
Reading Genetic Data Files Into R with adegenet

and pegas

Emmanuel Paradis

March 9, 2020

adegenet [2] and pegas [4] are two packages that complement each other for
population genetic analyses in R. Since various computer programs have been
used by population geneticists, most of them with their own data file formats,
it is crucial that R can read them to ease users to switch to R. The present
document explains how to read several file formats commonly used in population
genetics. The following formats are considered:

� Text (ASCII) in tabular form,

� VCF files,

� Fstat data format,

� Genetix data format,

� Genepop data format,

� Structure data format,

� Excel.

Except the last one, these files are stored in text (usually standard ASCII)
format the differences being in the layout of the data.

1 Data Structures in adegenet and pegas

First, let’s have a brief look on the way allelic data are stored by our two pack-
ages. adegenet has the class "genind" where individuals are rows and alleles are
columns in a matrix named tab. This is an S4 class, so the elements are accessed
with the @ operator (e.g., x@tab). Additional information are stored in other
slots (@ind.names, @pop, . . .) The details can be found with class?genind.

pegas has the class "loci" which is a simple data frame with a mandatory
attribute named "locicol" which identifies the columns that are loci; the other
columns are additional (individual) variables that may be of any kind. The loci
are coded with factors where the different levels are the observed genotypes with
the alleles separated with a forward slash, for instance, ‘A/A’ for a classical
genotype, or ‘132/148’ for a microsatellite locus. This is an S3 class.1 Some
examples are given in the next subsection.

1For details: ape-package.ird.fr/pegas/DefinitionDataClassesPegas.pdf.

1

With version 0.6, pegas supports phased and unphased genotypes (A|A and
A/A, respectively). In unphased genotypes, the alleles are sorted with uppercase
first, and then in alphabetical order, so that a/A is changed into A/a (even if
the latter was not observed in the original data file).

There is no need to choose between these two data structures: they are used
by each package and they can be converted between each other with the func-
tions genind2loci (or the generic form as.loci) and loci2genind. Therefore,
it is straightforward to run analyses with both packages on the same data.

2 Reading Genetic Data Files

2.1 Reading Text Tabular Files

It is intuitive to organise allelic data in a tabular form where each row is an
individual and the columns are loci and possibly other variables such as popu-
lation, spatial locations, and so on. A simple example of such a file would be
(file ‘toto’):2

a/a

This file can be read with the pegas function read.loci:

> library(pegas)

> x <- read.loci("toto", header = FALSE)

> x

Allelic data frame: 1 individual

1 locus

> print(x, details = TRUE)

V1

1 a/a

> class(x)

[1] "loci" "data.frame"

Since the file has no label for the column, we used header = FALSE. Note that
printing a "loci" object displays a very brief account of the data; the option
details = TRUE allows to print them like a standard data frame.3 If the same
data were formatted with a different allele separator (file ‘titi’):

a-a

Then this file would be read with:

> y <- read.loci("titi", header = FALSE, allele.sep = "-")

> print(y, details = TRUE)

2File contents are printed in blue to distinguish them from R input/output.
3The function View can also be used: this will use the same spreadsheet interface than fix

but the data cannot be edited (see below).

2

V1

1 a/a

> identical(x, y)

[1] TRUE

Let us have a look on the different options of read.loci:

> args(read.loci)

function (file, header = TRUE, loci.sep = "", allele.sep = "/|",

col.pop = NULL, col.loci = NULL, ...)

NULL

We already know file, header, and allele.sep. Note the default value for
this last option which specifies that the allele separator can be either a slash or a
vertical bar. loci.sep is the separator of the columns (not only the loci) which is
one or several spaces by default (use sep = "\t" if a tabulation). col.pop must
be an integer giving the index of the column that will be labelled “population”
in the returned data; by default there is none. col.loci does the same for the
loci; by default all columns are treated as loci except if col.pop is used. Finally
‘...’ may be any further (named) arguments passed to read.table (e.g., skip
in case there are comments at the top of the file).

