(2, 1, 1), k = c(19, 5, 5), m = 1, full = TRUE)
##
Parametric coefficients:

12

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.83630 0.19354 4.321 1.55e-05 ***
dev -1.09572 0.22361 -4.900 9.59e-07 ***
session -0.58773 0.18237 -3.223 0.00127 **
dev:session -0.08214 0.24845 -0.331 0.74094

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(ppn) 15.47 26.00 3.569 < 2e-16 ***
s(ppn):dev 25.78 26.00 5721.790 < 2e-16 ***
s(ppn):session 19.02 20.00 4496.386 1.81e-12 ***
s(ppn):both 19.30 20.00 8343.386 1.15e-14 ***
te(lat,lon,time) 71.69 77.68 11.707 < 2e-16 ***
t2(lat,lon,time,ppn) 1515.23 2545.00 1013.609 4.85e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
R-sq.(adj) = 0.653 Deviance explained = 65.9%
fREML = -30484 Scale est. = 0.29661 n = 111203

The results show that our settings for the k parameters for the smooths were not entirely optimal. A value of
k that is too low will result in undersmoothing, and hence in underfitting of the data. This can be detected
by looking for smooth parameters in the summary whose edf (estimated degrees of freedom) are very close
to the reference degrees of freedom (i.e. the maximum permitted by our choice of k). On the other hand, a
value for k that is too large is statistically entirely unproblematic. One might expect that a value that is too
large will lead to oversmoothing and hence overfitting, but because the splines are penalized this problem
resolves itself: the model artificially disfavors smooths that use more knots than justified by the data. Thus,
if a k value is set too large, the analyst only pays in terms of computational complexity, i.e. the amount of
time needed to fit the model. This is because by telling gam to use a large number of knots, we instruct it to
search a large space of possible solutions to the model, whereas the ‘true’ solution is apparently located in a
much smaller interior space. For the first spatiotemporal smooth, the difference between the edf and Ref.df
suggest that we have number of knots we have allowed the model to use is adequate; we could perhaps reduce
the spatial smooth by one or two knots, but in general it looks like the model has been estimated relatively
efficiently. For the second, random, smooth, however, the number of knots is nearly twice as much as the
models actually needed to use, so significant computational efficiency can be gained by reducing the number
of knots here. Exploring this possibility is beyond the scope of this vignette, however.

This concludes our analysis of Jager’s (in prep.) EEG data. On a final note, the summary statistics reported
here should probably be corrected for multiple comparisons, but my supervisor does not seem to think so, so
I’ll leave it at that. If the analyst wants to correct for multiple comparisons, the Sidak correction is a good
option:

αSidak = 1− (1− α) 1
n

If we assume α = .05 and divide it by the corrected αSidak , we conclude that our p-values should be multiplied
by ~1.97. Note that the actual implementation should be something like:
corrected.summary <- function (summary) {

correct <- function (table) {
corr <- .05 / (1 - (1-.05)ˆ(1/2))
table[,4] <- pmin(table[,4]*corr,1)
table

}

13

summary$p.table <- correct(summary$p.table)
summary$s.table <- correct(summary$s.table)
return(summary)

}

to clip the p-values to the [0, 1] range. (p-values exceeding 1 are an error in R, and will prevent the summary
from being printed.)

References
Bates, D. M., & DebRoy, S. (2004). Linear mixed models and penalized least squares. Journal of Multivariate
Analysis, 91 (1), 1–17.

Brysbaert, M. (2007). The language-as-fixed-effect-fallacy: Some simple SPSS solutions to a complex problem.
London: Royal Holloway, University of London.

De Cat, C., Klepousniotou, E., & Baayen, R. H. (2015). Representational deficit or processing effect? An
electrophysiological study of noun-noun compound processing by very advanced L2 speakers of English.
Frontiers in Psychology, 6.

Jager, L. (n.d.).

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of eeg-and meg-data. Journal of
Neuroscience Methods, 164 (1), 177–190.

Pinheiro, J., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Springer Science & Business
Media.

Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman; Hall/CRC.

14

	Why time series data are special
	Determining the window and ROI
	Modeling EEG data using generalized additive mixed modeling
	References