Any level of ploidy is accepted and pegas checks the order of the alleles (see
above). For instance the file ‘tutu’ is:

a/a/A

A/a/a

> print(read.loci("tutu", FALSE), TRUE)

V1

1 A/a/a

2 A/a/a

Phased and unphased genotypes can be mixed in a file. For instance the file
‘tyty’ is:

Loc1

A/a

a/A

A|a

a|A

> X <- read.loci("tyty")

> print(X, TRUE)

Loc1

1 A/a

2 A/a

3 A|a

4 a|A

3

> summary(X)

Locus Loc1:

-- Genotype frequencies:

A/a A|a a|A

2 1 1

-- Allele frequencies:

A a

4 4

A more realistic example with four columns—an allozyme locus, a microsat
locus, a population assignment, and a phenotypic variable—might be (file ‘tata’):

Adh2 SSR1 pop size

IndA1 A/A 100/200 A 2.3

IndA2 A/a 100/120 A 2.5

IndB1 A/A 100/100 B 2.1

IndB2 a/a 120/120 B 2.8

which will be read with:

> z <- read.loci("tata", loci.sep = "\t", col.loci = 2:3, col.pop = 4, row.names = 1)

> z

Allelic data frame: 4 individuals

2 loci

2 additional variables

> print(z, details = TRUE)

Adh2 SSR1 population size

IndA1 A/A 100/200 A 2.3

IndA2 A/a 100/120 A 2.5

IndB1 A/A 100/100 B 2.1

IndB2 a/a 120/120 B 2.8

Note row.names which is passed with the ‘...’ argument. To make sure that
only the first and the second columns are treated as loci, let us extract the alleles
from this data set:

> getAlleles(z)

$Adh2

[1] "A" "a"

$SSR1

[1] "100" "120" "200"

We may check that the attribute "locicol" has been set correctly, but usually
the user does not need:

> attr(z, "locicol")

4

[1] 1 2

Finally we display the internal structure of the data to see that the additional
variables are treated as they should be:

> str(z)

Classes ‘loci’ and 'data.frame': 4 obs. of 4 variables:

$ Adh2 : Factor w/ 3 levels "A/A","A/a","a/a": 1 2 1 3

$ SSR1 : Factor w/ 4 levels "100/100","100/120",..: 3 2 1 4

$ population: Factor w/ 2 levels "A","B": 1 1 2 2

$ size : num 2.3 2.5 2.1 2.8

- attr(*, "locicol")= int 1 2

2.2 Reading VCF Files

Starting with version 0.6, pegas can read VCF files with the function read.vcf.
Version 0.8 has a completely rewritten code:

> args(read.vcf)

function (file, from = 1, to = 10000, which.loci = NULL, quiet = FALSE)

NULL

By default, the first 10,000 loci are read. The option which.loci is an alterna-
tive way to specify which loci to read in the file. For instance, the following is
the same than the default (the arguments from and to are ignored here):

read.vcf(file, which.loci = 1:1e4)

In practice, the numbers passed to this option will be obtained from additional
functions which query information from VCF files (see ?VCFloci for more in-
formation). read.vcf returns an object of class "loci".

2.3 Importing Fstat, Genetix, Genepop, and Structure
Data Files

These four programs have their own data format. Roughly, these formats have
the same idea: they store the genotypes of individuals from different populations.
So, they store genotypes at several loci and an individual categorical variable.
Additionally, the Genetix and Structure formats allow for individual labels.

adegenet includes four data files in each of these formats of the same mi-
crosatellite data set. These files can be displayed in the R console with:

> file.show(system.file("files/nancycats.dat", package="adegenet"))

> file.show(system.file("files/nancycats.gtx", package="adegenet"))

> file.show(system.file("files/nancycats.gen", package="adegenet"))

> file.show(system.file("files/nancycats.str", package="adegenet"))

If you want to copy these files into the working directory to further display or
edit them with your favourite editor, use these commands:

5

> file.copy(system.file("files/nancycats.dat", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.gtx", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.gen", package = "adegenet"), getwd())

[1] TRUE

> file.copy(system.file("files/nancycats.str", package = "adegenet"), getwd())

[1] TRUE

adegenet provides four functions to read these formats. Reading the first
three formats is straightforward:

> A <- read.fstat("nancycats.dat", quiet = TRUE)

> B <- read.genetix("nancycats.gtx", quiet = TRUE)

> C <- read.genepop("nancycats.gen", quiet = TRUE)

Reading a Structure file is slightly more complicated because the function
needs some exta information. This can be done interactively (the default), or
by specifying the appropriate options in which case we will use ask = FALSE:

> D <- read.structure("nancycats.str", onerowperind=FALSE, n.ind=237, n.loc=9, col.lab=1, col.pop=2, ask=FALSE, quiet=TRUE)

All four data sets are identical (we only compare the tab slots):

> identical(A@tab, C@tab)

[1] TRUE

> identical(B@tab, D@tab)

[1] TRUE

Once the data have been read into R, they can be analysed with adegenet or
with pegas after eventually converting them with as.loci. We now delete the
data files:

> unlink(c("nancycats.dat", "nancycats.gtx", "nancycats.gen", "nancycats.str"))

Finally, pegas has the function read.gtx to read a Genetix data file and
return an object of class "loci". This function has no option.

6

2.4 Importing Excel Files

Excel is widely used for trivial data management, but clearly these data must
be exported to other programs for most analyses. This also applies to the free
spreadsheet editors such as OpenOffice’s Calc or Gnumeric. Several solutions
to get such data into R are given below. I assume that the allelic data in the
spreadsheet are in a tabular form similar to what we have seen in Section 2.1,
so the objective is to have them in R as a "loci" object.

1. The simplest solution is to save the spreadsheet as a text file using either
the tab-delimited or comma-separated-variable (csv) format. This can be
done with any spreadsheet editor since Calc or Gnumeric can import Excel
files. Once the text file is created, read.loci can be used with the option
loci.sep = "\t" or loci.sep = ",", as well as any other that may be
needed.

2. If the “Save as. . . ” solution does not work, it is possible to save a sheet,
or part of it, in a text file by following these steps:

(a) Open the file, again this may be done with any program.

(b) Select the cells you want to export; this can be done by clicking once
on the top-left cell, and then clicking a second time on the bottom-
right cell after pressing the Shift key (this could avoid you a tunnel
syndrome and is much easier if many cells must be selected).

(c) Copy the selected cells in the clipboard (usually Ctrl-C).

(d) Open a text editor (do not use a word processor), paste the content
of the clipboard (usually Ctrl-V), and save the file.

The text file can now be read with read.loci(..., loci.sep = "\t").

3. If Perl is installed on your computer (this is true for almost all Linux
distributions), you can use the function read.xls from the package gdata
(available on CRAN) to read directly an Excel file into R (the Perl program
actually does the same job than the user does manually in the “Save as. . . ”
solution above). By default the first sheet is used, but this can be changed
with the sheet option. The returned object is a data frame and can be
converted as a "loci" object with as.loci. In that case, the same options
that in read.loci can be used (see ?as.loci.).

In my experience, read.xls works well with small to moderate size Excel
files but can be very slow with bigger files (> 10 MB).

We also note the function read.genealex in the package poppr [3] which
reads a Genalex file that has been exported into csv format and returns an
object of class "genind".

3 An Example From Dryad

This section shows how the jaguar data set was prepared. This data set, deliver
with pegas, was published by Haag et al. [1], and was deposited on Dryad.4 The

4http://datadryad.org/resource/doi:10.5061/dryad.1884

7

main data file is in Excel format and can be accessed directly at the locations
indicated below so that it can be read remotely with gdata:

> f <- "http://datadryad.org/bitstream/handle/10255/dryad.1885/\

MicrosatelliteData.xls?sequence=1"

> library(gdata)

> x <- read.xls(f, row.names = 1)

essai de l'URL 'http://datadryad.org/bitstream/handle/10255/\

dryad.1885/MicrosatelliteData.xls?sequence=1'

Content type 'application/vnd.ms-excel;charset=ISO-8859-1'\

length 29184 bytes (28 KB)

==

downloaded 28 KB

The object x is a data frame with the row names set correctly with the
line identifiers of the original file since we have used the option row.names =

1. In this data frame each column is an allele so that two columns are used
to represent the genotype at a given locus. This is clearly not the format used
by the class "loci". Furthermore, some rows indicating the populations have
been inserted with missing values (NA) for all columns. Fortunately, the rows
with genotypes have no NA, so it is easy to find the rows with the population
names, and drop them before transforming the data frame with the function
alleles2loci. This function has been specially designed to transform such
data sets. The commands are relatively straightforward:

> s <- apply(x, 1, anyNA)

> y <- alleles2loci(x[!s,])

We can now extract the population names and assign them to each observa-
tion; this is slightly more complicated, but the logical is based on the fact that
the rows below a population name should be assigned to it:5

> w <- which(s)

> n <- diff(c(w, nrow(x) + 1)) - 1

> pop <- factor(rep(1:4, n), labels = names(w))

> y$population <- pop

The data are now ready to be analysed in R. We can check that the row-
and colnames are correctly set with the labels from original file:

> y

Allelic data frame: 59 individuals

13 loci

1 additional variable

> dimnames(y)

5In practice, a for loop can be used: it would be less efficient but more intuitive and easier
to read.

8

[[1]]

[1] "bPon01" "bPon02" "bPon133" "bPon134" "bPon135"

[6] "bPon140" "bPon137" "bPon139" "bPon138" "bPon136"

[11] "bPon141" "bPon143" "bPon142" "bPon124" "bPon366"

[16] "bPon12" "bPon91" "bPon04" "bPon25" "bPon48"

[21] "bPon49" "bPon50" "bPon51" "bPon52" "bPon53"

[26] "bPon54" "bPon35" "bPon46" "bPon40" "bPon41"

[31] "bPon47" "bPon78" "bPon36" "bPon359" "bPon44"

[36] "bPon80" "bPon03" "bPon11" "bPon15" "bPon16"

[41] "bPon17" "bPon18" "bPon19" "bPon20" "bPon21"

[46] "bPon22" "bPon23" "bPon27" "bPon29" "bPon30"

[51] "bPon31" "bPon32" "bPon38" "bPon45" "bPon130"

[56] "bPon131" "bPon132" "bPon58" "bPon24"

[[2]]

[1] "FCA742" "FCA723" "FCA740" "FCA441"

[5] "FCA391" "F98" "F53" "F124"

[9] "F146" "F85" "F42" "FCA453"

[13] "FCA741" "population"

4 Editing and Writing Genetic Data Files

After the data have been read into R, they can be manipulated in the standard
way. This is straightforward for the class "loci" since it is a direct extension
of data frames. pegas has a few method functions adapted to "loci": rbind,
cbind, and the indexing operator [. Some other functions, such as subset,
split, rownames, colnames, or the $ operator, can be used without problem
since they respect additional attributes. Others, such as transform, drop the
attributes and so will return a simple data frame.

adegenet allows to edit an object of class "genind", but since this is an S4
class, the elements are accessed with the @ operator. The help page ?genind

describes them in details. A few functions are provided to ease the manipula-
tion of "genind" objects because setting all elements by hand may be tedious:
seploc splits the data with respect to each locus, seppop does the same with
respect to each population, and repool allows to do the opposite operation.

It is also possible to select a part of a "genind" object with the usual indexing
operator [, the indices will apply to the rows and/or columns of the @tab slot,
and the other slots will be modified accordingly. Some care should be paid when
using numerical indexing on columns because something like x[, 1] will only
select one allele column, eventually excluding other alleles of the same locus. It
is safer to use the option nloc which specifies the loci to be selected, and so will
select the appropriate allele columns. Further details are available in ?pop as
well as information on some other functions.

In addition to standard data editing, pegas allows to edit a "loci" object
with edit or fix. The command edit(x) opens the data in R’s spreadsheet-like
data editor. Here are a few points about this procedure:

� It is possible to change the row and column labels (rownames and col-

names).

9

� It is possible to add new rows (individuals): if some columns are not filled
they will be given NA.

� You can add new genotypes and/or alleles to a locus column: the levels
of the corresponding factor will be adjusted and a warning message will
inform you of that.

� New columns may be added, but they can only be numerical or character
vectors.

� Like most R functions, edit returns its results in the console if no as-
signment has been done, so you may prefer to call the editor with x <-

edit(x) or fix(x).

If you forgot the assignment and don’t want to lose all the changes you
did, after you have closed the editor you can save the modified data with
(only if you don’t do any other operation after edit):

x <- .Last.value

References

[1] T. Haag, A. S. Santos, D. A. Sana, R. G. Morato, L. Cullen, Jr, P. G. Craw-
shaw, Jr, C. De Angelo, M. S. Di Bitetti, F. M. Salzano, and E. Eizirik.
The effect of habitat fragmentation on the genetic structure of a top preda-
tor: loss of diversity and high differentiation among remnant populations of
atlantic forest jaguars (Panthera onca). Molecular Ecology, 22:4906–4921,
2010.

[2] T. Jombart. adegenet: a R package for the multivariate analysis of genetic
markers. Bioinformatics, 24:1403–1405, 2008.

[3] Z. N. Kamvar, J. F. Tabima, and N. J. Grünwald. Poppr : an R package for
genetic analysis of populations with clonal, partially clonal, and/or sexual
reproduction. PeerJ, 2:e281, 2014.

[4] E. Paradis. pegas: an R package for population genetics with an integrated–
modular approach. Bioinformatics, 26:419–420, 2010.

10

